Lithium-ion batteries are widely recognized as prime candidates for energy storage devices.Ethylene carbonate(EC)has become a critical component in conventional commercial electrolytes due to its exceptional film-form...Lithium-ion batteries are widely recognized as prime candidates for energy storage devices.Ethylene carbonate(EC)has become a critical component in conventional commercial electrolytes due to its exceptional film-forming properties and high dielectric constant.However,the elevated freezing point,high viscosity,and strong solvation energy of EC significantly hinder the transport rate of Li^(+)and the desolvation process at low temperatures.This leads to substantial capacity loss and even lithium plating on graphite anodes.Herein,we have developed an efficient electrolyte system specifically designed for lowtemperature conditions,which consists of 1.0 M lithium bis(fluorosulfonyl)imide(LiFSI)in isoxazole(IZ)with fluorobenzene(FB)as an uncoordinated solvent and fluoroethylene carbonate(FEC)as a filmforming co-solvent.This system effectively lowers the desolvation energy of Li^(+)through dipole-dipole interactions.The weak solvation capability allows more anions to enter the solvation sheath,promoting the formation of contact ion pairs(CIPs)and aggregates(AGGs)that enhance the transport rate of Li^(+)while maintaining high ionic conductivity across a broad temperature range.Moreover,the formation of inorganic-dominant interfacial phases on the graphite anode,induced by fluoroethylene carbonate,significantly enhances the kinetics of Li^(+)transport.At a low temperature of-20℃,this electrolyte system achieves an impressive reversible capacity of 200.9 mAh g^(-1)in graphite half-cell,which is nearly three times that observed with conventional EC-based electrolytes,demonstrating excellent stability throughout its operation.展开更多
ZnAl_(2)O_(4) and ZnAl_(2)O_(4)-based ceramics have attracted much attention from researchers due to their good microwave dielectric,thermal and mechanical properties.In this work,the influence of 5%(in mass)CuO-TiO_(...ZnAl_(2)O_(4) and ZnAl_(2)O_(4)-based ceramics have attracted much attention from researchers due to their good microwave dielectric,thermal and mechanical properties.In this work,the influence of 5%(in mass)CuO-TiO_(2)-Nb_(2)O_(5)(CTN)ternary composite oxide additives with different composition ratios on sintering behavior and properties of ZnAl_(2)O_(4) microwave dielectric ceramics was investigated.When the molar fraction ranges of Cu,Ti and Nb elements in 5%CTN additives are 0.625-0.875,0-0.250 and 0.125-0.625,respectively,sintering temperature of ZnAl_(2)O_(4) ceramics can be reduced from above 1400℃to below 1000℃.The sintering additives CN(Cu:Nb=1:1,molar ratio)and CTN(Cu:Ti:Nb=4:1:3,molar ratio)can reduce sintering temperature of ZnAl_(2)O_(4) ceramics to 975 and 1000℃,respectively,while maintaining good dielectric properties(dielectric constantε_(r)=11.36,quality factor Q׃=8245 GHz andε_(r)=9.52,Q׃=22249 GHz)and flexural strengths(200 and 161 MPa),which are expected to be applied in preparation of low temperature co-fired ceramic(LTCC)materials with copper electrodes.Low-temperature sintering of the ZnAl_(2)O_(4)+CTN system is characterized as activated sintering.Nanometer-level amorphous interfacial films containing Cu,Ti,and Nb elements are observed at the grain boundaries,which may provide fast diffusion pathways for mass transportation during the sintering process.Valence changes of Ti and Cu ions,along with changes of oxygen vacancies,are confirmed,which provides a potential mechanism for reduced sintering temperature of ZnAl_(2)O_(4) ceramics.In addition,a series of reactions occurring at the grain boundaries can activate these boundaries and further promote the sintering densification process.These results suggest a promising way to design a novel LTCC material with excellent properties based on the low temperature sintering of ceramics with the sintering aid of CuO-TiO_(2)-Nb_(2)O_(5) composite oxide.展开更多
BACKGROUND According to the Global Cancer Statistics Report,the incidence of colorectal cancer ranks third and the mortality rate ranks second worldwide among malignant tumors.AIM To explore the effects of Nursing Out...BACKGROUND According to the Global Cancer Statistics Report,the incidence of colorectal cancer ranks third and the mortality rate ranks second worldwide among malignant tumors.AIM To explore the effects of Nursing Outcomes Classification(NOC)-based multidimensional nursing on self-efficacy and symptom relief in patients with low anterior resection syndrome(LARS)following sphincter-preserving surgery.METHODS This observational study enrolled 120 patients with LARS after sphincterpreserving surgery for low rectal cancer admitted to our hospital between January 2022 and December 2024.The patients were randomly divided into a control group(n=60)that received routine nursing intervention or an observation group(n=60)that received multidimensional nursing intervention.Before and after the intervention,the Chinese version of the Self-Management Efficacy Scale for Cancer Patients(SUPPH),the LARS scoring scale,and the European Organization for Research and Treatment of Cancer Quality of Life Core Scale(EORTC QLQC30)were used to evaluate the self-efficacy,symptom relief,and quality of life of the two patient groups,and the nursing satisfaction was compared between the groups.RESULTS After the intervention,both groups showed increased scores for each item on the SUPPH and EORTC QLQ-C30 scales compared with those before the intervention,whereas the LARS score showed a decreasing trend.Compared with the control group,the scores for each item of the SUPPH and EORTC QLQ-C30 scales in the observation group were significantly higher after the intervention,while the LARS score was significantly lower(all P<0.05).Nursing satisfaction was significantly higher in the observation group than in the control group(83.33%vs 95.00%,P<0.05).CONCLUSION Multidimensional NOC-based nursing improves self-efficacy,symptoms,quality of life,and satisfaction in patients with LARS.However,further research is needed to assess its long-term and comparative effectiveness.展开更多
Low-altitude economy opens up a completely new aerial space for economic growth by enabling brand new services such as fast logistics delivery,timely emergency rescue,and wide-area,high-definition environmental monito...Low-altitude economy opens up a completely new aerial space for economic growth by enabling brand new services such as fast logistics delivery,timely emergency rescue,and wide-area,high-definition environmental monitoring.This new space has many distinct features and therefore faces many new challenges compared with ground-and high-altitude-based information infrastructures.As a result,the rapid and mass development of unmanned aerial vehicles(UAVs)in low-altitude space will inevitably necessitate research on providing ultra-reliable,low-latency,high-capacity.展开更多
