针对三维人体姿态估计的便捷性与准确性提升需求,提出一种基于TM-Net网络估计算法。该算法以MediaPipe为中心,融合帧率计算、动作检测、动作计数和真实坐标解析等多功能模块,实现对人体运动的精准检测与计数。针对公共数据集LSP(Leeds S...针对三维人体姿态估计的便捷性与准确性提升需求,提出一种基于TM-Net网络估计算法。该算法以MediaPipe为中心,融合帧率计算、动作检测、动作计数和真实坐标解析等多功能模块,实现对人体运动的精准检测与计数。针对公共数据集LSP(Leeds Sports Pose)和自建校园健身房运动数据集使用关键点的正确性概率(Probability of Correct Keypoint,PCK)、关节位置误差平均值(Mean Per Joint Position Error,MPJPE)和普罗克鲁斯对齐后的平均关节位置误差(Procrustes-Aligned Mean Per Joint Position Error,PA-MPJPE)等指标对该算法进行评估,并与目前先进的TP-3D网络估计算法进行对比。结果表明,TM-Net具有更高的准确率。此外,以开合跳为例进行消融实验,结果表明,TM-Net具有更强的泛化能力,能适应不同个体及拍摄角度的变化,满足了运动监测的实际需求。展开更多
TC6 titanium alloy samples are processed by laser shock peening (LSP). Then, some samples are vacu- um annealed at 623 K for 10 h for the study on the thermost.ablity of the nanostructure produced by LSP. The charac...TC6 titanium alloy samples are processed by laser shock peening (LSP). Then, some samples are vacu- um annealed at 623 K for 10 h for the study on the thermost.ablity of the nanostructure produced by LSP. The characteristics of the strengthened layer and nanostructure are studied by atomic force microscopy(AFM), scan- ning electron microscope (SEM), electron backscatter diffraction(EBSD), X-ray diffraction(XRD), and transmis- sion electron microscopy(TEM) appliances, meanwhile the enhanced microhardness is tested at cross section. AFM of the processed surface indicates that the deformation is approximately uniform, and LSP slightly increases the roughness. SEM and EBSD of the strengthened cross section show that a phases are compressed to strip- shaped, a proportion of a and ~ phases is shattered to smaller phases from surface to 200 ttm in depth. The sur- face XRD shows that although there is no new produced phase during LSP, the grain size refinement and the in- troduction of lattice micro-strains lead to the broadened peak. The TEM photographs and diffraction patterns in- dicate that the shock wave provides high strain rate deformation and leads to the formation of nanocrystal. Com- pared with the samples before annealing, the dislocation density is lower and the grain-boundary is more distinct in the annealed samples, but the nanocrystal size does not grow bigger after annealing. The microhardness measurement indicates that LSP improves the microhardness of TC6 for about 12.2% on the surface, and the layer affected by LSP is about 500/~m in depth. The microhardness after annealing is 10 HVo.5 lower, but the affected depth does not change. The thermostable study shows that the strengthened layer of TC6 processed by LSP is stable at 623 K. The strengthened thermostable layer can significantly improve the fatigue resistance, wear resis- tance and stress corrosion resistance of the titanium alloy. The study results break the USA standard AMS2546 that titanium parts after LSP are subjected in subsequent processing within 589 K.展开更多
文摘针对三维人体姿态估计的便捷性与准确性提升需求,提出一种基于TM-Net网络估计算法。该算法以MediaPipe为中心,融合帧率计算、动作检测、动作计数和真实坐标解析等多功能模块,实现对人体运动的精准检测与计数。针对公共数据集LSP(Leeds Sports Pose)和自建校园健身房运动数据集使用关键点的正确性概率(Probability of Correct Keypoint,PCK)、关节位置误差平均值(Mean Per Joint Position Error,MPJPE)和普罗克鲁斯对齐后的平均关节位置误差(Procrustes-Aligned Mean Per Joint Position Error,PA-MPJPE)等指标对该算法进行评估,并与目前先进的TP-3D网络估计算法进行对比。结果表明,TM-Net具有更高的准确率。此外,以开合跳为例进行消融实验,结果表明,TM-Net具有更强的泛化能力,能适应不同个体及拍摄角度的变化,满足了运动监测的实际需求。
文摘TC6 titanium alloy samples are processed by laser shock peening (LSP). Then, some samples are vacu- um annealed at 623 K for 10 h for the study on the thermost.ablity of the nanostructure produced by LSP. The characteristics of the strengthened layer and nanostructure are studied by atomic force microscopy(AFM), scan- ning electron microscope (SEM), electron backscatter diffraction(EBSD), X-ray diffraction(XRD), and transmis- sion electron microscopy(TEM) appliances, meanwhile the enhanced microhardness is tested at cross section. AFM of the processed surface indicates that the deformation is approximately uniform, and LSP slightly increases the roughness. SEM and EBSD of the strengthened cross section show that a phases are compressed to strip- shaped, a proportion of a and ~ phases is shattered to smaller phases from surface to 200 ttm in depth. The sur- face XRD shows that although there is no new produced phase during LSP, the grain size refinement and the in- troduction of lattice micro-strains lead to the broadened peak. The TEM photographs and diffraction patterns in- dicate that the shock wave provides high strain rate deformation and leads to the formation of nanocrystal. Com- pared with the samples before annealing, the dislocation density is lower and the grain-boundary is more distinct in the annealed samples, but the nanocrystal size does not grow bigger after annealing. The microhardness measurement indicates that LSP improves the microhardness of TC6 for about 12.2% on the surface, and the layer affected by LSP is about 500/~m in depth. The microhardness after annealing is 10 HVo.5 lower, but the affected depth does not change. The thermostable study shows that the strengthened layer of TC6 processed by LSP is stable at 623 K. The strengthened thermostable layer can significantly improve the fatigue resistance, wear resis- tance and stress corrosion resistance of the titanium alloy. The study results break the USA standard AMS2546 that titanium parts after LSP are subjected in subsequent processing within 589 K.