Amphibious vehicles are more prone to attitude instability compared to ships,making it crucial to develop effective methods for monitoring instability risks.However,large inclination events,which can lead to instabili...Amphibious vehicles are more prone to attitude instability compared to ships,making it crucial to develop effective methods for monitoring instability risks.However,large inclination events,which can lead to instability,occur frequently in both experimental and operational data.This infrequency causes events to be overlooked by existing prediction models,which lack the precision to accurately predict inclination attitudes in amphibious vehicles.To address this gap in predicting attitudes near extreme inclination points,this study introduces a novel loss function,termed generalized extreme value loss.Subsequently,a deep learning model for improved waterborne attitude prediction,termed iInformer,was developed using a Transformer-based approach.During the embedding phase,a text prototype is created based on the vehicle’s operation log data is constructed to help the model better understand the vehicle’s operating environment.Data segmentation techniques are used to highlight local data variation features.Furthermore,to mitigate issues related to poor convergence and slow training speeds caused by the extreme value loss function,a teacher forcing mechanism is integrated into the model,enhancing its convergence capabilities.Experimental results validate the effectiveness of the proposed method,demonstrating its ability to handle data imbalance challenges.Specifically,the model achieves over a 60%improvement in root mean square error under extreme value conditions,with significant improvements observed across additional metrics.展开更多
Weight loss,whether resulting from disease-related conditions or intentional interventions,has been increasingly recognized as a significant risk factor for compromised skeletal integrity.While moderate weight reducti...Weight loss,whether resulting from disease-related conditions or intentional interventions,has been increasingly recognized as a significant risk factor for compromised skeletal integrity.While moderate weight reduction may yield metabolic benefits,rapid or sustained weight loss is frequently associated with decreased bone mineral density,deterioration of bone microarchitecture,and heightened fracture risk.The mechanisms underlying weight loss–induced bone loss are complex and multifactorial.Emerging evidence highlights a range of contributing factors,including reduced mechanical loading,increased bone marrow adiposity,hormonal and endocrine alterations,nutritional deficiencies,and disruptions in energy metabolism.These mechanisms are intricately interconnected,ultimately impairing bone remodeling and homeostatic balance.In this review,we provide a comprehensive analysis of the current literature on the mechanistic pathways,clinical consequences,and therapeutic strategies related to weight loss–induced bone loss.We further differentiate the skeletal effects of disease-associated versus interventioninduced weight loss,with a focus on their distinct molecular underpinnings.Our goal is to offer novel insights into the optimization of bone health management in the context of weight loss,guided by a translational medicine perspective.展开更多
Systematic bone and muscle loss is a complex metabolic disease,which is frequently linked to gut dysfunction,yet its etiology and treatment remain elusive.While probiotics show promise in managing diseases through mic...Systematic bone and muscle loss is a complex metabolic disease,which is frequently linked to gut dysfunction,yet its etiology and treatment remain elusive.While probiotics show promise in managing diseases through microbiome modulation,their therapeutic impact on gut dysfunction-induced bone and muscle loss remains to be elucidated.Employing dextran sulfate sodium(DSS)-induced gut dysfunction model and wide-spectrum antibiotics(ABX)-treated mice model,our study revealed that gut dysfunction instigates muscle and bone loss,accompanied by microbial imbalances.Importantly,Bifidobacterium animalis subsp.lactis A6(B.lactis A6)administration significantly ameliorated muscle and bone loss by modulating gut microbiota composition and enhancing butyrate-producing bacteria.This intervention effectively restored depleted butyrate levels in serum,muscle,and bone tissues caused by gut dysfunction.Furthermore,butyrate supplementation mitigated musculoskeletal loss by repairing the damaged intestinal barrier and enriching beneficial butyrate-producing bacteria.Importantly,butyrate inhibited the NF-κB pathway activation,and reduced the secretion of corresponding inflammatory factors in T cells.Our study highlights the critical role of dysbiosis in gut dysfunction-induced musculoskeletal loss and underscores the therapeutic potential of B.lactis A6.These discoveries offer new microbiome directions for translational and clinical research,providing promising strategies for preventing and managing musculoskeletal diseases.展开更多
Dear Editor,Early pregnancy loss is a condition whose relevance is determined not only by high incidence but also by the frequency of this pathology progressing into habitual miscarriage.According to the American Preg...Dear Editor,Early pregnancy loss is a condition whose relevance is determined not only by high incidence but also by the frequency of this pathology progressing into habitual miscarriage.According to the American Pregnancy Association,non-developing pregnancy(NDP),one of the forms of pregnancy loss,accounts for half of all miscarriages in the early stages[1].展开更多
Aminoglycosides are a widely used class of antibacterials renowned for their effectiveness and broad antimicrobial spectrum.However,their use leads to irreversible hearing damage by causing apoptosis of hair cells as ...Aminoglycosides are a widely used class of antibacterials renowned for their effectiveness and broad antimicrobial spectrum.However,their use leads to irreversible hearing damage by causing apoptosis of hair cells as their direct target.In addition,the hearing damage caused by aminoglycosides involves damage of spiral ganglion neurons upon exposure.To investigate the mechanisms underlying spiral ganglion neuron degeneration induced by aminoglycosides,we used a C57BL/6J mouse model treated with kanamycin.We found that the mice exhibited auditory deficits following the acute loss of outer hair cells.Spiral ganglion neurons displayed hallmarks of pyroptosis and exhibited progressive degeneration over time.Transcriptomic profiling of these neurons showed significant upregulation of genes associated with inflammation and immune response,particularly those related to the NLRP3 inflammasome.Activation of the canonical pyroptotic pathway in spiral ganglion neurons was observed,accompanied by infiltration of macrophages and the release of proinflammatory cytokines.Pharmacological intervention targeting NLRP3 using Mcc950 and genetic intervention using NLRP3 knockout ameliorated spiral ganglion neuron degeneration in the injury model.These findings suggest that NLRP3 inflammasome-mediated pyroptosis plays a role in aminoglycoside-induced spiral ganglion neuron degeneration.Inhibition of this pathway may offer a potential therapeutic strategy for treating sensorineural hearing loss by reducing spiral ganglion neuron degeneration.展开更多