The low cycle fatigue(LCF)behaviors and cyclic deformation mechanisms of 2195 Al-Li alloy were inves-tigated under low temperatures(-20℃and-80℃)and different strain amplitudes(0.6%,0.7%,0.8%,and 1.0%).The LCF stress...The low cycle fatigue(LCF)behaviors and cyclic deformation mechanisms of 2195 Al-Li alloy were inves-tigated under low temperatures(-20℃and-80℃)and different strain amplitudes(0.6%,0.7%,0.8%,and 1.0%).The LCF stress responses under conditions of-20℃&0.6%and-80℃&0.6%exhibited initial cyclic hardening followed by cyclic softening.In contrast,the alloy under other LCF conditions displayed continuous cyclic softening.Notably,the alloy demonstrated reduced LCF life under conditions of-80℃and various strain amplitudes.The fatigue life model based on the total strain energy was developed and proven to be more accurate in predicting fatigue life under diverse LCF conditions.Furthermore,the combined kinematic/isotropic hardening constitutive model exhibited excellent performance in simulat-ing hysteresis loops of the alloy,with corresponding calibration errors all below 14%.Additionally,fatigue fracture surfaces under various LCF conditions consistently exhibited prominent cleavage fracture char-acteristics,and the final fracture zone at-80℃showed increased surface roughness.Finally,the cyclic softening mechanisms were found to be dependent on LCF conditions.The debonding of the interface be-tween the T1 phases and the Al matrix was identified as the primary cyclic softening mechanism under conditions of-20℃&0.6%and-80℃&0.6%.Moreover,the cyclic softening effect under-80℃&1.0%was closely associated with localized shearing of T1 phases.Under-20℃&1.0%,a more pronounced cyclic softening behavior was observed,which was primarily attributed to the continuous shearing of T1 phases.展开更多
Severe injuries due to electricity are rare,but when they occur,they may cause life-threatening conditions.In order to define the severity of electrical injuries,the most widely used classification is voltage power.In...Severe injuries due to electricity are rare,but when they occur,they may cause life-threatening conditions.In order to define the severity of electrical injuries,the most widely used classification is voltage power.Injuries are mainly classified into two categories as low voltage electrical injuries(LVEI)(<1000 V)and high voltage electrical injuries(>1000 V).Fatal injuries have been reported mostly after high-voltage electric shock.Low-voltage electricity current rarely causes severe trauma and complications.展开更多
This work demonstrates that the ΣΔ modulator with a low oversampling ratio is a viable option for the high-resolution digitization in a low-voltage environment.Low power dissipation is achieved by designing a low-OS...This work demonstrates that the ΣΔ modulator with a low oversampling ratio is a viable option for the high-resolution digitization in a low-voltage environment.Low power dissipation is achieved by designing a low-OSR modulator based on differential cascade architecture,while large signal swing maintained to achieve a high dynamic range in the low-voltage environment.Operating from a voltage supply of 1.8V,the sixth-order cascade modulator at a sampling frequency of 4-MHz with an OSR of 24 achieves a dynamic range of 81dB for a 80-kHz test signal,while dissipating only 5mW.展开更多
This paper proposes a novel method for the automatic diagnosis of keratitis using feature vector quantization and self-attention mechanisms(ADK_FVQSAM).First,high-level features are extracted using the DenseNet121 bac...This paper proposes a novel method for the automatic diagnosis of keratitis using feature vector quantization and self-attention mechanisms(ADK_FVQSAM).First,high-level features are extracted using the DenseNet121 backbone network,followed by adaptive average pooling to scale the features to a fixed length.Subsequently,product quantization with residuals(PQR)is applied to convert continuous feature vectors into discrete features representations,preserving essential information insensitive to image quality variations.The quantized and original features are concatenated and fed into a self-attention mechanism to capture keratitis-related features.Finally,these enhanced features are classified through a fully connected layer.Experiments on clinical low-quality(LQ)images show that ADK_FVQSAM achieves accuracies of 87.7%,81.9%,and 89.3% for keratitis,other corneal abnormalities,and normal corneas,respectively.Compared to DenseNet121,Swin transformer,and InceptionResNet,ADK_FVQSAM improves average accuracy by 3.1%,11.3%,and 15.3%,respectively.These results demonstrate that ADK_FVQSAM significantly enhances the recognition performance of keratitis based on LQ slit-lamp images,offering a practical approach for clinical application.展开更多
The Aleutian Low(AL)is a dominant feature of the mean circulation in the North Pacific during the winter season.The background stationary wave,air-sea interaction,and transient eddies over the North Pacific exert dist...The Aleutian Low(AL)is a dominant feature of the mean circulation in the North Pacific during the winter season.The background stationary wave,air-sea interaction,and transient eddies over the North Pacific exert distinct impacts on the interannual variations of the AL intensity and position.In this study,we adopt the quasi-geostrophic geopotential tendency equation to investigate the roles of various physical processes in the maintenance and interannual variations of this system.The results show that absolute vorticity advection plays the most important role in the formation and maintenance of AL intensity,while high-frequency transient eddies contribute most to the meridional and zonal shifts of the AL.The high-frequency transient eddy vorticity forcing affects the AL through the barotropic energy conversion process,and,in turn,the AL enhances the high-frequency transient eddies through the baroclinic energy conversion process,forming a positive feedback.The associated high-frequency eddy kinetic energy anomalies exhibit an eastward movement toward the east coast of North America in the years of an intensified AL,which explains why a strengthened AL is often accompanied by an eastward movement.Furthermore,the energy conversion terms of high-frequency transient eddies are mostly located over the extratropical eastern North Pacific,leading to asymmetric features in the zonal movement of the AL.展开更多
Chronic lower back pain(LBP)is the leading cause of disability worldwide.Due to its close relationship with intervertebral disc(IVD)degeneration(IVDD),research has historically focused more on understanding the mechan...Chronic lower back pain(LBP)is the leading cause of disability worldwide.Due to its close relationship with intervertebral disc(IVD)degeneration(IVDD),research has historically focused more on understanding the mechanism behind IVDD while clinical efforts prioritize pain management.More recently,there has been a shift toward understanding LBP as a distinct pathological entity.This review synthesizes current knowledge on discogenic LBP,combining known pathophysiology,molecular mechanisms,risk factors,diagnostic challenges,and available experimental models.IVDD is a complex,multifactorial process involving biochemical,mechanical,and inflammatory changes within the disc,leading to structural breakdown and potential discogenic pain.Key mechanisms include extracellular matrix degradation,upregulation of inflammatory mediators,immune cell infiltration,and aberrant nerve and vascular ingrowth.However,not all cases of IVDD result in LBP,highlighting the need for further investigation into the cellular,molecular,and biomechanical factors contributing to symptom development.Current diagnostic tools and experimental models for studying discogenic LBP remain limited,impeding the development of targeted treatments.Existing therapies primarily focus on symptom management rather than addressing underlying disease mechanisms.展开更多
