目的:由连梅汤(LMD)对脂多糖(LPS)诱导的脓毒症小鼠回肠屏障及肝肺损伤的保护作用的研究。方法:采用随机方式,将C57/6J雄性小鼠分为对照组(CON组)、LPS模型组(LPS组)和连梅汤治疗组(LMD组),每组各6只。适应性喂养7天后,分别经口给予生...目的:由连梅汤(LMD)对脂多糖(LPS)诱导的脓毒症小鼠回肠屏障及肝肺损伤的保护作用的研究。方法:采用随机方式,将C57/6J雄性小鼠分为对照组(CON组)、LPS模型组(LPS组)和连梅汤治疗组(LMD组),每组各6只。适应性喂养7天后,分别经口给予生理盐水与治疗剂量的连梅汤(LMD) 21天。第22天,PBS注入对照组腹腔,另两组LPS注入5 mg/kg腹腔,建立脓毒症模型小鼠。腹腔注射24小时后进行回肠和肝、肺组织的收集。用HE染色组织病理鉴定;通过RT-qPCR检测回肠屏障因子水平(ZO-1, Occludin)和肝肺组织炎性因子(IL-1α, IL-8, TNF-α)。结果LPS组与CON相比,体重下降明显(n = 6;P β、IL-8、TNF-α)水平(n = 6;P Objective: The protective effect of Lianmei Decoction on the intestine was studied to the intestinal barrier, liver, and lung damage caused by lipopolysaccharide (LPS) in septic mice. Methods: C57/6J male mice were randomly assigned to the control group (CON group), LPS model group (LPS group), and Lianmei Decoction treatment group (LMD group), with 6 mice in each group. After 7 days of adaptive feeding, normal saline and a therapeutic dose of LMD were given orally for 21 days. In the 22 days of the study, PBS was injected intraperitoneally into the CON group, and 5 mg/kg LPS was administered intraperitoneally to the remaining two groups to create a sepsis mouse model. Ileum, liver, and lung tissues were gathered 24 hours after intraperitoneal injection. Histopathological examination was done using HE staining;the amounts of ileal barrier factors (ZO-1, Occludin) and inflammatory factors (IL-1β, IL-8, TNF-α) in liver and lung tissues were detected by RT-qPCR. Results: Compared with the CON group, the body weight of the LPS group decreased dramatically (n = 6;P β, IL-8, TNF-a) in liver and lung tissues (n = 6;P < 0.05), reduce the pathological damage of liver and pulmonary tissue. Conclusion: Lianmei Decoction can effectively improve ileal barrier damage, liver and lung injury, and inflammatory imbalance in LPS-induced sepsis mice.展开更多
Background The benefits of combining benzoic acid and essential oils(BAO)to mitigate intestinal impairment during the weaning process have been well established,while the detailed underlying mechanism has not been ful...Background The benefits of combining benzoic acid and essential oils(BAO)to mitigate intestinal impairment during the weaning process have been well established,while the detailed underlying mechanism has not been fully elucidated.Previous research has primarily focused on the reparative effects of BAO on intestinal injury,while neglecting its potential in enhancing intestinal stress resistance.Methods In this study,we investigated the pre-protective effect of BAO against LPS-induced stress using a modified experimental procedure.Piglets were pre-supplemented with BAO for 14 d,followed by a challenge with LPS or saline to collect blood and intestinal samples.Results Our findings demonstrated that BAO supplementation led to significant improvements in piglets’final weight,average daily gain,and feed intake/body gain ratio.Additionally,BAO supplementation positively influenced the composition of intestinal microbiota,increasing beneficial Actinobacteriota and Alloprevotella while reducing harmful Desulfobacterota,Prevotella and Oscillospira.Furthermore,BAO supplementation effectively mitigated oxidative disturbances and inflammatory responses induced by acute LPS challenge.This was evidenced by elevated levels of T-AOC,SOD,and GSH,as well as decreased levels of MDA,TNF-α,and IL-6 in the plasma.Moreover,piglets subjected to LPS challenge and pre-supplemented with BAO exhibited significant improvements in intestinal morphological structure and enhanced integrity,as indicated by restored expression levels of Occludin and Claudin-1 compared to the non-supplemented counterparts.Further analysis revealed that BAO supplementation enhanced the jejunal antioxidative capacity by increasing GSH-Px levels and decreasing MDA levels under the LPS challenge and stimulated the activation of the Nrf2 signaling pathway.Additionally,the reduction of TLR4/NF-κB/MAPK signaling pathways activation and proinflammatory factor were also observed in the jejunal of those piglets fed with BAO.Conclusions In summary,our study demonstrates that pre-supplementation of BAO enhances the anti-stress capacity of weaned piglets by improving intestinal microbiota composition,reinforcing the intestinal barrier,and enhancing antioxidative and anti-inflammatory capabilities.These effects are closely associated with the activation of Nrf2 and TLR4/NF-κB/MAPK signaling pathways.展开更多
