Solid oxide fuel cell is attracting more attention in recent years for its lower pollution emission and high energy convert efficiency. La0.9Sr0.1Ga0.8Mg0.2O3-δis a new kind of electrolyte for intermediate temperatur...Solid oxide fuel cell is attracting more attention in recent years for its lower pollution emission and high energy convert efficiency. La0.9Sr0.1Ga0.8Mg0.2O3-δis a new kind of electrolyte for intermediate temperature SOFC. In this paper, La0.9Sr0.1Ga0.8Mg0.2O3-δ(LSGM) was prepared by solid state reaction method and formed by tape casting process to make a planar electrolyte. The appropriate amount of the dispersive was obtained by viscosity test. The densities of sintered samples increase with the increasing sintering temperature. It was found that the relative density of electrolyte can approach the value of 95 % by the isostatic pressing treatment of the green tape. The average thermal expansion coefficient of the LSGM is 11 .4×10-6 /℃at temperature range (200 ~ 1200℃). Measurements of the current-voltage and power-current characteristics of the Hi-Air cell show that the open-circuit voltage is 1.067 V at 800℃, peak current density is 0.56 A·cm -2 and the maximum power output is 0.147 W·cm -2.展开更多
La0.9Sr0.1Ga0.8Mg0.2O3-δ(LSGM) and La0.7Sr0.3Cr0.5Mn0.5O3-δ(LSCM) powders were synthesized by glycine-nitrate process, and LSGM electrolyte thin film was successfully fabricated on porous anode substrate of LSCM...La0.9Sr0.1Ga0.8Mg0.2O3-δ(LSGM) and La0.7Sr0.3Cr0.5Mn0.5O3-δ(LSCM) powders were synthesized by glycine-nitrate process, and LSGM electrolyte thin film was successfully fabricated on porous anode substrate of LSCM by slurry spin coating technology. Some technical parameters for the preparation of LSGM thin films were systematically investigated, including ink composition,sintering temperature, and spin coating times. The electrolyte films with the best compactness and somewhat rough are obtained when the operating parameters are fixed as follows: the content of ethyl cellulose as binder is 5 wt%, the content of terpineol as modifier is 5 wt%, the optimum coating cycle number is 9 times, and the best post-deposition sintering temperature is 1,400 °C for 4 h.展开更多
The aim of this research is to study zirconia-based electrolyte materials to increase the commercial value of zircon concentrate as a side product of fin mining industries. Synthesis of CaO-Y2O3-ZrO2 (CYZ) and 8mol%...The aim of this research is to study zirconia-based electrolyte materials to increase the commercial value of zircon concentrate as a side product of fin mining industries. Synthesis of CaO-Y2O3-ZrO2 (CYZ) and 8mol% Y2O3-ZrO2 (8YSZ) was carried out by solid state reaction. The result shows that ZrO2 presents in tetragonal phase. Doping of Y203 into ZrO2 allows a phase transformation from tetragonal into cubic structure with small percentage of monoclinic phase. Meanwhile, doping of CaO-Y2O3 allows a phase transformation into a single cubic phase. These phase transformations enhance the ionic conductivity of the material. Introduction of 10wt% of LSGM-8282 into CYZ (CYZ-L90:10) allows further improvement of inter-grain contact shown by SEM morphological analysis and leads to the enhancement of ionic conductivity.展开更多
A dense La0.8Sr0.2Ga0.83Mg0.17O2.815 electrolyte in pure perovskite phase was prepared by a polyacrylic acid assisted solid state reaction method, and the effects of La source on the structure and electrochemical perf...A dense La0.8Sr0.2Ga0.83Mg0.17O2.815 electrolyte in pure perovskite phase was prepared by a polyacrylic acid assisted solid state reaction method, and the effects of La source on the structure and electrochemical performance were also studied. By means of XRD and SEM, the structure of this material was characterized, and the electrochemical properties were studied through AC impedance diagram. The results show that the sample presents a single perovskite-type phase after sintering at 1 450 ℃ and the relative density is 94%. The specimen has the lower activate energy and higher electrical conductivity at 600 ℃. There are two different activation energy at the turning point of 650 ℃, which are 74.6 and 42.4 kJ·mol-1, respectively. The electrical conductivity is 0.057 S·cm-1 and 0.017 S·cm-1 at the temperature of 800 ℃ and 600 ℃, respectively.展开更多