This paper presents a photonic crystal(PhC)line-defect slow-light waveguide modified by resonant rings.We introduce resonant rings into the line defect,constructing a slow-light waveguide with high normalized delay ba...This paper presents a photonic crystal(PhC)line-defect slow-light waveguide modified by resonant rings.We introduce resonant rings into the line defect,constructing a slow-light waveguide with high normalized delay bandwidth product(NDBP)and low group velocity dispersion(GVD).We simulate,analyze,and optimize the structural parameters of this slow-light waveguide using the finite difference time domain(FDTD)method,theoretically achieving a maximum group index of 3.7,maximum bandwidth of 15.6 nm,and maximum NDBP of 0.4416 for slow-light effect.The resonant ring-modified PhC slow-light waveguide designed in this paper exhibits GVD lower than the order of 10^(−20)s^(2)/m over a normalized frequency range from 0.3554 to 0.4175.This study is expected to provide theoretical references for the study of slow-light buffering devices based on PhCs with high NDBP values.展开更多
The developing focus of low-carbon society is constructing low-carbon cities which are based on the construction of low-carbon communities.The main ways of constructing low-carbon communities conclude low carbonizatio...The developing focus of low-carbon society is constructing low-carbon cities which are based on the construction of low-carbon communities.The main ways of constructing low-carbon communities conclude low carbonization of planning and designing,low carbonization of construction materials,low carbonization of community environment,low carbonization of energy system,low carbonization of energy use and low carbonization of life style.The basic strategies of constructing low-carbon communities contain enhancing propaganda and education,strengthening technical innovation,cultivating low-carbon culture,advocating public participation and consolidating leadership in organizations.展开更多
This paper gives an overview on nonlinear porous flow in low permeability porous media, reveals the microscopic mechanisms of flows, and clarifies properties of porous flow fluids. It shows that, deviating from Darcy...This paper gives an overview on nonlinear porous flow in low permeability porous media, reveals the microscopic mechanisms of flows, and clarifies properties of porous flow fluids. It shows that, deviating from Darcy's linear law, the porous flow characteristics obey a nonlinear law in a low-permeability porous medium, and the viscosity of the porous flow fluid and the permeability values of water and oil are not constants. Based on these characters, a new porous flow model, which can better describe low permeability reservoir~ is established. This model can describe various patterns of porous flow, as Darcy's linear law does. All the parameters involved in the model, having definite physical meanings, can be obtained directly from the experiments.展开更多
Electromagnetic interference(EMI)shielding materials with superior shielding efficiency and low-reflection properties hold promising potential for utilization across electronic components,precision instruments,and fif...Electromagnetic interference(EMI)shielding materials with superior shielding efficiency and low-reflection properties hold promising potential for utilization across electronic components,precision instruments,and fifth-generation communication equipment.In this study,multistage microcellular waterborne polyurethane(WPU)composites were constructed via gradient induction,layer-by-layer casting,and supercritical carbon dioxide foaming.The gradient-structured WPU/ironcobalt loaded reduced graphene oxide(FeCo@rGO)foam serves as an impedance-matched absorption layer,while the highly conductive WPU/silver loaded glass microspheres(Ag@GM)layer is employed as a reflection layer.Thanks to the incorporation of an asymmetric structure,as well as the introduction of gradient and porous configurations,the composite foam demonstrates excellent conductivity,outstanding EMI SE(74.9 dB),and minimal reflection characteristics(35.28%)in 8.2-12.4 GHz,implying that more than 99.99999%of electromagnetic(EM)waves were blocked and only 35.28%were reflected to the external environment.Interestingly,the reflectivity of the composite foam is reduced to 0.41%at 10.88 GHz due to the resonance for incident and reflected EM waves.Beyond that,the composite foam is characterized by low density(0.47 g/cm^(3))and great stability of EMI shielding properties.This work offers a viable approach for craft-ing lightweight,highly shielding,and minimally reflective EMI shielding composites.展开更多
Two anaerobic ammonia oxidation(anammox)systems,one with adding nano-scale zerovalent iron modified biochar(nZVI@BC)and the other with adding biochar,were constructed to explore the feasibility of nZVI@BC for enhancin...Two anaerobic ammonia oxidation(anammox)systems,one with adding nano-scale zerovalent iron modified biochar(nZVI@BC)and the other with adding biochar,were constructed to explore the feasibility of nZVI@BC for enhancing the resistance of low-nitrogen anammox processes to low temperatures.The results showed that the average nitrogen removal efficiency with nZVI@BC addition at lowtemperatureswas maintained at about 80%,while that with biochar addition gradually decreased to 69.49%.The heme-c content of biomass with nZVI@BC was significantly higher by 36.60%-91.45%.Additional,nZVI@BC addition resulted in more extracellular polymeric substances,better biomass granulation,and a higher abundance of anammox bacteria.In particularly,anammox genes hzsA/B/C,hzo and hdh played a pivotal role in maintaining nitrogen removal performance at 15℃.These findings suggest that nZVI@BC has the potential to enhance the resistance of low-nitrogen anammox processes to low temperatures,making it a valuable approach for practical applications in low-nitrogen and low-temperature wastewater treatment.展开更多
Lithium-ion batteries(LIBs)face significant limitations in low-temperature environments,with the slow interfacial de-solvation process and the hindered Li+transport through the interphase layer emerging as key obstacl...Lithium-ion batteries(LIBs)face significant limitations in low-temperature environments,with the slow interfacial de-solvation process and the hindered Li+transport through the interphase layer emerging as key obstacles beyond the issue of ionic conductivity.This investigation unveils a novel formulation that constructs an anion-rich solvation sheath within strong solvents,effectively addressing all three of these challenges to bolster low-temperature performance.The developed electrolyte,characterized by an enhanced concentration of contact ion pairs(CIPs)and aggregates(AGGs),facilitates the formation of an inorganic-rich interphase layer on the anode and cathode particles.This promotes de-solvation at low temperatures and stabilizes the electrode-electrolyte interphase.Full cells composed of LiNi_(0.6)Co_(0.2)Mn_(0.2)O_(2)(NCM622)and graphite,when equipped with this electrolyte,showcase remarkable cycle stability and capacity retention,with 93.3% retention after 500 cycles at room temperature(RT)and 95.5%after 120 cycles at -20℃.This study validates the utility of the anion-rich solvation sheath in strong solvents as a strategy for the development of low-temperature electrolytes.展开更多