This editorial critically evaluates the application of foot reflexology as a treatment for sensorineural hearing loss(SNHL)in infants,as proposed in a case report published in the World of Clinical Cases.SNHL is a con...This editorial critically evaluates the application of foot reflexology as a treatment for sensorineural hearing loss(SNHL)in infants,as proposed in a case report published in the World of Clinical Cases.SNHL is a condition characterized by damage to the cochlea or the neural pathways that transmit auditory information to the brain.The etiology of SNHL is often complex,involving genetic mutations,prenatal factors,or perinatal insults.Reflexology,an alternative therapy involving the application of pressure to specific points on the feet,is based on the hypothesis that these points correspond to different organs and systems in the body,including the auditory system.However,the biological plausibility and clinical efficacy of foot reflexology in addressing SNHL lack empirical support.This editorial examines the pathophysiology of SNHL,assesses the clinical claims of reflexology practitioners,and emphasizes the necessity of evidence-based approaches in treating infant hearing loss.While complementary therapies may provide ancillary benefits,they should not supplant validated medical treatments in managing SNHL in infants.Further research is needed to evaluate the safety and efficacy of foot reflexology and other alternative therapies in pediatric audiology.展开更多
We report the fabrication of an 8-meter-long thin-flm lithium niobate optical true delay line using the photolithography-assisted chemomechanical etching technique,showing a low transmission loss of 0.036 dB/cm in the...We report the fabrication of an 8-meter-long thin-flm lithium niobate optical true delay line using the photolithography-assisted chemomechanical etching technique,showing a low transmission loss of 0.036 dB/cm in the conventional telecom band.展开更多
The rational construction of lightweight composites with multiple heterogeneous interfaces represents an effective strategy for achieving efficient electromagnetic wave(EMW)absorption.However,the impact of multiple he...The rational construction of lightweight composites with multiple heterogeneous interfaces represents an effective strategy for achieving efficient electromagnetic wave(EMW)absorption.However,the impact of multiple heterogeneous interfaces on electromagnetic performance still needs further exploration.Herein,reduced graphene oxide(rGO)@Ni-FeCo layered hydroxide(LDH)derivatives with multiple heterostructures were synthesized by a series of processes including electrostatic self-assembly,freeze-drying and thermal annealing.The conductive network in rGO and the cavities inside LDH facilitate electron migration and effectively prolong the propagation path of EMW,thereby enhancing conductivity loss.The abundant heterogeneous interfaces between carbon components and metal nanoparticles induce interfacial polarization.In addition,the catalytic activity differences of different metal particles generate different dielectric electromagnetic interfaces,which further promote interfacial polarization.The natural and exchange resonance formed by magnetic particles under a magnetic field provides magnetic losses.Therefore,the successful construction of multiple heterogeneous interfaces effectively enhances the conductivity loss and polarization loss.With a thickness of only 1.4 mm,the composite achieves a minimum reflection loss of-51.8 dB and an effective absorption bandwidth of 4.5 GHz.This work provides an effective strategy for achieving thin thickness and efficient EMW absorption through precise structural design and multi-component construction of absorbers.展开更多
Dear Editor,Sleep deprivation and loss can have detrimental effects on brain function.Among common patterns of sleep loss are delayed sleep onset(early night sleep loss,EL)and premature awakening(late night sleep loss...Dear Editor,Sleep deprivation and loss can have detrimental effects on brain function.Among common patterns of sleep loss are delayed sleep onset(early night sleep loss,EL)and premature awakening(late night sleep loss,LL).Here,we investigated the distinct impacts of EL and LL on resting-state brain activity.A total of 100 healthy students from several universities in Beijing were recruited and randomly assigned to one of three groups:EL,LL,or full sleep(FS).Restingstate functional magnetic resonance imaging(rs-fMRI)scans were conducted following the sleep manipulations.Compared to the FS group,the LL group showed abnormal low-frequency fluctuation(fALFF)in the prefrontal cortex and insula.展开更多
Currently,challenges such as small object size and occlusion lead to a lack of accuracy and robustness in small object detection.Since small objects occupy only a few pixels in an image,the extracted features are limi...Currently,challenges such as small object size and occlusion lead to a lack of accuracy and robustness in small object detection.Since small objects occupy only a few pixels in an image,the extracted features are limited,and mainstream downsampling convolution operations further exacerbate feature loss.Additionally,due to the occlusionprone nature of small objects and their higher sensitivity to localization deviations,conventional Intersection over Union(IoU)loss functions struggle to achieve stable convergence.To address these limitations,LR-Net is proposed for small object detection.Specifically,the proposed Lossless Feature Fusion(LFF)method transfers spatial features into the channel domain while leveraging a hybrid attentionmechanism to focus on critical features,mitigating feature loss caused by downsampling.Furthermore,RSIoU is proposed to enhance the convergence performance of IoU-based losses for small objects.RSIoU corrects the inherent convergence direction issues in SIoU and proposes a penalty term as a Dynamic Focusing Mechanism parameter,enabling it to dynamically emphasize the loss contribution of small object samples.Ultimately,RSIoU significantly improves the convergence performance of the loss function for small objects,particularly under occlusion scenarios.Experiments demonstrate that LR-Net achieves significant improvements across variousmetrics onmultiple datasets compared with YOLOv8n,achieving a 3.7% increase in mean Average Precision(AP)on the VisDrone2019 dataset,along with improvements of 3.3% on the AI-TOD dataset and 1.2% on the COCO dataset.展开更多
Copper calcium titanate(CaCu_(3)Ti_(4)O_(12),CCTO)ceramics with colossal permittivity have gained widespread concern because of their potential application in modern electronic devices with miniaturization and integra...Copper calcium titanate(CaCu_(3)Ti_(4)O_(12),CCTO)ceramics with colossal permittivity have gained widespread concern because of their potential application in modern electronic devices with miniaturization and integration.However,the extent of grain and grain boundary contribution to the colossal permittivity of CCTO-based ceramics based on the internal barrier layer capacitor(IBLC)model is still in debate.This affects their electrical performance optimization and real-world applications.In this study,a series of novel lead-free colossal permittivity ceramic s,xLiCuNb_(3)O_(9-)(1-x)CaCu_(3)Ti_(4)O_(12)(LCNOCCTO),were designed and prepared using a solid-phase reaction approach.The colossal permittivity response mechanism of LCNO-CCTO ceramics was further explored by performing the complex impedance spectrum and analyzing the activation energy from the grain and grain boundary contribution viewpoint.As a result,the LCNO-CCTO ceramics present the cubic perovskite structure with the space groups of■.All the LCNOCCTO ceramics exhibit the significantly enhanced colossal permittivity(10^(5))response,and the ceramic with x=0.15 shows the highest permittivity of about 4.64×10^(5)(20 Hz,room temperature)accompanied by a lower grain resistance of 9.61Ωand larger grain activation energy of 0.21 eV.The enhanced colossal permittivity response is primarily attributed to the great electrical response inside grains of LCNO-CCTO ceramics,resulting from a smaller grain resistance.Also importantly,the high-frequency dielectric relaxation characteristics are improved by incorporating the LCNO into CCTO ceramics as an ion form.Accordingly,the LCNO-CCTO ceramics show a suppressed high-frequency dielectric loss.These results can provide a thorough knowledge and useful optimization strategy for developing high-performance colossal permittivity materials.展开更多