基金Project supported by the National Natural Science Foundation of China (90510006)
文摘Solid oxide fuel cell is attracting more attention in recent years for its lower pollution emission and high energy convert efficiency. La0.9Sr0.1Ga0.8Mg0.2O3-δis a new kind of electrolyte for intermediate temperature SOFC. In this paper, La0.9Sr0.1Ga0.8Mg0.2O3-δ(LSGM) was prepared by solid state reaction method and formed by tape casting process to make a planar electrolyte. The appropriate amount of the dispersive was obtained by viscosity test. The densities of sintered samples increase with the increasing sintering temperature. It was found that the relative density of electrolyte can approach the value of 95 % by the isostatic pressing treatment of the green tape. The average thermal expansion coefficient of the LSGM is 11 .4×10-6 /℃at temperature range (200 ~ 1200℃). Measurements of the current-voltage and power-current characteristics of the Hi-Air cell show that the open-circuit voltage is 1.067 V at 800℃, peak current density is 0.56 A·cm -2 and the maximum power output is 0.147 W·cm -2.
基金financially supported by the National Natural Science Foundation of China (Nos. 51362011 and 51362012)the Chemistry Discipline Master’s Site Construction Open Foundation of Honghe University of Yunnan Province (No. HXZ1308)
文摘La0.9Sr0.1Ga0.8Mg0.2O3-δ(LSGM) and La0.7Sr0.3Cr0.5Mn0.5O3-δ(LSCM) powders were synthesized by glycine-nitrate process, and LSGM electrolyte thin film was successfully fabricated on porous anode substrate of LSCM by slurry spin coating technology. Some technical parameters for the preparation of LSGM thin films were systematically investigated, including ink composition,sintering temperature, and spin coating times. The electrolyte films with the best compactness and somewhat rough are obtained when the operating parameters are fixed as follows: the content of ethyl cellulose as binder is 5 wt%, the content of terpineol as modifier is 5 wt%, the optimum coating cycle number is 9 times, and the best post-deposition sintering temperature is 1,400 °C for 4 h.
基金supported by the Directorate General ofHigher Education, Republic of Indonesia through HibahDesertasi Doktor and Riset KK ITB
文摘The aim of this research is to study zirconia-based electrolyte materials to increase the commercial value of zircon concentrate as a side product of fin mining industries. Synthesis of CaO-Y2O3-ZrO2 (CYZ) and 8mol% Y2O3-ZrO2 (8YSZ) was carried out by solid state reaction. The result shows that ZrO2 presents in tetragonal phase. Doping of Y203 into ZrO2 allows a phase transformation from tetragonal into cubic structure with small percentage of monoclinic phase. Meanwhile, doping of CaO-Y2O3 allows a phase transformation into a single cubic phase. These phase transformations enhance the ionic conductivity of the material. Introduction of 10wt% of LSGM-8282 into CYZ (CYZ-L90:10) allows further improvement of inter-grain contact shown by SEM morphological analysis and leads to the enhancement of ionic conductivity.
文摘A dense La0.8Sr0.2Ga0.83Mg0.17O2.815 electrolyte in pure perovskite phase was prepared by a polyacrylic acid assisted solid state reaction method, and the effects of La source on the structure and electrochemical performance were also studied. By means of XRD and SEM, the structure of this material was characterized, and the electrochemical properties were studied through AC impedance diagram. The results show that the sample presents a single perovskite-type phase after sintering at 1 450 ℃ and the relative density is 94%. The specimen has the lower activate energy and higher electrical conductivity at 600 ℃. There are two different activation energy at the turning point of 650 ℃, which are 74.6 and 42.4 kJ·mol-1, respectively. The electrical conductivity is 0.057 S·cm-1 and 0.017 S·cm-1 at the temperature of 800 ℃ and 600 ℃, respectively.