CO_(2)flooding enhanced oil recovery(CO_(2)-EOR)represents a significant technology in the low permeability reservoir.With the fractures and heterogeneity in low permeability reservoirs,CO_(2)-EOR is susceptible to pe...CO_(2)flooding enhanced oil recovery(CO_(2)-EOR)represents a significant technology in the low permeability reservoir.With the fractures and heterogeneity in low permeability reservoirs,CO_(2)-EOR is susceptible to pessimistic gas channeling.Consequently,there is a need to develop conformance control materials that can be used in CO_(2)-EOR.Herein,to address the challenges of low strength and poor stability of polymer gel in high temperature and low permeability reservoirs,a new organic/metal ion composite crosslinking polymer gel(AR-Gel)is reported,which is formed by low hydrolysis and medium to high molecular weight polymer(CX-305),organic crosslinking agent(phenolic resin),and aluminium citrate(AI(Ⅲ)).The crosslinking of AI(Ⅲ)with carboxyl group and organic/metal ion double crosslinking can construct a more complex and stable polymer gel structure on the basis of traditional chemical crosslinking,to cope with the harsh conditions such as high temperature.The structure-activity relationship of AR-Gel was revealed by rheology behavior and micro-morphology.The applicability of AR-Gel in reservoir was investigated,as was its strength and stability in supercritical CO_(2).The anti-gas channeling and enhanced oil recovery of AR-Gel were investigated using low permeability fractured cores,and the field process parameters were provided.The gel can be used to meet supercritical CO_(2)reservoirs at 110℃and 20,000 mg/L salinity,with long-term stability over 60 days.The plugging rate of AR-Gel for fractured co re was 97%,with subsequent CO_(2)flooding re sulting in an enhanced oil recovery by 34.5%.ARGel can effectively control CO_(2)gas channeling and enhanced oil recovery.It offers a new material with high strength and temperature resistance,which is particularly beneficial in the CO_(2)flooding for the conformance control of oil field.展开更多
Low temperature(LT)in spring has become one of the principal abiotic stresses that restrict the growth and development of wheat.Diverse analyses were performed to investigate the mechanism underlying the response of w...Low temperature(LT)in spring has become one of the principal abiotic stresses that restrict the growth and development of wheat.Diverse analyses were performed to investigate the mechanism underlying the response of wheat grain development to LT stress during booting.These included morphological observation,measurements of starch synthase activity,and determination of amylose and amylopectin content of wheat grain after exposure to treatment with LT during booting.Additionally,proteomic analysis was performed using tandem mass tags(TMT).Results showed that the plumpness of wheat grains decreased after LT stress.Moreover,the activities of sucrose synthase(SuS,EC 2.4.1.13)and ADP-glucose pyrophosphorylase(AGPase,EC 2.7.7.27)exhibited a significant reduction,leading to a significant reduction in the contents of amylose and amylopectin.A total of 509 differentially expressed proteins(DEPs)were identified by proteomics analysis.The Gene Ontology(GO)enrichment analysis showed that the protein difference multiple in the nutritional repository activity was the largest among the molecular functions,and the up-regulated seed storage protein(ssP)played an active role in the response of grains to LT stress and subsequent damage.The Kyoto Encyclopedia of Genes and Genomes(KEGG)enrichment analysis showed that LT stress reduced the expression of DEPs such as sucrose phosphate synthase(SPS),glucose-1-phosphate adenylyltransferase(glgC),andβ-fructofuranosidase(FFase)in sucrose and starch metabolic pathways,thus affecting the synthesis of grain starch.In addition,many heat shock proteins(HsPs)were found in the protein processing in endoplasmic reticulum pathways,which can resist some damage caused by LT stress.These findings provide a new theoretical foundation for elucidating the underlying mechanism governing wheat yield developmentafterexposuretoLTstress inspring.展开更多
Porous designs effectively reduce stress shielding in metallic orthopedic implants.However,current porous structures often fail to adequately meet the needs of patients with osteoporosis and low-modulus body regions.T...Porous designs effectively reduce stress shielding in metallic orthopedic implants.However,current porous structures often fail to adequately meet the needs of patients with osteoporosis and low-modulus body regions.This study proposes a sinusoidal-based lattice structure for an ultralow and widely tunable modulus design,aiming to match diverse bone tissue requirements and enhance biomechanical compatibility.Parametric modeling and finite element analysis were used to evaluate the performance of this structure.Results show that,within the design range suitable for bone growth,the elastic modulus of this lattice structure is tunable over a wide range,from 0.09 to 32.67 GPa,outperforming existing porous structures.The lowest value closely matched the minimum mechanical properties of human cancellous bone among porous structures.Moreover,the structure exhibited distinct anisotropic characteristics,allowing for directional design based on mechanical requirements.The structure’s permeability ranged from 1.19×10^(-8) m^(2) to 2.3×10^(-7) m^(2),making it highly compatible with human cancellous bone and meeting the requirements of orthopedic implants.Samples with porosities ranging from 46% to 87% were successfully fabricated using powder bed fusion additive manufacturing,validating the simulation predictions.This tunable low-modulus lattice structure provides a novel approach for developing personalized orthopedic implants,particularly for patients with specialized needs such as osteoporosis,and can potentially enhance biomechanical compatibility and long-term stability.展开更多
基金financial support from the Department of Science and Technology of Jilin Province(20240304104SF,20240304103SF)the Research and Innovation Fund of the Beihua University for the Graduate Student(Major Project 2023012)。
文摘Lithium-ion batteries are widely recognized as prime candidates for energy storage devices.Ethylene carbonate(EC)has become a critical component in conventional commercial electrolytes due to its exceptional film-forming properties and high dielectric constant.However,the elevated freezing point,high viscosity,and strong solvation energy of EC significantly hinder the transport rate of Li^(+)and the desolvation process at low temperatures.This leads to substantial capacity loss and even lithium plating on graphite anodes.Herein,we have developed an efficient electrolyte system specifically designed for lowtemperature conditions,which consists of 1.0 M lithium bis(fluorosulfonyl)imide(LiFSI)in isoxazole(IZ)with fluorobenzene(FB)as an uncoordinated solvent and fluoroethylene carbonate(FEC)as a filmforming co-solvent.This system effectively lowers the desolvation energy of Li^(+)through dipole-dipole interactions.The weak solvation capability allows more anions to enter the solvation sheath,promoting the formation of contact ion pairs(CIPs)and aggregates(AGGs)that enhance the transport rate of Li^(+)while maintaining high ionic conductivity across a broad temperature range.Moreover,the formation of inorganic-dominant interfacial phases on the graphite anode,induced by fluoroethylene carbonate,significantly enhances the kinetics of Li^(+)transport.At a low temperature of-20℃,this electrolyte system achieves an impressive reversible capacity of 200.9 mAh g^(-1)in graphite half-cell,which is nearly three times that observed with conventional EC-based electrolytes,demonstrating excellent stability throughout its operation.