Developing effective strategies to regulate graphene’s conduction loss and polarization has become a key to expanding its application in the electromagnetic wave absorption(EMWA)field.Based on the unique energy band ...Developing effective strategies to regulate graphene’s conduction loss and polarization has become a key to expanding its application in the electromagnetic wave absorption(EMWA)field.Based on the unique energy band structure of graphene,regulating its bandgap and electrical properties by introducing heteroatoms is considered a feasible solution.Herein,metal-nitrogen doping reduced graphene oxide(M–N-RGO)was prepared by embedding a series of single metal atoms M–N_(4) sites(M=Mn,Fe,Co,Ni,Cu,Zn,Nb,Cd,and Sn)in RGO using an N-coordination atom-assisted strategy.These composites had adjustable conductivity and polarization to optimize dielectric loss and impedance matching for efficient EMWA performance.The results showed that the minimum reflection loss(RL_(min))of Fe–N-RGO reaches−74.05 dB(2.0 mm)and the maximum effective absorption bandwidth(EAB_(max))is 7.05 GHz(1.89 mm)even with a low filler loading of only 1 wt%.Combined with X-ray absorption spectra(XAFS),atomic force microscopy,and density functional theory calculation analysis,the Fe–N_(4) can be used as the polarization center to increase dipole polarization,interface polarization and defect-induced polarization due to d-p orbital hybridization and structural distortion.Moreover,electron migration within the Fe further leads to conduction loss,thereby synergistically promoting energy attenuation.This study demonstrates the effectiveness of metal-nitrogen doping in regulating the graphene′s dielectric properties,which provides an important basis for further investigation of the loss mechanism.展开更多
Gels and conductive polymer composites,including hydrogen bonds(HBs),have emerged as promising materials for electro-magnetic wave(EMW)absorption across various applications.However,the relationship between conduction...Gels and conductive polymer composites,including hydrogen bonds(HBs),have emerged as promising materials for electro-magnetic wave(EMW)absorption across various applications.However,the relationship between conduction loss in EMW-absorbing materials and charge transfer in HB remains to be fully understood.In this study,we developed a series of deep eutectic gels to fine-tune the quantity of HB by adjusting the molar ratio of choline chloride(ChCl)and ethylene glycol(EG).Owing to the unique properties of deep eutectic gels,the effects of magnetic loss and polarization loss on EMW attenuation can be disregarded.Our results indicate that the quantity of HB initially increases and then decreases with the introduction of EG,with HB-induced conductive loss following similar pat-terns.At a ChCl and EG molar ratio of 2.4,the gel labeled G22-CE2.4 exhibited the best EMW absorption performance,characterized by an effective absorption bandwidth of 8.50 GHz and a thickness of 2.54 mm.This superior performance is attributed to the synergistic ef-fects of excellent conductive loss and impedance matching generated by the optimal number of HB.This work elucidates the role of HB in dielectric loss for the first time and provides valuable insights into the optimal design of supramolecular polymer absorbers.展开更多
Activity cliffs(ACs)are generally defined as pairs of similar compounds that only differ by a minor structural modification but exhibit a large difference in their binding affinity for a given target.ACs offer crucial...Activity cliffs(ACs)are generally defined as pairs of similar compounds that only differ by a minor structural modification but exhibit a large difference in their binding affinity for a given target.ACs offer crucial insights that aid medicinal chemists in optimizing molecular structures.Nonetheless,they also form a major source of prediction error in structure-activity relationship(SAR)models.To date,several studies have demonstrated that deep neural networks based on molecular images or graphs might need to be improved further in predicting the potency of ACs.In this paper,we integrated the triplet loss in face recognition with pre-training strategy to develop a prediction model ACtriplet,tailored for ACs.Through extensive comparison with multiple baseline models on 30 benchmark datasets,the results showed that ACtriplet was significantly better than those deep learning(DL)models without pretraining.In addition,we explored the effect of pre-training on data representation.Finally,the case study demonstrated that our model's interpretability module could explain the prediction results reasonably.In the dilemma that the amount of data could not be increased rapidly,this innovative framework would better make use of the existing data,which would propel the potential of DL in the early stage of drug discovery and optimization.展开更多
The application of organic fertilizers has become an increasingly popular practice in maize production to reduce thegaseous nitrogen(N) loss and soil degradation caused by inorganic fertilizers. Organic fertilizer pla...The application of organic fertilizers has become an increasingly popular practice in maize production to reduce thegaseous nitrogen(N) loss and soil degradation caused by inorganic fertilizers. Organic fertilizer plays a key rolein improving soil quality and stabilizing maize yields, but few studies have compared different substitution rates. Afield study was carried out in 2021 and 2022, based on a long-term trial initiated in 2016, which included five organicfertilizer N substitution rates with equal inputs of 200 kg N ha^(–1): 0% organic fertilizer(T1, 100% inorganic fertilizer),50.0% organic+50.0% inorganic fertilizer(T2), 37.5% organic+62.5% inorganic fertilizer(T3), 25.0% organic+75.0%inorganic fertilizer(T4), and 12.5% organic+87.5% inorganic fertilizer(T5), as well as a no fertilizer control(T6). Theresults of the two years showed that T3 and T1 had the highest grain yield and biomass, respectively, and there wasno significant difference between T1 and T3. Compared with T1, the 12.5, 25.0, 37.5, and 50.0% substitution rates in T5, T4, T3, and T2 significantly reduced total nitrogen losses(NH_(3), N_(2)O) by 8.3, 16.1, 18.7, and 27.0%, respectively.Nitrogen use efficiency(NUE) was higher in T5, T3, and T1, and there were no significant differences among them.Organic fertilizer substitution directly reduced NH_(3)volatilization and N_(2)O emission from farmland by lowering theammonium nitrogen and alkali-dissolved N contents and by increasing soil moisture. These substitution treatmentsreduced N_(2)O emissions indirectly by regulating the abundances of AOB and nirK-harboring genes by promotingsoil moisture. Specifically, the 37.5% organic fertilizer substitution reduces NH_(3)volatilization and N_(2)O emission from farmland by reducing the ammonium nitrogen and alkali-dissolved N contents and increasing moisture, which negatively regulate the abundance of AOB and nir K-harboring genes to reduce N_(2)O emissions indirectly in rainfed maize fields on the Loess Plateau of China.展开更多
