期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
多传感器信息融合的车辆轨迹感知设计与实现 被引量:3
1
作者 赵国辉 李京国 马林 《电子设计工程》 2023年第7期188-193,共6页
针对全息路口需求,设计了一种雷达、GPS及视觉的多维信息融合雷视一体机。基于深度学习技术实现对机动车的实时检测。在此基础上,通过雷达与视频及雷达与GPS坐标系标定建立目标关联关系,利用融合规则获取融合数据点。为了解决融合数据... 针对全息路口需求,设计了一种雷达、GPS及视觉的多维信息融合雷视一体机。基于深度学习技术实现对机动车的实时检测。在此基础上,通过雷达与视频及雷达与GPS坐标系标定建立目标关联关系,利用融合规则获取融合数据点。为了解决融合数据点形成的轨迹线不平滑的问题,提出加权GS-LSPIA算法,将每个融合数据点赋予初始权重,选取拟合曲线的控制点,通过迭代的方式调整控制点,生成一系列曲线,曲线的极限是融合数据点的最小二乘拟合的结果。实验结果表明,雷视一体机设备可感知车辆轨迹,且加权GS-LSPIA算法使得车辆运行轨迹更平滑。 展开更多
关键词 信息融合 雷视一体机 标定 加权GS-lspia 拟合 轨迹平滑
在线阅读 下载PDF
Stochastic Geometric Iterative Method for Loop Subdivision Surface Fitting
2
作者 Chenkai Xu Yaqi He +1 位作者 Hui Hu Hongwei Lin 《Communications in Mathematics and Statistics》 2025年第1期217-231,共15页
In this paper,we propose a stochastic geometric iterative method(S-GIM)to approximate the high-resolution 3Dmodels by finite loop subdivision surfaces.Given an input mesh as the fitting target,the initial control mesh... In this paper,we propose a stochastic geometric iterative method(S-GIM)to approximate the high-resolution 3Dmodels by finite loop subdivision surfaces.Given an input mesh as the fitting target,the initial control mesh is generated using the mesh simplification algorithm.Then,our method adjusts the control mesh iteratively to make its finite loop subdivision surface approximate the input mesh.In each geometric iteration,we randomly select part of points on the subdivision surface to calculate the difference vectors and distribute the vectors to the control points.Finally,the control points are updated by adding the weighted average of these difference vectors.We prove the convergence of S-GIM and verify it by demonstrating error curves in the experiment.In addition,compared with existing geometric iterative methods,S-GIM has a shorter running time under the same number of iteration steps. 展开更多
关键词 Geometric iterative Surface fitting Subdivision surface Stochastic PIA Stochastic lspia
原文传递
The Convergence of Least-Squares Progressive Iterative Approximation for Singular Least-Squares Fitting System 被引量:15
3
作者 LIN Hongwei CAO Qi ZHANG Xiaoting 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2018年第6期1618-1632,共15页
Data fitting is an extensively employed modeling tool in geometric design. With the advent of the big data era, the data sets to be fitted are made larger and larger, leading to more and more least-squares fitting sys... Data fitting is an extensively employed modeling tool in geometric design. With the advent of the big data era, the data sets to be fitted are made larger and larger, leading to more and more least-squares fitting systems with singular coefficient matrices. LSPIA (least-squares progressive iterative approximation) is an efficient iterative method for the least-squares fitting. However, the convergence of LSPIA for the singular least-squares fitting systems remains as an open problem. In this paper, the authors showed that LSPIA for the singular least-squares fitting systems is convergent. Moreover, in a special case, LSPIA converges to the Moore-Penrose (M-P) pseudo-inverse solution to the least- squares fitting result of the data set. This property makes LSPIA, an iterative method with clear geometric meanings, robust in geometric modeling applications. In addition, the authors discussed some implementation detail of LSPIA, and presented an example to validate the convergence of LSPIA for the singular least-squares fitting systems. 展开更多
关键词 Data FITTING GEOMETRIC modeling lspia SINGULAR LEAST-SQUARES FITTING system.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部