Laser shock-processing (LSP) is of particular advantage for improving fa-tigue behavior of small holes and blind holes. Because there are not good accessibility andpassage, these holes cannot be treated by shot peenin...Laser shock-processing (LSP) is of particular advantage for improving fa-tigue behavior of small holes and blind holes. Because there are not good accessibility andpassage, these holes cannot be treated by shot peening or cold extrusion. The fatigue livesof aircraft aluminum alloy 2024-T62 are increased greatly by means of optimization oflaser shocking parameters. With 95 % confidence, the mean fatigue life of LSP specimensis 4. 35~7, 75 times larger than that of the un-shocked ones.展开更多
This paper uses a Modified Soil-Plant-Atmosphere Scheme (MSPAS) to study the interaction between land surface and atmospheric boundary layer processes. The scheme is composed of two main parts: atmospheric boundary la...This paper uses a Modified Soil-Plant-Atmosphere Scheme (MSPAS) to study the interaction between land surface and atmospheric boundary layer processes. The scheme is composed of two main parts: atmospheric boundary layer processes and land surface processes. Compared with SiB and BATS, which are famous for their detailed parameterizations of physical variables, this simplified model is more convenient and saves much more computation time. Though simple, the feasibility of the model is well proved in this paper. The numerical simulation results from MSPAS show good agreement with reality. The scheme is used to obtain reasonable simulations for diurnal variations of heat balance, potential temperature of boundary layer, and wind field, and spatial distributions of temperature, specific humidity, vertical velocity, turbulence kinetic energy, and turbulence exchange coefficient over desert and oasis. In addition, MSPAS is used to simulate the interaction between desert and oasis at night, and again it obtains reasonable results. This indicates that MSPAS can be used to study the interaction between land surface processes and the atmospheric boundary layer over various underlying surfaces and can be extended for regional climate and numerical weather prediction study.展开更多
With the rapid development of engineering component with integration,high-speed and multi-parameter,traditional techniques haven't met practical needs in extreme service environment.Laser welding,a new welding techno...With the rapid development of engineering component with integration,high-speed and multi-parameter,traditional techniques haven't met practical needs in extreme service environment.Laser welding,a new welding technology,has been widely used.However,it would generate the drop of mechanical properties for laser welded joint due to its thermal effect.Laser shock processing(LSP) is one of the most effective methods to improve the mechanical properties of laser welded ANSI 304 stainless steel joint.In this paper,the effects of LSP on the mechanical properties of laser welded ANSI 304 stainless steel joint have been investigated.The welded joint on the front of the tensile samples is treated by LSP impacts,and the overlapping rate of the laser spot is 50%.The tensile test of the laser welded joint with and without LSP impacts is carried out,and the fracture morphology of the tensile samples is analyzed by scanning electron microscope(SEM).Compared with the yield strength of 11.70 kN,the tensile strength of 37.66 kN,the yield-to-tensile strength ratio of 0.310 7,the elongation of 25.20%,the area reduction of 32.68% and the elastic modulus of 13 063.876 MPa,the corresponding values after LSP impacts are 14.25 kN,38.74 kN,0.367 8,26.58%,42.29% and 14 754.394 MPa,respectively.Through LSP impacts,the increasing ratio of the yield strength and tensile strength are 121.79% and 102.87%,respectively;the elongation and area reduction are improved by 5.48% and 29.38%,respectively.By comparing with coarse fracture surface of the welded joint,the delamination splitting with some cracks in the sharp corner of the welded joint and asymmetric dimples,LSP can cause brighter fracture surface,and finer and more uniform dimples.Finally,the schematic illustration of dimple formation with LSP is clearly described.The proposed research ensures that the LSP technology can clearly improve the yield strength,tensile strength,yield-to-tensile strength ratio,elongation,area reduction and elastic modulus of the welded joint.The enhancement mechanism of LSP on laser welded ANSI 304 stainless steel joint is mainly due to the fact that the refined and uniform dimples effectively delay the fracture of laser welded joints.展开更多
文摘Laser shock-processing (LSP) is of particular advantage for improving fa-tigue behavior of small holes and blind holes. Because there are not good accessibility andpassage, these holes cannot be treated by shot peening or cold extrusion. The fatigue livesof aircraft aluminum alloy 2024-T62 are increased greatly by means of optimization oflaser shocking parameters. With 95 % confidence, the mean fatigue life of LSP specimensis 4. 35~7, 75 times larger than that of the un-shocked ones.