Leaf turgor loss point has been recognized as an important plant physiological trait explaining a species’drought tolerance( π_(tlp)).Less is known about the variation of π_(tlp) in time and how seasonal or interan...Leaf turgor loss point has been recognized as an important plant physiological trait explaining a species’drought tolerance( π_(tlp)).Less is known about the variation of π_(tlp) in time and how seasonal or interannual differences in water availability are affecting π_(tlp) as a static trait.I monitored the seasonal variation of π_(tlp) during a drought year starting in early spring with juvenile leaves and assessed the interannual variation in π_(tlp) of fully matured leaves among years with diverting water availability for three temperate broad-leaved tree species.The largest seasonal changes in π_(tlp) occurred during leaf unfolding until leaves were fully developed and matured.After leaves matured,no significant changes occurred for the rest of the vegetation period.Interannual variation that could be related to water availability was only present in one of the three tree species.The results suggest that the investigated species have a rapid period of osmotic adjustment early in the growing season followed by a period of relative stability,when π_(tlp) can be considered as a static trait.展开更多
Hearing loss is the third leading cause of human disability.Age-related hearing loss,one type of acquired sensorineural hearing loss,is largely responsible for this escalating global health burden.Noise-induced,ototox...Hearing loss is the third leading cause of human disability.Age-related hearing loss,one type of acquired sensorineural hearing loss,is largely responsible for this escalating global health burden.Noise-induced,ototoxic,and idiopathic sudden sensorineural are other less common types of acquired hearing loss.The etiology of these conditions is complex and multi-fa ctorial involving an interplay of genetic and environmental factors.Oxidative stress has recently been proposed as a likely linking cause in most types of acquired sensorineural hearing loss.Short non-coding RNA sequences known as microRNAs(miRNAs)have increasingly been shown to play a role in cellular hypoxia and oxidative stress responses including promoting an apoptotic response.Sensory hair cell death is a central histopathological finding in sensorineural hearing loss.As these cells do not regenerate in humans,it underlies the irreversibility of human age-related hearing loss.Ovid EMBASE,Ovid MEDLINE,Web of Science Core Collection,and ClinicalTrials.gov databases over the period August 1,2018 to July 31,2023 were searched with"hearing loss,""hypoxamiRs,""hypoxia,""microRNAs,""ischemia,"and"oxidative stress"text words for English language primary study publications or registered clinical trials.Registe red clinical trials known to the senior author we re also assessed.A total of 222studies were thus identified.After excluding duplicates,editorials,retra ctions,secondary research studies,and non-English language articles,39 primary studies and clinical trials underwent full-text screening.This resulted in 11 animal,in vitro,and/or human subject journal articles and 8 registered clinical trial database entries which form the basis of this narrative review.MiRNAs miR-34a and miR-29b levels increase with age in mice.These miRNAs were demonstrated in human neuroblastoma and murine cochlear cell lines to target Sirtuin 1/peroxisome proliferato r-activated receptor gamma coactivator-1-alpha(SIRT1/P GC-1α),SIRT1p53,and SIRT1/hypoxia-inducible factor 1-alpha signaling pathways resulting in increased apoptosis.Furthermore,hypoxia and oxidative stress had a similar adve rse apoptotic effect,which was inhibited by resve ratrol and a myocardial inhibitorassociated transcript,a miR-29b competing endogenous mRNA.Gentamicin reduced miR-182-5p levels and increased cochlear oxidative stress and cell death in mice-an effect that was corrected by inner ear stem cell-derived exosomes.There is ongoing work seeking to determine if these findings can be effectively translated to humans.展开更多
During high-speed rotation,the surface of aeronautic spiral bevel gears will generate significant pressure and viscous forces,which will cause a certain amount of windage power loss and reduce the efficiency of the tr...During high-speed rotation,the surface of aeronautic spiral bevel gears will generate significant pressure and viscous forces,which will cause a certain amount of windage power loss and reduce the efficiency of the transmission system.Based on the computational fluid dynamics,this paper analyzes the windage power loss of a single spiral bevel gear and a spiral bevel gear pair under oil injection lubrication.In addition,the shroud is used to suppress gear windage loss,and the clearance size and opening angle of the designed shroud are optimized.Finally,by comparing and analyzing the experimental results,the following conclusions were obtained:(1)For a single gear,the speed is the most important factor affecting windage loss,followed by the hand of spiral,and rotation direction;(2)For gear pairs,under oil injection lubrication,the input speed has the greatest impact on windage power loss,followed by the influence of oil injection port speed,temperature and oil injection port pressure;(3)Installing a shroud is an effective method to reduce windage power loss;(4)In the pure air phase,the smaller the clearance between the shroud and the gear surface,and the smaller the radial direction between the shroud and the shaft,the better the effect of reducing windage;(5)In the two-phase flow of oil and gas,it is necessary to design oil drainage holes on the shroud to ensure the smooth discharge of lubricating oil and improve the drag reduction effect.展开更多
In the Internet era,recommendation systems play a crucial role in helping users find relevant information from large datasets.Class imbalance is known to severely affect data quality,and therefore reduce the performan...In the Internet era,recommendation systems play a crucial role in helping users find relevant information from large datasets.Class imbalance is known to severely affect data quality,and therefore reduce the performance of recommendation systems.Due to the imbalance,machine learning algorithms tend to classify inputs into the positive(majority)class every time to achieve high prediction accuracy.Imbalance can be categorized such as by features and classes,but most studies consider only class imbalance.In this paper,we propose a recommendation system that can integrate multiple networks to adapt to a large number of imbalanced features and can deal with highly skewed and imbalanced datasets through a loss function.We propose a loss aware feature attention mechanism(LAFAM)to solve the issue of feature imbalance.The network incorporates an attention mechanism and uses multiple sub-networks to classify and learn features.For better results,the network can learn the weights of sub-networks and assign higher weights to important features.We propose suppression loss to address class imbalance,which favors negative loss by penalizing positive loss,and pays more attention to sample points near the decision boundary.Experiments on two large-scale datasets verify that the performance of the proposed system is greatly improved compared to baseline methods.展开更多
基金Supported by the National Defense Basic Scientific Research Program of China.