文摘目的:由连梅汤(LMD)对脂多糖(LPS)诱导的脓毒症小鼠回肠屏障及肝肺损伤的保护作用的研究。方法:采用随机方式,将C57/6J雄性小鼠分为对照组(CON组)、LPS模型组(LPS组)和连梅汤治疗组(LMD组),每组各6只。适应性喂养7天后,分别经口给予生理盐水与治疗剂量的连梅汤(LMD) 21天。第22天,PBS注入对照组腹腔,另两组LPS注入5 mg/kg腹腔,建立脓毒症模型小鼠。腹腔注射24小时后进行回肠和肝、肺组织的收集。用HE染色组织病理鉴定;通过RT-qPCR检测回肠屏障因子水平(ZO-1, Occludin)和肝肺组织炎性因子(IL-1α, IL-8, TNF-α)。结果LPS组与CON相比,体重下降明显(n = 6;P β、IL-8、TNF-α)水平(n = 6;P Objective: The protective effect of Lianmei Decoction on the intestine was studied to the intestinal barrier, liver, and lung damage caused by lipopolysaccharide (LPS) in septic mice. Methods: C57/6J male mice were randomly assigned to the control group (CON group), LPS model group (LPS group), and Lianmei Decoction treatment group (LMD group), with 6 mice in each group. After 7 days of adaptive feeding, normal saline and a therapeutic dose of LMD were given orally for 21 days. In the 22 days of the study, PBS was injected intraperitoneally into the CON group, and 5 mg/kg LPS was administered intraperitoneally to the remaining two groups to create a sepsis mouse model. Ileum, liver, and lung tissues were gathered 24 hours after intraperitoneal injection. Histopathological examination was done using HE staining;the amounts of ileal barrier factors (ZO-1, Occludin) and inflammatory factors (IL-1β, IL-8, TNF-α) in liver and lung tissues were detected by RT-qPCR. Results: Compared with the CON group, the body weight of the LPS group decreased dramatically (n = 6;P β, IL-8, TNF-a) in liver and lung tissues (n = 6;P < 0.05), reduce the pathological damage of liver and pulmonary tissue. Conclusion: Lianmei Decoction can effectively improve ileal barrier damage, liver and lung injury, and inflammatory imbalance in LPS-induced sepsis mice.
基金supported by the National Key Research and Development Program(2021YFD1300400)Natural Science Foundation of Guangdong Province(2021A1515010944)Science and Technology Projects in Guangzhou(202201011730).
文摘Background The benefits of combining benzoic acid and essential oils(BAO)to mitigate intestinal impairment during the weaning process have been well established,while the detailed underlying mechanism has not been fully elucidated.Previous research has primarily focused on the reparative effects of BAO on intestinal injury,while neglecting its potential in enhancing intestinal stress resistance.Methods In this study,we investigated the pre-protective effect of BAO against LPS-induced stress using a modified experimental procedure.Piglets were pre-supplemented with BAO for 14 d,followed by a challenge with LPS or saline to collect blood and intestinal samples.Results Our findings demonstrated that BAO supplementation led to significant improvements in piglets’final weight,average daily gain,and feed intake/body gain ratio.Additionally,BAO supplementation positively influenced the composition of intestinal microbiota,increasing beneficial Actinobacteriota and Alloprevotella while reducing harmful Desulfobacterota,Prevotella and Oscillospira.Furthermore,BAO supplementation effectively mitigated oxidative disturbances and inflammatory responses induced by acute LPS challenge.This was evidenced by elevated levels of T-AOC,SOD,and GSH,as well as decreased levels of MDA,TNF-α,and IL-6 in the plasma.Moreover,piglets subjected to LPS challenge and pre-supplemented with BAO exhibited significant improvements in intestinal morphological structure and enhanced integrity,as indicated by restored expression levels of Occludin and Claudin-1 compared to the non-supplemented counterparts.Further analysis revealed that BAO supplementation enhanced the jejunal antioxidative capacity by increasing GSH-Px levels and decreasing MDA levels under the LPS challenge and stimulated the activation of the Nrf2 signaling pathway.Additionally,the reduction of TLR4/NF-κB/MAPK signaling pathways activation and proinflammatory factor were also observed in the jejunal of those piglets fed with BAO.Conclusions In summary,our study demonstrates that pre-supplementation of BAO enhances the anti-stress capacity of weaned piglets by improving intestinal microbiota composition,reinforcing the intestinal barrier,and enhancing antioxidative and anti-inflammatory capabilities.These effects are closely associated with the activation of Nrf2 and TLR4/NF-κB/MAPK signaling pathways.