With the development of science and technology,the design and optimization of control systems are widely applied.This paper focuses on the application of matrix equations in linear time-invariant systems.Taking the in...With the development of science and technology,the design and optimization of control systems are widely applied.This paper focuses on the application of matrix equations in linear time-invariant systems.Taking the inverted pendulum model as an example,the algebraic Riccati equation is used to solve the optimal control problem,and the system performance and stability are achieved by selecting the closed-loop pole and designing the gain matrix.Then,the numerical methods for solving the stochastic algebraic Riccati equations are applied to practical problems,with Newton’s iteration method as the outer iteration and the solution of the mixed-type Lyapunov equations as the inner iteration.Two methods for solving the Lyapunov equations are introduced,providing references for related research.展开更多
基金Supported by National Natural Science Foundation of China(Grant No.12571388)the Visiting Scholar Program of National Natural Science Foundation of China(Grant No.12426616)Natural Science Research Start-up Foundation of Recruiting Talents of Nanjing University of Posts and Telecommunications(Grant No.NY223127).
文摘With the development of science and technology,the design and optimization of control systems are widely applied.This paper focuses on the application of matrix equations in linear time-invariant systems.Taking the inverted pendulum model as an example,the algebraic Riccati equation is used to solve the optimal control problem,and the system performance and stability are achieved by selecting the closed-loop pole and designing the gain matrix.Then,the numerical methods for solving the stochastic algebraic Riccati equations are applied to practical problems,with Newton’s iteration method as the outer iteration and the solution of the mixed-type Lyapunov equations as the inner iteration.Two methods for solving the Lyapunov equations are introduced,providing references for related research.