文摘Amphibious vehicles are more prone to attitude instability compared to ships,making it crucial to develop effective methods for monitoring instability risks.However,large inclination events,which can lead to instability,occur frequently in both experimental and operational data.This infrequency causes events to be overlooked by existing prediction models,which lack the precision to accurately predict inclination attitudes in amphibious vehicles.To address this gap in predicting attitudes near extreme inclination points,this study introduces a novel loss function,termed generalized extreme value loss.Subsequently,a deep learning model for improved waterborne attitude prediction,termed iInformer,was developed using a Transformer-based approach.During the embedding phase,a text prototype is created based on the vehicle’s operation log data is constructed to help the model better understand the vehicle’s operating environment.Data segmentation techniques are used to highlight local data variation features.Furthermore,to mitigate issues related to poor convergence and slow training speeds caused by the extreme value loss function,a teacher forcing mechanism is integrated into the model,enhancing its convergence capabilities.Experimental results validate the effectiveness of the proposed method,demonstrating its ability to handle data imbalance challenges.Specifically,the model achieves over a 60%improvement in root mean square error under extreme value conditions,with significant improvements observed across additional metrics.
文摘Weight loss,whether resulting from disease-related conditions or intentional interventions,has been increasingly recognized as a significant risk factor for compromised skeletal integrity.While moderate weight reduction may yield metabolic benefits,rapid or sustained weight loss is frequently associated with decreased bone mineral density,deterioration of bone microarchitecture,and heightened fracture risk.The mechanisms underlying weight loss–induced bone loss are complex and multifactorial.Emerging evidence highlights a range of contributing factors,including reduced mechanical loading,increased bone marrow adiposity,hormonal and endocrine alterations,nutritional deficiencies,and disruptions in energy metabolism.These mechanisms are intricately interconnected,ultimately impairing bone remodeling and homeostatic balance.In this review,we provide a comprehensive analysis of the current literature on the mechanistic pathways,clinical consequences,and therapeutic strategies related to weight loss–induced bone loss.We further differentiate the skeletal effects of disease-associated versus interventioninduced weight loss,with a focus on their distinct molecular underpinnings.Our goal is to offer novel insights into the optimization of bone health management in the context of weight loss,guided by a translational medicine perspective.
基金supported by funding from the National Natural Science Foundation of China(82272478,82002330,82202728)the National Key R&D Program of China(No.2022YFF1100100)the Natural Science Foundation of Beijing(L222086).
文摘Systematic bone and muscle loss is a complex metabolic disease,which is frequently linked to gut dysfunction,yet its etiology and treatment remain elusive.While probiotics show promise in managing diseases through microbiome modulation,their therapeutic impact on gut dysfunction-induced bone and muscle loss remains to be elucidated.Employing dextran sulfate sodium(DSS)-induced gut dysfunction model and wide-spectrum antibiotics(ABX)-treated mice model,our study revealed that gut dysfunction instigates muscle and bone loss,accompanied by microbial imbalances.Importantly,Bifidobacterium animalis subsp.lactis A6(B.lactis A6)administration significantly ameliorated muscle and bone loss by modulating gut microbiota composition and enhancing butyrate-producing bacteria.This intervention effectively restored depleted butyrate levels in serum,muscle,and bone tissues caused by gut dysfunction.Furthermore,butyrate supplementation mitigated musculoskeletal loss by repairing the damaged intestinal barrier and enriching beneficial butyrate-producing bacteria.Importantly,butyrate inhibited the NF-κB pathway activation,and reduced the secretion of corresponding inflammatory factors in T cells.Our study highlights the critical role of dysbiosis in gut dysfunction-induced musculoskeletal loss and underscores the therapeutic potential of B.lactis A6.These discoveries offer new microbiome directions for translational and clinical research,providing promising strategies for preventing and managing musculoskeletal diseases.
基金financial support of the Russian Science Foundation(Grant No.23-13-00201)。
文摘Dear Editor,Early pregnancy loss is a condition whose relevance is determined not only by high incidence but also by the frequency of this pathology progressing into habitual miscarriage.According to the American Pregnancy Association,non-developing pregnancy(NDP),one of the forms of pregnancy loss,accounts for half of all miscarriages in the early stages[1].
基金supported by the National Natural Science Foundation of China,Nos.81800919(to YX),82171140(to PW)the International Cooperation and Exchange of the National Natural Science Foundation of China,Nos.82020108008(to HS),81720108010(to SY).
文摘Aminoglycosides are a widely used class of antibacterials renowned for their effectiveness and broad antimicrobial spectrum.However,their use leads to irreversible hearing damage by causing apoptosis of hair cells as their direct target.In addition,the hearing damage caused by aminoglycosides involves damage of spiral ganglion neurons upon exposure.To investigate the mechanisms underlying spiral ganglion neuron degeneration induced by aminoglycosides,we used a C57BL/6J mouse model treated with kanamycin.We found that the mice exhibited auditory deficits following the acute loss of outer hair cells.Spiral ganglion neurons displayed hallmarks of pyroptosis and exhibited progressive degeneration over time.Transcriptomic profiling of these neurons showed significant upregulation of genes associated with inflammation and immune response,particularly those related to the NLRP3 inflammasome.Activation of the canonical pyroptotic pathway in spiral ganglion neurons was observed,accompanied by infiltration of macrophages and the release of proinflammatory cytokines.Pharmacological intervention targeting NLRP3 using Mcc950 and genetic intervention using NLRP3 knockout ameliorated spiral ganglion neuron degeneration in the injury model.These findings suggest that NLRP3 inflammasome-mediated pyroptosis plays a role in aminoglycoside-induced spiral ganglion neuron degeneration.Inhibition of this pathway may offer a potential therapeutic strategy for treating sensorineural hearing loss by reducing spiral ganglion neuron degeneration.
文摘This editorial critically evaluates the application of foot reflexology as a treatment for sensorineural hearing loss(SNHL)in infants,as proposed in a case report published in the World of Clinical Cases.SNHL is a condition characterized by damage to the cochlea or the neural pathways that transmit auditory information to the brain.The etiology of SNHL is often complex,involving genetic mutations,prenatal factors,or perinatal insults.Reflexology,an alternative therapy involving the application of pressure to specific points on the feet,is based on the hypothesis that these points correspond to different organs and systems in the body,including the auditory system.However,the biological plausibility and clinical efficacy of foot reflexology in addressing SNHL lack empirical support.This editorial examines the pathophysiology of SNHL,assesses the clinical claims of reflexology practitioners,and emphasizes the necessity of evidence-based approaches in treating infant hearing loss.While complementary therapies may provide ancillary benefits,they should not supplant validated medical treatments in managing SNHL in infants.Further research is needed to evaluate the safety and efficacy of foot reflexology and other alternative therapies in pediatric audiology.