基金National Natural Science Foundation of China (U24A2052)Shanghai Eastern Talent Plan。
文摘ZnAl_(2)O_(4) and ZnAl_(2)O_(4)-based ceramics have attracted much attention from researchers due to their good microwave dielectric,thermal and mechanical properties.In this work,the influence of 5%(in mass)CuO-TiO_(2)-Nb_(2)O_(5)(CTN)ternary composite oxide additives with different composition ratios on sintering behavior and properties of ZnAl_(2)O_(4) microwave dielectric ceramics was investigated.When the molar fraction ranges of Cu,Ti and Nb elements in 5%CTN additives are 0.625-0.875,0-0.250 and 0.125-0.625,respectively,sintering temperature of ZnAl_(2)O_(4) ceramics can be reduced from above 1400℃to below 1000℃.The sintering additives CN(Cu:Nb=1:1,molar ratio)and CTN(Cu:Ti:Nb=4:1:3,molar ratio)can reduce sintering temperature of ZnAl_(2)O_(4) ceramics to 975 and 1000℃,respectively,while maintaining good dielectric properties(dielectric constantε_(r)=11.36,quality factor Q׃=8245 GHz andε_(r)=9.52,Q׃=22249 GHz)and flexural strengths(200 and 161 MPa),which are expected to be applied in preparation of low temperature co-fired ceramic(LTCC)materials with copper electrodes.Low-temperature sintering of the ZnAl_(2)O_(4)+CTN system is characterized as activated sintering.Nanometer-level amorphous interfacial films containing Cu,Ti,and Nb elements are observed at the grain boundaries,which may provide fast diffusion pathways for mass transportation during the sintering process.Valence changes of Ti and Cu ions,along with changes of oxygen vacancies,are confirmed,which provides a potential mechanism for reduced sintering temperature of ZnAl_(2)O_(4) ceramics.In addition,a series of reactions occurring at the grain boundaries can activate these boundaries and further promote the sintering densification process.These results suggest a promising way to design a novel LTCC material with excellent properties based on the low temperature sintering of ceramics with the sintering aid of CuO-TiO_(2)-Nb_(2)O_(5) composite oxide.
文摘BACKGROUND According to the Global Cancer Statistics Report,the incidence of colorectal cancer ranks third and the mortality rate ranks second worldwide among malignant tumors.AIM To explore the effects of Nursing Outcomes Classification(NOC)-based multidimensional nursing on self-efficacy and symptom relief in patients with low anterior resection syndrome(LARS)following sphincter-preserving surgery.METHODS This observational study enrolled 120 patients with LARS after sphincterpreserving surgery for low rectal cancer admitted to our hospital between January 2022 and December 2024.The patients were randomly divided into a control group(n=60)that received routine nursing intervention or an observation group(n=60)that received multidimensional nursing intervention.Before and after the intervention,the Chinese version of the Self-Management Efficacy Scale for Cancer Patients(SUPPH),the LARS scoring scale,and the European Organization for Research and Treatment of Cancer Quality of Life Core Scale(EORTC QLQC30)were used to evaluate the self-efficacy,symptom relief,and quality of life of the two patient groups,and the nursing satisfaction was compared between the groups.RESULTS After the intervention,both groups showed increased scores for each item on the SUPPH and EORTC QLQ-C30 scales compared with those before the intervention,whereas the LARS score showed a decreasing trend.Compared with the control group,the scores for each item of the SUPPH and EORTC QLQ-C30 scales in the observation group were significantly higher after the intervention,while the LARS score was significantly lower(all P<0.05).Nursing satisfaction was significantly higher in the observation group than in the control group(83.33%vs 95.00%,P<0.05).CONCLUSION Multidimensional NOC-based nursing improves self-efficacy,symptoms,quality of life,and satisfaction in patients with LARS.However,further research is needed to assess its long-term and comparative effectiveness.
文摘Low-altitude economy opens up a completely new aerial space for economic growth by enabling brand new services such as fast logistics delivery,timely emergency rescue,and wide-area,high-definition environmental monitoring.This new space has many distinct features and therefore faces many new challenges compared with ground-and high-altitude-based information infrastructures.As a result,the rapid and mass development of unmanned aerial vehicles(UAVs)in low-altitude space will inevitably necessitate research on providing ultra-reliable,low-latency,high-capacity.
基金supported by the National Natural Science Foundation of China(U23A20626)the Key Research and Devel-opment Program of Shandong Province(2021ZLGX01)the Project of Colleges and Universities Innovation Team of Jinan City(2021GXRC030).