基金supported by the National Natural Science Foundation of China (Grant No.40275004)the State Key Laboratory of Atmosphere Physics and Chemistry,and the City University of Hong Kong(Grant No.8780046)the City University of Hong Kong Strategic Research(Grant No.7001038)
文摘This paper uses a Modified Soil-Plant-Atmosphere Scheme (MSPAS) to study the interaction between land surface and atmospheric boundary layer processes. The scheme is composed of two main parts: atmospheric boundary layer processes and land surface processes. Compared with SiB and BATS, which are famous for their detailed parameterizations of physical variables, this simplified model is more convenient and saves much more computation time. Though simple, the feasibility of the model is well proved in this paper. The numerical simulation results from MSPAS show good agreement with reality. The scheme is used to obtain reasonable simulations for diurnal variations of heat balance, potential temperature of boundary layer, and wind field, and spatial distributions of temperature, specific humidity, vertical velocity, turbulence kinetic energy, and turbulence exchange coefficient over desert and oasis. In addition, MSPAS is used to simulate the interaction between desert and oasis at night, and again it obtains reasonable results. This indicates that MSPAS can be used to study the interaction between land surface processes and the atmospheric boundary layer over various underlying surfaces and can be extended for regional climate and numerical weather prediction study.
基金supported by National Natural Science Foundation of China (Grant No. 50735001 and Grant No. 51105179)Jiangsu Provincial Natural Science Foundation of China (Grant No. BK2010352 and GrantNo. BK2011478)+1 种基金Natural Science Foundation of Jiangsu Higher Education Institutions,China (Grant No. 10KJB460001)Jiangsu Provincial Innovation Program of Graduated Student of China (Grant No.CXZZ11_0546 and Grant No. CX10B_250Z)
文摘With the rapid development of engineering component with integration,high-speed and multi-parameter,traditional techniques haven't met practical needs in extreme service environment.Laser welding,a new welding technology,has been widely used.However,it would generate the drop of mechanical properties for laser welded joint due to its thermal effect.Laser shock processing(LSP) is one of the most effective methods to improve the mechanical properties of laser welded ANSI 304 stainless steel joint.In this paper,the effects of LSP on the mechanical properties of laser welded ANSI 304 stainless steel joint have been investigated.The welded joint on the front of the tensile samples is treated by LSP impacts,and the overlapping rate of the laser spot is 50%.The tensile test of the laser welded joint with and without LSP impacts is carried out,and the fracture morphology of the tensile samples is analyzed by scanning electron microscope(SEM).Compared with the yield strength of 11.70 kN,the tensile strength of 37.66 kN,the yield-to-tensile strength ratio of 0.310 7,the elongation of 25.20%,the area reduction of 32.68% and the elastic modulus of 13 063.876 MPa,the corresponding values after LSP impacts are 14.25 kN,38.74 kN,0.367 8,26.58%,42.29% and 14 754.394 MPa,respectively.Through LSP impacts,the increasing ratio of the yield strength and tensile strength are 121.79% and 102.87%,respectively;the elongation and area reduction are improved by 5.48% and 29.38%,respectively.By comparing with coarse fracture surface of the welded joint,the delamination splitting with some cracks in the sharp corner of the welded joint and asymmetric dimples,LSP can cause brighter fracture surface,and finer and more uniform dimples.Finally,the schematic illustration of dimple formation with LSP is clearly described.The proposed research ensures that the LSP technology can clearly improve the yield strength,tensile strength,yield-to-tensile strength ratio,elongation,area reduction and elastic modulus of the welded joint.The enhancement mechanism of LSP on laser welded ANSI 304 stainless steel joint is mainly due to the fact that the refined and uniform dimples effectively delay the fracture of laser welded joints.