基金supported by the National Natural Science Foundation of China(Grant Nos.12192251,12334014,92480001,12134001,12304418,12274130,12274133,12474378,and 12404378)the National Key R&D Program of China(Grant Nos.2022YFA1404600 and 2022YFA1205100)+2 种基金Shanghai Municipal Science and Technology Major Project(Grant No.2019SHZDZX01)the Innovation Program for Quantum Science and Technology(Grant No.2021ZD0301403)the Engineering Research Center for Nanophotonics&Advanced Instrument,Ministry of Education,East China Normal University(Grant No.2023nmc005)。
文摘We report the fabrication of an 8-meter-long thin-flm lithium niobate optical true delay line using the photolithography-assisted chemomechanical etching technique,showing a low transmission loss of 0.036 dB/cm in the conventional telecom band.
基金supported by the National Natural Science Foundation of China(Nos.52103334,52071053,U1704253,52272288,52401035)the Fundamental Research Funds for the Central Universities(No.DUT24GF102).
文摘The rational construction of lightweight composites with multiple heterogeneous interfaces represents an effective strategy for achieving efficient electromagnetic wave(EMW)absorption.However,the impact of multiple heterogeneous interfaces on electromagnetic performance still needs further exploration.Herein,reduced graphene oxide(rGO)@Ni-FeCo layered hydroxide(LDH)derivatives with multiple heterostructures were synthesized by a series of processes including electrostatic self-assembly,freeze-drying and thermal annealing.The conductive network in rGO and the cavities inside LDH facilitate electron migration and effectively prolong the propagation path of EMW,thereby enhancing conductivity loss.The abundant heterogeneous interfaces between carbon components and metal nanoparticles induce interfacial polarization.In addition,the catalytic activity differences of different metal particles generate different dielectric electromagnetic interfaces,which further promote interfacial polarization.The natural and exchange resonance formed by magnetic particles under a magnetic field provides magnetic losses.Therefore,the successful construction of multiple heterogeneous interfaces effectively enhances the conductivity loss and polarization loss.With a thickness of only 1.4 mm,the composite achieves a minimum reflection loss of-51.8 dB and an effective absorption bandwidth of 4.5 GHz.This work provides an effective strategy for achieving thin thickness and efficient EMW absorption through precise structural design and multi-component construction of absorbers.
基金supported by the STI2030-Major Projects(2021ZD0202100,2021ZD0200801,and 2021ZD0201900)the National Natural Science Foundation of China(82130040,82288101).
文摘Dear Editor,Sleep deprivation and loss can have detrimental effects on brain function.Among common patterns of sleep loss are delayed sleep onset(early night sleep loss,EL)and premature awakening(late night sleep loss,LL).Here,we investigated the distinct impacts of EL and LL on resting-state brain activity.A total of 100 healthy students from several universities in Beijing were recruited and randomly assigned to one of three groups:EL,LL,or full sleep(FS).Restingstate functional magnetic resonance imaging(rs-fMRI)scans were conducted following the sleep manipulations.Compared to the FS group,the LL group showed abnormal low-frequency fluctuation(fALFF)in the prefrontal cortex and insula.
基金supported by Chongqing Municipal Commission of Housing and Urban-Rural Development(Grant No.CKZ2024-87)China Chongqing Municipal Science and Technology Bureau(Grant No.2024TIAD-CYKJCXX0121).
文摘Currently,challenges such as small object size and occlusion lead to a lack of accuracy and robustness in small object detection.Since small objects occupy only a few pixels in an image,the extracted features are limited,and mainstream downsampling convolution operations further exacerbate feature loss.Additionally,due to the occlusionprone nature of small objects and their higher sensitivity to localization deviations,conventional Intersection over Union(IoU)loss functions struggle to achieve stable convergence.To address these limitations,LR-Net is proposed for small object detection.Specifically,the proposed Lossless Feature Fusion(LFF)method transfers spatial features into the channel domain while leveraging a hybrid attentionmechanism to focus on critical features,mitigating feature loss caused by downsampling.Furthermore,RSIoU is proposed to enhance the convergence performance of IoU-based losses for small objects.RSIoU corrects the inherent convergence direction issues in SIoU and proposes a penalty term as a Dynamic Focusing Mechanism parameter,enabling it to dynamically emphasize the loss contribution of small object samples.Ultimately,RSIoU significantly improves the convergence performance of the loss function for small objects,particularly under occlusion scenarios.Experiments demonstrate that LR-Net achieves significant improvements across variousmetrics onmultiple datasets compared with YOLOv8n,achieving a 3.7% increase in mean Average Precision(AP)on the VisDrone2019 dataset,along with improvements of 3.3% on the AI-TOD dataset and 1.2% on the COCO dataset.
基金financially supported by the National Natural Science Foundation of China(No.52202136)the Natural Science Foundation of Jiangxi Province(No.20232BAB204017)+2 种基金the State Key Laboratory of Electrical Insulation and Power Equipment(No.EIPE24203)Guangdong Provincial Key Laboratory of Electronic Functional Materials and Devices(No.EFMD2024002Z)the Innovation Special Foundation Project for Graduate Students of Nanchang Hangkong University(No.YC2024019)
文摘Copper calcium titanate(CaCu_(3)Ti_(4)O_(12),CCTO)ceramics with colossal permittivity have gained widespread concern because of their potential application in modern electronic devices with miniaturization and integration.However,the extent of grain and grain boundary contribution to the colossal permittivity of CCTO-based ceramics based on the internal barrier layer capacitor(IBLC)model is still in debate.This affects their electrical performance optimization and real-world applications.In this study,a series of novel lead-free colossal permittivity ceramic s,xLiCuNb_(3)O_(9-)(1-x)CaCu_(3)Ti_(4)O_(12)(LCNOCCTO),were designed and prepared using a solid-phase reaction approach.The colossal permittivity response mechanism of LCNO-CCTO ceramics was further explored by performing the complex impedance spectrum and analyzing the activation energy from the grain and grain boundary contribution viewpoint.As a result,the LCNO-CCTO ceramics present the cubic perovskite structure with the space groups of■.All the LCNOCCTO ceramics exhibit the significantly enhanced colossal permittivity(10^(5))response,and the ceramic with x=0.15 shows the highest permittivity of about 4.64×10^(5)(20 Hz,room temperature)accompanied by a lower grain resistance of 9.61Ωand larger grain activation energy of 0.21 eV.The enhanced colossal permittivity response is primarily attributed to the great electrical response inside grains of LCNO-CCTO ceramics,resulting from a smaller grain resistance.Also importantly,the high-frequency dielectric relaxation characteristics are improved by incorporating the LCNO into CCTO ceramics as an ion form.Accordingly,the LCNO-CCTO ceramics show a suppressed high-frequency dielectric loss.These results can provide a thorough knowledge and useful optimization strategy for developing high-performance colossal permittivity materials.