文摘The low cycle fatigue(LCF)behaviors and cyclic deformation mechanisms of 2195 Al-Li alloy were inves-tigated under low temperatures(-20℃and-80℃)and different strain amplitudes(0.6%,0.7%,0.8%,and 1.0%).The LCF stress responses under conditions of-20℃&0.6%and-80℃&0.6%exhibited initial cyclic hardening followed by cyclic softening.In contrast,the alloy under other LCF conditions displayed continuous cyclic softening.Notably,the alloy demonstrated reduced LCF life under conditions of-80℃and various strain amplitudes.The fatigue life model based on the total strain energy was developed and proven to be more accurate in predicting fatigue life under diverse LCF conditions.Furthermore,the combined kinematic/isotropic hardening constitutive model exhibited excellent performance in simulat-ing hysteresis loops of the alloy,with corresponding calibration errors all below 14%.Additionally,fatigue fracture surfaces under various LCF conditions consistently exhibited prominent cleavage fracture char-acteristics,and the final fracture zone at-80℃showed increased surface roughness.Finally,the cyclic softening mechanisms were found to be dependent on LCF conditions.The debonding of the interface be-tween the T1 phases and the Al matrix was identified as the primary cyclic softening mechanism under conditions of-20℃&0.6%and-80℃&0.6%.Moreover,the cyclic softening effect under-80℃&1.0%was closely associated with localized shearing of T1 phases.Under-20℃&1.0%,a more pronounced cyclic softening behavior was observed,which was primarily attributed to the continuous shearing of T1 phases.
文摘Severe injuries due to electricity are rare,but when they occur,they may cause life-threatening conditions.In order to define the severity of electrical injuries,the most widely used classification is voltage power.Injuries are mainly classified into two categories as low voltage electrical injuries(LVEI)(<1000 V)and high voltage electrical injuries(>1000 V).Fatal injuries have been reported mostly after high-voltage electric shock.Low-voltage electricity current rarely causes severe trauma and complications.
文摘This work demonstrates that the ΣΔ modulator with a low oversampling ratio is a viable option for the high-resolution digitization in a low-voltage environment.Low power dissipation is achieved by designing a low-OSR modulator based on differential cascade architecture,while large signal swing maintained to achieve a high dynamic range in the low-voltage environment.Operating from a voltage supply of 1.8V,the sixth-order cascade modulator at a sampling frequency of 4-MHz with an OSR of 24 achieves a dynamic range of 81dB for a 80-kHz test signal,while dissipating only 5mW.
基金supported by the National Natural Science Foundation of China(Nos.62276210,82201148 and 62376215)the Key Research and Development Project of Shaanxi Province(No.2025CY-YBXM-044)+3 种基金the Natural Science Foundation of Zhejiang Province(No.LQ22H120002)the Medical Health Science and Technology Project of Zhejiang Province(Nos.2022RC069 and 2023KY1140)the Natural Science Foundation of Ningbo(No.2023J390)the Ningbo Top Medical and Health Research Program(No.2023030716).
文摘This paper proposes a novel method for the automatic diagnosis of keratitis using feature vector quantization and self-attention mechanisms(ADK_FVQSAM).First,high-level features are extracted using the DenseNet121 backbone network,followed by adaptive average pooling to scale the features to a fixed length.Subsequently,product quantization with residuals(PQR)is applied to convert continuous feature vectors into discrete features representations,preserving essential information insensitive to image quality variations.The quantized and original features are concatenated and fed into a self-attention mechanism to capture keratitis-related features.Finally,these enhanced features are classified through a fully connected layer.Experiments on clinical low-quality(LQ)images show that ADK_FVQSAM achieves accuracies of 87.7%,81.9%,and 89.3% for keratitis,other corneal abnormalities,and normal corneas,respectively.Compared to DenseNet121,Swin transformer,and InceptionResNet,ADK_FVQSAM improves average accuracy by 3.1%,11.3%,and 15.3%,respectively.These results demonstrate that ADK_FVQSAM significantly enhances the recognition performance of keratitis based on LQ slit-lamp images,offering a practical approach for clinical application.
基金partially supported by the National Natural Science Foundation of China(Grant Nos.42088101 and 42175023)the Innovation Group Project of Southern Marine Science and Engineering Guangdong Laboratory(Zhuhai)(Grant No.316323005)the Guangdong Province Key Laboratory for Climate Change and Natural Disaster Studies(Grant No.2020B1212060025)。
文摘The Aleutian Low(AL)is a dominant feature of the mean circulation in the North Pacific during the winter season.The background stationary wave,air-sea interaction,and transient eddies over the North Pacific exert distinct impacts on the interannual variations of the AL intensity and position.In this study,we adopt the quasi-geostrophic geopotential tendency equation to investigate the roles of various physical processes in the maintenance and interannual variations of this system.The results show that absolute vorticity advection plays the most important role in the formation and maintenance of AL intensity,while high-frequency transient eddies contribute most to the meridional and zonal shifts of the AL.The high-frequency transient eddy vorticity forcing affects the AL through the barotropic energy conversion process,and,in turn,the AL enhances the high-frequency transient eddies through the baroclinic energy conversion process,forming a positive feedback.The associated high-frequency eddy kinetic energy anomalies exhibit an eastward movement toward the east coast of North America in the years of an intensified AL,which explains why a strengthened AL is often accompanied by an eastward movement.Furthermore,the energy conversion terms of high-frequency transient eddies are mostly located over the extratropical eastern North Pacific,leading to asymmetric features in the zonal movement of the AL.
基金supported by the California Institute for Regenerative Medicine under EDUC4-12751(Giselle Kaneda)DISC2-14049(Dmitriy Sheyn)+1 种基金Additional support was provided by the National Institute of Arthritis and Musculoskeletal and Skin Diseases of the National Institutes of Health under award numbers R01AR066517(Debiao Li)R01AR082041(Dmitriy Sheyn).
