满足DL/T 627—2012标准的室温硫化硅橡胶(room temperature vulcanized,RTV)防污闪涂料在以广东为代表的高湿、多雨环境使用后出现了起皮和脱落的问题,为了提高绝缘子在湿污环境中的耐污性能,需要采用机械性能更优异的涂层。本文提...满足DL/T 627—2012标准的室温硫化硅橡胶(room temperature vulcanized,RTV)防污闪涂料在以广东为代表的高湿、多雨环境使用后出现了起皮和脱落的问题,为了提高绝缘子在湿污环境中的耐污性能,需要采用机械性能更优异的涂层。本文提出使用液体硅橡胶(liquid silicone rubber,LSR)涂层作为悬式绝缘子的防污闪涂层,通过憎水性迁移试验、污耐受试验、吸水吸湿试验、透水试验和压汞法,分别对比了LSR和RTV涂层在憎水迁移性、耐污性能、吸水吸湿特性、透水特性,孔隙率和孔径分布等方面的差异,并采用水煮试验加划圈法的方法研究了湿污环境中涂层的长效附着力。研究结果表明:LSR涂层的憎水迁移性弱于RTV涂层,但仍然可以大幅降低泄漏电流幅值,提高绝缘子的耐污性能;LSR涂层的吸水率和吸湿率均低于RTV涂层,透水速率略高于RTV涂层,而这种差异是由涂层孔隙特征和成分差异所导致的;LSR涂层在水煮试验中能够保持更长时间的附着效果,长效附着力更好。因此,在湿污环境中可以尝试使用具有更好适用性的LSR涂层作为RTV涂层的替代选择。展开更多
The well-known Controlled Convergence Theorem([5]) and the equi-integrability theorem([9]) are the main convergence theorems of the Kurzweil-Henstock integral, which is of the non-absolute type. These theorems are fun...The well-known Controlled Convergence Theorem([5]) and the equi-integrability theorem([9]) are the main convergence theorems of the Kurzweil-Henstock integral, which is of the non-absolute type. These theorems are fundamental in the application of the KH-integral to real and functional analysis. But their conditions can be weakened to extend their applications. In this paper, using the property of Locally-Small-Riemann-Sums([7]), we give an other convergence theorem (Theorem 1). By Theorem 2 we prove that Theorem 1 contains the Equi-integrability Theorem and is not equivalent to it. Therefore the Controlled Convergence Theorem and the Equi-integrability Theorem are all corollaries of Theorem 1.展开更多
文摘动态系统评价(living systematic review,LSR)是一种定期更新并纳入新证据的系统评价方法,旨在快速反映最新研究成果。尽管LSR在临床领域日益普及,但其报告质量参差不齐,缺乏统一的报告规范。为提升LSR的报告质量,PRISMA 2020工作组发布了动态系统评价扩展版清单(PRISMA extension for living systematic review,PRISMA⁃LSR)。本文阐述PRISMA⁃LSR的发布背景及主要修订内容,并结合实例进行解读,旨在为未来LSR研究提供指导,提升其报告质量。
文摘The well-known Controlled Convergence Theorem([5]) and the equi-integrability theorem([9]) are the main convergence theorems of the Kurzweil-Henstock integral, which is of the non-absolute type. These theorems are fundamental in the application of the KH-integral to real and functional analysis. But their conditions can be weakened to extend their applications. In this paper, using the property of Locally-Small-Riemann-Sums([7]), we give an other convergence theorem (Theorem 1). By Theorem 2 we prove that Theorem 1 contains the Equi-integrability Theorem and is not equivalent to it. Therefore the Controlled Convergence Theorem and the Equi-integrability Theorem are all corollaries of Theorem 1.