基金supported by National Natural Science Foundation of China(NSFC 52432002,52372041,52302087)Heilongjiang Touyan Team Program,the Fundamental Research Funds for the Central Universities(Grant No.HIT.OCEF.2021003)the Shanghai Aerospace Science and Technology Innovation Fund(SAST2022-60).
文摘Developing effective strategies to regulate graphene’s conduction loss and polarization has become a key to expanding its application in the electromagnetic wave absorption(EMWA)field.Based on the unique energy band structure of graphene,regulating its bandgap and electrical properties by introducing heteroatoms is considered a feasible solution.Herein,metal-nitrogen doping reduced graphene oxide(M–N-RGO)was prepared by embedding a series of single metal atoms M–N_(4) sites(M=Mn,Fe,Co,Ni,Cu,Zn,Nb,Cd,and Sn)in RGO using an N-coordination atom-assisted strategy.These composites had adjustable conductivity and polarization to optimize dielectric loss and impedance matching for efficient EMWA performance.The results showed that the minimum reflection loss(RL_(min))of Fe–N-RGO reaches−74.05 dB(2.0 mm)and the maximum effective absorption bandwidth(EAB_(max))is 7.05 GHz(1.89 mm)even with a low filler loading of only 1 wt%.Combined with X-ray absorption spectra(XAFS),atomic force microscopy,and density functional theory calculation analysis,the Fe–N_(4) can be used as the polarization center to increase dipole polarization,interface polarization and defect-induced polarization due to d-p orbital hybridization and structural distortion.Moreover,electron migration within the Fe further leads to conduction loss,thereby synergistically promoting energy attenuation.This study demonstrates the effectiveness of metal-nitrogen doping in regulating the graphene′s dielectric properties,which provides an important basis for further investigation of the loss mechanism.
基金supported by the National Nat-ural Science Foundation of China(Nos.51872238,52074227,and 21806129)the Fundamental Research Funds for the Central Universities,China(Nos.3102018zy045 and 3102019AX11)+2 种基金the Guangdong Basic and Applied Basic Research Foundation,China(No.2024A1515010298)the Natural Science Basic Research Plan in Shaanxi Province of China(Nos.2017JQ5116 and 2020JM-118)the Key Laboratory of Icing and Anti/De-icing of CARDC(No.IADL20220401).
文摘Gels and conductive polymer composites,including hydrogen bonds(HBs),have emerged as promising materials for electro-magnetic wave(EMW)absorption across various applications.However,the relationship between conduction loss in EMW-absorbing materials and charge transfer in HB remains to be fully understood.In this study,we developed a series of deep eutectic gels to fine-tune the quantity of HB by adjusting the molar ratio of choline chloride(ChCl)and ethylene glycol(EG).Owing to the unique properties of deep eutectic gels,the effects of magnetic loss and polarization loss on EMW attenuation can be disregarded.Our results indicate that the quantity of HB initially increases and then decreases with the introduction of EG,with HB-induced conductive loss following similar pat-terns.At a ChCl and EG molar ratio of 2.4,the gel labeled G22-CE2.4 exhibited the best EMW absorption performance,characterized by an effective absorption bandwidth of 8.50 GHz and a thickness of 2.54 mm.This superior performance is attributed to the synergistic ef-fects of excellent conductive loss and impedance matching generated by the optimal number of HB.This work elucidates the role of HB in dielectric loss for the first time and provides valuable insights into the optimal design of supramolecular polymer absorbers.
基金supported by the National Natural Science Foundation of China(Grant Nos.:U23A20530,82273858,and 82173746)the National Key Research and Development Programof China(Grant No.:2023YFF1204904)Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism(Shanghai Municipal Education Commission,China).
文摘Activity cliffs(ACs)are generally defined as pairs of similar compounds that only differ by a minor structural modification but exhibit a large difference in their binding affinity for a given target.ACs offer crucial insights that aid medicinal chemists in optimizing molecular structures.Nonetheless,they also form a major source of prediction error in structure-activity relationship(SAR)models.To date,several studies have demonstrated that deep neural networks based on molecular images or graphs might need to be improved further in predicting the potency of ACs.In this paper,we integrated the triplet loss in face recognition with pre-training strategy to develop a prediction model ACtriplet,tailored for ACs.Through extensive comparison with multiple baseline models on 30 benchmark datasets,the results showed that ACtriplet was significantly better than those deep learning(DL)models without pretraining.In addition,we explored the effect of pre-training on data representation.Finally,the case study demonstrated that our model's interpretability module could explain the prediction results reasonably.In the dilemma that the amount of data could not be increased rapidly,this innovative framework would better make use of the existing data,which would propel the potential of DL in the early stage of drug discovery and optimization.
基金supported by the State Key Laboratory of Arid Land Crop Science, Gansu Agricultural University,China (GSCS-2022-Z02)the National Key R&D Program of China (2022YFD1900300)+2 种基金the National Natural Science Foundation of China (32260549)the Innovation Group of Basic Research in Gansu Province, China (25JRRA807)the Major Special Research Projects in Gansu Province, China (22ZD6NA009)。
文摘The application of organic fertilizers has become an increasingly popular practice in maize production to reduce thegaseous nitrogen(N) loss and soil degradation caused by inorganic fertilizers. Organic fertilizer plays a key rolein improving soil quality and stabilizing maize yields, but few studies have compared different substitution rates. Afield study was carried out in 2021 and 2022, based on a long-term trial initiated in 2016, which included five organicfertilizer N substitution rates with equal inputs of 200 kg N ha^(–1): 0% organic fertilizer(T1, 100% inorganic fertilizer),50.0% organic+50.0% inorganic fertilizer(T2), 37.5% organic+62.5% inorganic fertilizer(T3), 25.0% organic+75.0%inorganic fertilizer(T4), and 12.5% organic+87.5% inorganic fertilizer(T5), as well as a no fertilizer control(T6). Theresults of the two years showed that T3 and T1 had the highest grain yield and biomass, respectively, and there wasno significant difference between T1 and T3. Compared with T1, the 12.5, 25.0, 37.5, and 50.0% substitution rates in T5, T4, T3, and T2 significantly reduced total nitrogen losses(NH_(3), N_(2)O) by 8.3, 16.1, 18.7, and 27.0%, respectively.Nitrogen use efficiency(NUE) was higher in T5, T3, and T1, and there were no significant differences among them.Organic fertilizer substitution directly reduced NH_(3)volatilization and N_(2)O emission from farmland by lowering theammonium nitrogen and alkali-dissolved N contents and by increasing soil moisture. These substitution treatmentsreduced N_(2)O emissions indirectly by regulating the abundances of AOB and nirK-harboring genes by promotingsoil moisture. Specifically, the 37.5% organic fertilizer substitution reduces NH_(3)volatilization and N_(2)O emission from farmland by reducing the ammonium nitrogen and alkali-dissolved N contents and increasing moisture, which negatively regulate the abundance of AOB and nir K-harboring genes to reduce N_(2)O emissions indirectly in rainfed maize fields on the Loess Plateau of China.