文摘Chronic lower back pain(LBP)is the leading cause of disability worldwide.Due to its close relationship with intervertebral disc(IVD)degeneration(IVDD),research has historically focused more on understanding the mechanism behind IVDD while clinical efforts prioritize pain management.More recently,there has been a shift toward understanding LBP as a distinct pathological entity.This review synthesizes current knowledge on discogenic LBP,combining known pathophysiology,molecular mechanisms,risk factors,diagnostic challenges,and available experimental models.IVDD is a complex,multifactorial process involving biochemical,mechanical,and inflammatory changes within the disc,leading to structural breakdown and potential discogenic pain.Key mechanisms include extracellular matrix degradation,upregulation of inflammatory mediators,immune cell infiltration,and aberrant nerve and vascular ingrowth.However,not all cases of IVDD result in LBP,highlighting the need for further investigation into the cellular,molecular,and biomechanical factors contributing to symptom development.Current diagnostic tools and experimental models for studying discogenic LBP remain limited,impeding the development of targeted treatments.Existing therapies primarily focus on symptom management rather than addressing underlying disease mechanisms.
基金supported by the Graduate Student Innovation Fund of Xi’an Shiyou University(No.YCS21211087).
文摘This paper presents a photonic crystal(PhC)line-defect slow-light waveguide modified by resonant rings.We introduce resonant rings into the line defect,constructing a slow-light waveguide with high normalized delay bandwidth product(NDBP)and low group velocity dispersion(GVD).We simulate,analyze,and optimize the structural parameters of this slow-light waveguide using the finite difference time domain(FDTD)method,theoretically achieving a maximum group index of 3.7,maximum bandwidth of 15.6 nm,and maximum NDBP of 0.4416 for slow-light effect.The resonant ring-modified PhC slow-light waveguide designed in this paper exhibits GVD lower than the order of 10^(−20)s^(2)/m over a normalized frequency range from 0.3554 to 0.4175.This study is expected to provide theoretical references for the study of slow-light buffering devices based on PhCs with high NDBP values.
文摘The developing focus of low-carbon society is constructing low-carbon cities which are based on the construction of low-carbon communities.The main ways of constructing low-carbon communities conclude low carbonization of planning and designing,low carbonization of construction materials,low carbonization of community environment,low carbonization of energy system,low carbonization of energy use and low carbonization of life style.The basic strategies of constructing low-carbon communities contain enhancing propaganda and education,strengthening technical innovation,cultivating low-carbon culture,advocating public participation and consolidating leadership in organizations.
文摘This paper gives an overview on nonlinear porous flow in low permeability porous media, reveals the microscopic mechanisms of flows, and clarifies properties of porous flow fluids. It shows that, deviating from Darcy's linear law, the porous flow characteristics obey a nonlinear law in a low-permeability porous medium, and the viscosity of the porous flow fluid and the permeability values of water and oil are not constants. Based on these characters, a new porous flow model, which can better describe low permeability reservoir~ is established. This model can describe various patterns of porous flow, as Darcy's linear law does. All the parameters involved in the model, having definite physical meanings, can be obtained directly from the experiments.
基金supported by the Natural Science Foundation of Anhui Province(No.2308085QE146 and 2208085ME116)the National Natural Science Foundation of China(No.52173039)+1 种基金the Natural Science Foundation of Jiangsu Province(No.BK20210894)the Anhui Provincial Universities Outstanding Youth Research Project(No.2023AH020018).
文摘Electromagnetic interference(EMI)shielding materials with superior shielding efficiency and low-reflection properties hold promising potential for utilization across electronic components,precision instruments,and fifth-generation communication equipment.In this study,multistage microcellular waterborne polyurethane(WPU)composites were constructed via gradient induction,layer-by-layer casting,and supercritical carbon dioxide foaming.The gradient-structured WPU/ironcobalt loaded reduced graphene oxide(FeCo@rGO)foam serves as an impedance-matched absorption layer,while the highly conductive WPU/silver loaded glass microspheres(Ag@GM)layer is employed as a reflection layer.Thanks to the incorporation of an asymmetric structure,as well as the introduction of gradient and porous configurations,the composite foam demonstrates excellent conductivity,outstanding EMI SE(74.9 dB),and minimal reflection characteristics(35.28%)in 8.2-12.4 GHz,implying that more than 99.99999%of electromagnetic(EM)waves were blocked and only 35.28%were reflected to the external environment.Interestingly,the reflectivity of the composite foam is reduced to 0.41%at 10.88 GHz due to the resonance for incident and reflected EM waves.Beyond that,the composite foam is characterized by low density(0.47 g/cm^(3))and great stability of EMI shielding properties.This work offers a viable approach for craft-ing lightweight,highly shielding,and minimally reflective EMI shielding composites.
基金supported by the China Postdoctoral Science Foundation(No.2020M671624)the State Key Laboratory of Pollution Control and Resource Reuse(No.PCRRF20011).
文摘Two anaerobic ammonia oxidation(anammox)systems,one with adding nano-scale zerovalent iron modified biochar(nZVI@BC)and the other with adding biochar,were constructed to explore the feasibility of nZVI@BC for enhancing the resistance of low-nitrogen anammox processes to low temperatures.The results showed that the average nitrogen removal efficiency with nZVI@BC addition at lowtemperatureswas maintained at about 80%,while that with biochar addition gradually decreased to 69.49%.The heme-c content of biomass with nZVI@BC was significantly higher by 36.60%-91.45%.Additional,nZVI@BC addition resulted in more extracellular polymeric substances,better biomass granulation,and a higher abundance of anammox bacteria.In particularly,anammox genes hzsA/B/C,hzo and hdh played a pivotal role in maintaining nitrogen removal performance at 15℃.These findings suggest that nZVI@BC has the potential to enhance the resistance of low-nitrogen anammox processes to low temperatures,making it a valuable approach for practical applications in low-nitrogen and low-temperature wastewater treatment.
