期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
改进CycleGAN实现可见光红外图像的迁移(特邀)
1
作者 石丽芬 张鹏 +2 位作者 景亚蔓 陈子阳 蒲继雄 《红外与激光工程》 北大核心 2025年第3期325-338,共14页
将可见光图像转换为红外图像能够提供额外的环境信息,提升系统的感知能力和决策精度,因而在安防监控、医学影像、遥感等领域具有重要的应用价值。传统的Cycle Generative Adversarial networks(CycleGAN)在处理此类转换时,常面临细节丢... 将可见光图像转换为红外图像能够提供额外的环境信息,提升系统的感知能力和决策精度,因而在安防监控、医学影像、遥感等领域具有重要的应用价值。传统的Cycle Generative Adversarial networks(CycleGAN)在处理此类转换时,常面临细节丢失和伪影等问题,限制了其在高质量图像生成上的表现。文中提出了一种基于改进CycleGAN的可见光红外图像迁移算法,旨在解决可见光图像转换为红外图像的色彩失真、细节模糊等问题。设计的网络结构在生成器中集成了代理注意力机制,增强了模型对图像细节和全局结构的捕捉能力。同时,引入Learned Perceptual Image Patch Similarity(LPIPS)作为循环一致性损失函数,有效提升了生成图像在内容和风格上的一致性。此外,还对判别器进行了优化,采用了PatchGAN架构,并引入ContraNorm模块,提高了判别器对图像细节的敏感性,增强了其对生成图像真实性的评估能力。对比结果表明,改进后的模型在可见光图像到热红外图像的转换任务上,无论是视觉质量还是定量评估指标均较传统CycleGAN有显著提升。 展开更多
关键词 计算机视觉 可见光红外图像迁移 改进CycleGAN lpips 代理注意力机制
原文传递
Expo-GAN:A Style Transfer Generative Adversarial Network for Exhibition Hall Design Based on Optimized Cyclic and Neural Architecture Search
2
作者 Qing Xie Ruiyun Yu 《Computers, Materials & Continua》 2025年第6期4757-4774,共18页
This study presents a groundbreaking method named Expo-GAN(Exposition-Generative Adversarial Network)for style transfer in exhibition hall design,using a refined version of the Cycle Generative Adversarial Network(Cyc... This study presents a groundbreaking method named Expo-GAN(Exposition-Generative Adversarial Network)for style transfer in exhibition hall design,using a refined version of the Cycle Generative Adversarial Network(CycleGAN).The primary goal is to enhance the transformation of image styles while maintaining visual consistency,an areawhere current CycleGAN models often fall short.These traditionalmodels typically face difficulties in accurately capturing expansive features as well as the intricate stylistic details necessary for high-quality image transformation.To address these limitations,the research introduces several key modifications to the CycleGAN architecture.Enhancements to the generator involve integrating U-net with SpecTransformer modules.This integration incorporates the use of Fourier transform techniques coupled with multi-head self-attention mechanisms,which collectively improve the generator’s ability to depict both large-scale structural patterns and minute elements meticulously in the generated images.This enhancement allows the generator to achieve a more detailed and coherent fusion of styles,essential for exhibition hall designs where both broad aesthetic strokes and detailed nuances matter significantly.The study also proposes innovative changes to the discriminator by employing dilated convolution and global attention mechanisms.These are derived using the Differentiable Architecture Search(DARTS)Neural Architecture Search framework to expand the receptive field,which is crucial for recognizing comprehensive artistically styled images.By broadening the ability to discern complex artistic features,the model avoids previous pitfalls associated with style inconsistency and missing detailed features.Moreover,the traditional cyde-consistency loss function is replaced with the Learned Perceptual Image Patch Similarity(LPIPS)metric.This shift aims to significantly enhance the perceptual quality of the resultant images by prioritizing human-perceived similarities,which aligns better with user expectations and professional standards in design aesthetics.The experimental phase of this research demonstrates that this novel approach consistently outperforms the conventional CycleGAN across a broad range of datasets.Complementary ablation studies and qualitative assessments underscore its superiority,particularly in maintaining detail fidelity and style continuity.This is critical for creating a visually harmonious exhibitionhall designwhere everydetail contributes to the overall aesthetic appeal.The results illustrate that this refined approach effectively bridges the gap between technical capability and artistic necessity,marking a significant advancement in computational design methodologies. 展开更多
关键词 Exhibition hall design CycleGAN SpecTransformer DARTS neural architecture search lpips loss function
在线阅读 下载PDF
基于改进的VGG16模型的副热带高压相似识别及应用评估 被引量:4
3
作者 周必高 鲁小琴 +4 位作者 郑峰 黄克慧 洪水洁 谢海华 赵兵科 《气象》 CSCD 北大核心 2022年第12期1608-1616,共9页
台风预报除常规方法外,查找历史相似作为预报和决策的参考依据是常用手段,但从海量历史台风中检索相似费时费力。提出了一种基于改进的视觉几何组模型VGG16的副热带高压(以下简称副高)相似检索方法,进行基于副高相似的历史相似台风查询... 台风预报除常规方法外,查找历史相似作为预报和决策的参考依据是常用手段,但从海量历史台风中检索相似费时费力。提出了一种基于改进的视觉几何组模型VGG16的副热带高压(以下简称副高)相似检索方法,进行基于副高相似的历史相似台风查询。通过对1979—2020年台风季19736个对应时次的副高图像提取、数据增强、模型学习和优化,并以学习感知图像块相似度(learned perceptual image patch similarity,LPIPS)作为副高相似的度量指标,最终建立了改进的VGG16模型。试验结果表明,使用该模型可以找出较为相似的历史台风,模型检索得到的排名第一的历史相似台风与目标台风相似度高达92.55%,该方法可为台风预报业务人员提供了积极参考。同时,该模型相较于传统的人工识别,识别时间较短、检索效率高,可在业务及科研中推广应用。 展开更多
关键词 台风 副热带高压 VGG16模型 lpips (learned perceptual IMAGE PATCH similarity) 几何图像算法
在线阅读 下载PDF
基于深度反向投影的感知增强超分辨率重建模型 被引量:3
4
作者 杨书广 《应用光学》 CAS CSCD 北大核心 2021年第4期691-697,716,共8页
以SRCNN(super-resolution convolutional neural network)模型为代表的超分辨率重建模型通常都有很高的PSNR(peak signal to noise ratio)和SSIM(structural similarity)值,但其在视觉感知上并不令人满意,而以SRGAN为代表的拥有高感知... 以SRCNN(super-resolution convolutional neural network)模型为代表的超分辨率重建模型通常都有很高的PSNR(peak signal to noise ratio)和SSIM(structural similarity)值,但其在视觉感知上并不令人满意,而以SRGAN为代表的拥有高感知质量的GAN(generative adversarial networks)模型却很容易产生大量的伪细节,这表现在其PSNR和SSIM值通常都较低。针对上述问题,提出了一种基于深度反向投影的感知增强超分辨率重建模型。该模型采用双尺度自适应加权融合特征提取模块进行特征提取,然后通过深度反向投影进行上采样,最终由增强模块增强后得到最终输出。模型采用残差连接与稠密连接,有助于特征的共享以及模型的有效训练。在指标评价上,引入了基于学习的LPIPS(learned perceptual image patch similarity)度量作为新的图像感知质量评价指标,与PSNR、SSIM一起作为模型评价指标。实验结果表明,模型在测试数据集上PSNR、SSIM、LPIPS的平均值分别为27.84、0.7320、0.1258,各项指标均优于对比算法。 展开更多
关键词 超分辨率重建 感知质量 深度反向投影 lpips度量
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部