基金supported by the European Union as a mobility grant
文摘Leaf turgor loss point has been recognized as an important plant physiological trait explaining a species’drought tolerance( π_(tlp)).Less is known about the variation of π_(tlp) in time and how seasonal or interannual differences in water availability are affecting π_(tlp) as a static trait.I monitored the seasonal variation of π_(tlp) during a drought year starting in early spring with juvenile leaves and assessed the interannual variation in π_(tlp) of fully matured leaves among years with diverting water availability for three temperate broad-leaved tree species.The largest seasonal changes in π_(tlp) occurred during leaf unfolding until leaves were fully developed and matured.After leaves matured,no significant changes occurred for the rest of the vegetation period.Interannual variation that could be related to water availability was only present in one of the three tree species.The results suggest that the investigated species have a rapid period of osmotic adjustment early in the growing season followed by a period of relative stability,when π_(tlp) can be considered as a static trait.
文摘Hearing loss is the third leading cause of human disability.Age-related hearing loss,one type of acquired sensorineural hearing loss,is largely responsible for this escalating global health burden.Noise-induced,ototoxic,and idiopathic sudden sensorineural are other less common types of acquired hearing loss.The etiology of these conditions is complex and multi-fa ctorial involving an interplay of genetic and environmental factors.Oxidative stress has recently been proposed as a likely linking cause in most types of acquired sensorineural hearing loss.Short non-coding RNA sequences known as microRNAs(miRNAs)have increasingly been shown to play a role in cellular hypoxia and oxidative stress responses including promoting an apoptotic response.Sensory hair cell death is a central histopathological finding in sensorineural hearing loss.As these cells do not regenerate in humans,it underlies the irreversibility of human age-related hearing loss.Ovid EMBASE,Ovid MEDLINE,Web of Science Core Collection,and ClinicalTrials.gov databases over the period August 1,2018 to July 31,2023 were searched with"hearing loss,""hypoxamiRs,""hypoxia,""microRNAs,""ischemia,"and"oxidative stress"text words for English language primary study publications or registered clinical trials.Registe red clinical trials known to the senior author we re also assessed.A total of 222studies were thus identified.After excluding duplicates,editorials,retra ctions,secondary research studies,and non-English language articles,39 primary studies and clinical trials underwent full-text screening.This resulted in 11 animal,in vitro,and/or human subject journal articles and 8 registered clinical trial database entries which form the basis of this narrative review.MiRNAs miR-34a and miR-29b levels increase with age in mice.These miRNAs were demonstrated in human neuroblastoma and murine cochlear cell lines to target Sirtuin 1/peroxisome proliferato r-activated receptor gamma coactivator-1-alpha(SIRT1/P GC-1α),SIRT1p53,and SIRT1/hypoxia-inducible factor 1-alpha signaling pathways resulting in increased apoptosis.Furthermore,hypoxia and oxidative stress had a similar adve rse apoptotic effect,which was inhibited by resve ratrol and a myocardial inhibitorassociated transcript,a miR-29b competing endogenous mRNA.Gentamicin reduced miR-182-5p levels and increased cochlear oxidative stress and cell death in mice-an effect that was corrected by inner ear stem cell-derived exosomes.There is ongoing work seeking to determine if these findings can be effectively translated to humans.
基金Supported by National Natural Science Foundation of China(Grant Nos.51175422,61973011)Shaanxi Provincial Natural Science Basic Research Plan of China(Grant No.2022JM-195)+1 种基金Fundamental Research Funds for the Central Universities of Chinathe Research Start-up Funds of Hangzhou International Innovation Institute of Beihang University(Grant No.2024KQ036)。
文摘During high-speed rotation,the surface of aeronautic spiral bevel gears will generate significant pressure and viscous forces,which will cause a certain amount of windage power loss and reduce the efficiency of the transmission system.Based on the computational fluid dynamics,this paper analyzes the windage power loss of a single spiral bevel gear and a spiral bevel gear pair under oil injection lubrication.In addition,the shroud is used to suppress gear windage loss,and the clearance size and opening angle of the designed shroud are optimized.Finally,by comparing and analyzing the experimental results,the following conclusions were obtained:(1)For a single gear,the speed is the most important factor affecting windage loss,followed by the hand of spiral,and rotation direction;(2)For gear pairs,under oil injection lubrication,the input speed has the greatest impact on windage power loss,followed by the influence of oil injection port speed,temperature and oil injection port pressure;(3)Installing a shroud is an effective method to reduce windage power loss;(4)In the pure air phase,the smaller the clearance between the shroud and the gear surface,and the smaller the radial direction between the shroud and the shaft,the better the effect of reducing windage;(5)In the two-phase flow of oil and gas,it is necessary to design oil drainage holes on the shroud to ensure the smooth discharge of lubricating oil and improve the drag reduction effect.
基金supported by the National Key Research and Development Program of China(Grant numbers:2021YFF0901705,2021YFF0901700)the State Key Laboratory of Media Convergence and Communication,Communication University of China+1 种基金the Fundamental Research Funds for the Central Universitiesthe High-Quality and Cutting-Edge Disciplines Construction Project for Universities in Beijing(Internet Information,Communication University of China).
文摘In the Internet era,recommendation systems play a crucial role in helping users find relevant information from large datasets.Class imbalance is known to severely affect data quality,and therefore reduce the performance of recommendation systems.Due to the imbalance,machine learning algorithms tend to classify inputs into the positive(majority)class every time to achieve high prediction accuracy.Imbalance can be categorized such as by features and classes,but most studies consider only class imbalance.In this paper,we propose a recommendation system that can integrate multiple networks to adapt to a large number of imbalanced features and can deal with highly skewed and imbalanced datasets through a loss function.We propose a loss aware feature attention mechanism(LAFAM)to solve the issue of feature imbalance.The network incorporates an attention mechanism and uses multiple sub-networks to classify and learn features.For better results,the network can learn the weights of sub-networks and assign higher weights to important features.We propose suppression loss to address class imbalance,which favors negative loss by penalizing positive loss,and pays more attention to sample points near the decision boundary.Experiments on two large-scale datasets verify that the performance of the proposed system is greatly improved compared to baseline methods.