基金the National Natural Science Foundation of China(No.22279070[L.Wang]and U21A20170[X.He])the Ministry of Science and Technology of China(No.2019YFA0705703[L.Wang])。
文摘Lithium-ion batteries(LIBs)face significant limitations in low-temperature environments,with the slow interfacial de-solvation process and the hindered Li+transport through the interphase layer emerging as key obstacles beyond the issue of ionic conductivity.This investigation unveils a novel formulation that constructs an anion-rich solvation sheath within strong solvents,effectively addressing all three of these challenges to bolster low-temperature performance.The developed electrolyte,characterized by an enhanced concentration of contact ion pairs(CIPs)and aggregates(AGGs),facilitates the formation of an inorganic-rich interphase layer on the anode and cathode particles.This promotes de-solvation at low temperatures and stabilizes the electrode-electrolyte interphase.Full cells composed of LiNi_(0.6)Co_(0.2)Mn_(0.2)O_(2)(NCM622)and graphite,when equipped with this electrolyte,showcase remarkable cycle stability and capacity retention,with 93.3% retention after 500 cycles at room temperature(RT)and 95.5%after 120 cycles at -20℃.This study validates the utility of the anion-rich solvation sheath in strong solvents as a strategy for the development of low-temperature electrolytes.
基金project was supported by the Fund of State Key Laboratory of Deep Oil and Gas,China University of Petroleum(East China)(No.SKLDOG2024-ZYRC-06)Key Program of National Natural Science Foundation of China(52130401)+1 种基金National Natural Science Foundation of China(52104055,52374058)Shandong Provincial Natural Science Foundation,China(ZR2021ME171,ZR2024YQ043)。
文摘CO_(2)flooding enhanced oil recovery(CO_(2)-EOR)represents a significant technology in the low permeability reservoir.With the fractures and heterogeneity in low permeability reservoirs,CO_(2)-EOR is susceptible to pessimistic gas channeling.Consequently,there is a need to develop conformance control materials that can be used in CO_(2)-EOR.Herein,to address the challenges of low strength and poor stability of polymer gel in high temperature and low permeability reservoirs,a new organic/metal ion composite crosslinking polymer gel(AR-Gel)is reported,which is formed by low hydrolysis and medium to high molecular weight polymer(CX-305),organic crosslinking agent(phenolic resin),and aluminium citrate(AI(Ⅲ)).The crosslinking of AI(Ⅲ)with carboxyl group and organic/metal ion double crosslinking can construct a more complex and stable polymer gel structure on the basis of traditional chemical crosslinking,to cope with the harsh conditions such as high temperature.The structure-activity relationship of AR-Gel was revealed by rheology behavior and micro-morphology.The applicability of AR-Gel in reservoir was investigated,as was its strength and stability in supercritical CO_(2).The anti-gas channeling and enhanced oil recovery of AR-Gel were investigated using low permeability fractured cores,and the field process parameters were provided.The gel can be used to meet supercritical CO_(2)reservoirs at 110℃and 20,000 mg/L salinity,with long-term stability over 60 days.The plugging rate of AR-Gel for fractured co re was 97%,with subsequent CO_(2)flooding re sulting in an enhanced oil recovery by 34.5%.ARGel can effectively control CO_(2)gas channeling and enhanced oil recovery.It offers a new material with high strength and temperature resistance,which is particularly beneficial in the CO_(2)flooding for the conformance control of oil field.
基金supported by the National Natural Science Foundation of China(32372223)the National Key Research and Development Program of China(2022YFD2301404)+1 种基金the College Students'Innovationand Entrepreneurship Training Program of Anhui Province,China(S202210364136)the Natural Science Research Project of Anhui Educational Committee,China(2023AH040133).
文摘Low temperature(LT)in spring has become one of the principal abiotic stresses that restrict the growth and development of wheat.Diverse analyses were performed to investigate the mechanism underlying the response of wheat grain development to LT stress during booting.These included morphological observation,measurements of starch synthase activity,and determination of amylose and amylopectin content of wheat grain after exposure to treatment with LT during booting.Additionally,proteomic analysis was performed using tandem mass tags(TMT).Results showed that the plumpness of wheat grains decreased after LT stress.Moreover,the activities of sucrose synthase(SuS,EC 2.4.1.13)and ADP-glucose pyrophosphorylase(AGPase,EC 2.7.7.27)exhibited a significant reduction,leading to a significant reduction in the contents of amylose and amylopectin.A total of 509 differentially expressed proteins(DEPs)were identified by proteomics analysis.The Gene Ontology(GO)enrichment analysis showed that the protein difference multiple in the nutritional repository activity was the largest among the molecular functions,and the up-regulated seed storage protein(ssP)played an active role in the response of grains to LT stress and subsequent damage.The Kyoto Encyclopedia of Genes and Genomes(KEGG)enrichment analysis showed that LT stress reduced the expression of DEPs such as sucrose phosphate synthase(SPS),glucose-1-phosphate adenylyltransferase(glgC),andβ-fructofuranosidase(FFase)in sucrose and starch metabolic pathways,thus affecting the synthesis of grain starch.In addition,many heat shock proteins(HsPs)were found in the protein processing in endoplasmic reticulum pathways,which can resist some damage caused by LT stress.These findings provide a new theoretical foundation for elucidating the underlying mechanism governing wheat yield developmentafterexposuretoLTstress inspring.
基金supported by National Key R&D Program of China(Grant No.2022YFB4600500)Fundamental Research Funds for the Central Universities,and the Program for Innovation Team of Shaanxi Province(Grant No.2023-CX-TD-17).
文摘Porous designs effectively reduce stress shielding in metallic orthopedic implants.However,current porous structures often fail to adequately meet the needs of patients with osteoporosis and low-modulus body regions.This study proposes a sinusoidal-based lattice structure for an ultralow and widely tunable modulus design,aiming to match diverse bone tissue requirements and enhance biomechanical compatibility.Parametric modeling and finite element analysis were used to evaluate the performance of this structure.Results show that,within the design range suitable for bone growth,the elastic modulus of this lattice structure is tunable over a wide range,from 0.09 to 32.67 GPa,outperforming existing porous structures.The lowest value closely matched the minimum mechanical properties of human cancellous bone among porous structures.Moreover,the structure exhibited distinct anisotropic characteristics,allowing for directional design based on mechanical requirements.The structure’s permeability ranged from 1.19×10^(-8) m^(2) to 2.3×10^(-7) m^(2),making it highly compatible with human cancellous bone and meeting the requirements of orthopedic implants.Samples with porosities ranging from 46% to 87% were successfully fabricated using powder bed fusion additive manufacturing,validating the simulation predictions.This tunable low-modulus lattice structure provides a novel approach for developing personalized orthopedic implants,particularly for patients with specialized needs such as osteoporosis,and can potentially enhance biomechanical compatibility and long-term stability.