针对基于最小二乘支持向量机(least squares support vector machine,LSSVM)高程拟合模型存在参数选取随机的局限性,本文将果蝇优化算法(fruit fly optimization algorithm,FOA)引入到灰色最小二乘支持向量机(grey least square support...针对基于最小二乘支持向量机(least squares support vector machine,LSSVM)高程拟合模型存在参数选取随机的局限性,本文将果蝇优化算法(fruit fly optimization algorithm,FOA)引入到灰色最小二乘支持向量机(grey least square support vector machine,GLSSVM)高程拟合模型中,建立了基于FOA的GLSSVM拟合模型.为了验证提出模型的有效性,结合工程实例,并与GLSSVM、LSSVM进行对比分析,结果表明提出模型具有收敛快、精度高的特点,为GNSS高程拟合提供了新的思路.展开更多
针对实际工业生产过程中数据的非线性、高维度等特征导致的故障特征难以提取、故障诊断率低的问题,提出将双局部近邻标准化(Double Local Neighborhood Standardization,DLNS)与局部线性嵌入(LLE)相结合进行故障特征提取,并使用霜冰优...针对实际工业生产过程中数据的非线性、高维度等特征导致的故障特征难以提取、故障诊断率低的问题,提出将双局部近邻标准化(Double Local Neighborhood Standardization,DLNS)与局部线性嵌入(LLE)相结合进行故障特征提取,并使用霜冰优化算法(RIME)对最小二乘支持向量机(LSSVM)进行参数优化的故障诊断方法。首先利用DLNS对数据进行预处理,然后使用LLE方法对数据进行降维重构以提取故障特征,其次,利用RIME算法对LSSVM的惩罚因子与核参数进行寻优,以获取最优的LSSVM模型用于故障诊断。最后将所提方法应用于田纳西-伊斯曼过程(TE)进行仿真实验。实验结果表明,所提方法能够有效提高故障诊断的诊断效果,验证了其在实际应用中的有效性。展开更多
文摘针对基于最小二乘支持向量机(least squares support vector machine,LSSVM)高程拟合模型存在参数选取随机的局限性,本文将果蝇优化算法(fruit fly optimization algorithm,FOA)引入到灰色最小二乘支持向量机(grey least square support vector machine,GLSSVM)高程拟合模型中,建立了基于FOA的GLSSVM拟合模型.为了验证提出模型的有效性,结合工程实例,并与GLSSVM、LSSVM进行对比分析,结果表明提出模型具有收敛快、精度高的特点,为GNSS高程拟合提供了新的思路.
文摘针对实际工业生产过程中数据的非线性、高维度等特征导致的故障特征难以提取、故障诊断率低的问题,提出将双局部近邻标准化(Double Local Neighborhood Standardization,DLNS)与局部线性嵌入(LLE)相结合进行故障特征提取,并使用霜冰优化算法(RIME)对最小二乘支持向量机(LSSVM)进行参数优化的故障诊断方法。首先利用DLNS对数据进行预处理,然后使用LLE方法对数据进行降维重构以提取故障特征,其次,利用RIME算法对LSSVM的惩罚因子与核参数进行寻优,以获取最优的LSSVM模型用于故障诊断。最后将所提方法应用于田纳西-伊斯曼过程(TE)进行仿真实验。实验结果表明,所提方法能够有效提高故障诊断的诊断效果,验证了其在实际应用中的有效性。