期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
BOOKS
1
《ChinAfrica》 2025年第12期64-64,共1页
Africa’s Buildings:Architecture and the Displacement of Cultural Heritage By ITOHAN I.OSAYIMWESE Princeton University Press This book is a groundbreaking history that exposes the systematic looting of Africa’s archi... Africa’s Buildings:Architecture and the Displacement of Cultural Heritage By ITOHAN I.OSAYIMWESE Princeton University Press This book is a groundbreaking history that exposes the systematic looting of Africa’s architectural heritage by Western collectors,museums,and colonial officials. 展开更多
关键词 displacement cultural heritage cultural heritage colonial officials Western collectors looting MUSEUMS African architecture
原文传递
依达拉奉联合醒脑静对急性脑梗死患者血清NSE、S-100β和MMP-9水平的影响 被引量:49
2
作者 李世泽 丁进京 史哲 《中国老年学杂志》 CAS CSCD 北大核心 2013年第2期273-275,共3页
目的观察联合应用依达拉奉与醒脑静对急性脑梗死患者血清神经元特异性烯醇化酶(NSE)、S-100β和基质金属蛋白酶(MMP)-9水平的影响及临床疗效。方法选择86例急性脑梗死患者,随机选择55例为观察组,余31例患者为对照组。两组均给予基础对... 目的观察联合应用依达拉奉与醒脑静对急性脑梗死患者血清神经元特异性烯醇化酶(NSE)、S-100β和基质金属蛋白酶(MMP)-9水平的影响及临床疗效。方法选择86例急性脑梗死患者,随机选择55例为观察组,余31例患者为对照组。两组均给予基础对症治疗,观察组在基础治疗上加用依达拉奉与醒脑静脉滴注,对照组加用醒脑静滴注,持续用药14 d。于入院时、治疗后第3、7、14天以ELISA法测定患者血清NSE、S-100β和MMP-9水平,同时对患者神经功能缺损进行评分。结果治疗后各项实验室指标较治疗前均有明显改善,观察组在治疗后第3、7天血清中NSE、S-100β和MMP-9水平均较对照组明显降低,在治疗后第14天血清MMP-9较对照组比较仍有显著差异。观察组在治疗后第3天神经功能缺失NIHSS评分较入院时明显改善,对照组在治疗后第7天才出现神经功能改善;治疗后第14天观察组评分明显低于对照组。结论依达拉奉和醒脑静两药联合应用治疗急性脑梗死较单一用药效果较好,可保护受损的脑神经元,改善急性脑梗死患者的预后。 展开更多
关键词 依达拉奉 醒脑静 急性脑梗死 神经元特异性烯醇化酶 s—loot3蛋白 基质金属蛋白酶-9
暂未订购
家庭社会资本影响下的农户收入结构选择 被引量:2
3
作者 谭洪业 王泽 《学术探索》 北大核心 2017年第9期65-71,共7页
本文以CFPS2014年的调查数据为基础建立了二元Logit计量模型,将亲戚关系、人情礼支出和参加家族活动作为社会资本的衡量指标,回归分析其对农户获得家庭经营性收入、工资性收入、转移支付收入和财产性收入的影响。研究发现,家庭社会资本... 本文以CFPS2014年的调查数据为基础建立了二元Logit计量模型,将亲戚关系、人情礼支出和参加家族活动作为社会资本的衡量指标,回归分析其对农户获得家庭经营性收入、工资性收入、转移支付收入和财产性收入的影响。研究发现,家庭社会资本利于农户获得个体经营收入、正式工作收入和金融性收入;亲戚关系利于农户获得种植业收入、养殖业收入、非正式工作收入和亲戚帮助收入;人情礼支出和参加家族活动对农户获得个体经营收入、正式工作收入和金融性收入具有明显的正向作用。因此,促进农民增收应当重视社会资本的重要性,积极引导和促进社会资本积累,为农户就业和增收提供信息和平台支持。 展开更多
关键词 社会资本 农户收入 收入来源结构 二元Loot模型
在线阅读 下载PDF
Implementation of a new network equilibrium model of travel choices 被引量:1
4
作者 You-Lian Chu 《Journal of Traffic and Transportation Engineering(English Edition)》 2018年第2期105-115,共11页
This paper develops a new combined network equilibrium model by using more behaviorally sound mathematical forms to represent the four travel choices(i.e., trip frequency,destination, mode, and route) in a conventio... This paper develops a new combined network equilibrium model by using more behaviorally sound mathematical forms to represent the four travel choices(i.e., trip frequency,destination, mode, and route) in a conventional travel demand forecasting process. Trip frequency choice relates to the traveler decision on “making a trip” or “not making a trip”so it is given by a binary logit model. Destination choice is formulated as a parameterized dogit model of which the captivity parameters(expressed as functions of independent variables) allow individual travelers to be captive to specific destinations. Mode choice is given by a two-level nested logit model to avoid IIA restriction. Trip assignment is based on Wardrop's “user-optimized” principle. All model forms describing travel choices are in response to the level of services incurred by the transportation system. Through the introduction of inclusive values, the traveler decisions concerning trip frequency, destination, mode, and route choices are inherently interrelated and jointly determined.To obtain solutions of the new combined model, it was reformulated as an equivalent convex programming problem with linear constraints, a great advantage from the computational aspects. The model was applied empirically to a transportation network in New Jersey. The application results show that the new model is consistently better than the commonly used logit combined model in reproducing the observed trip flows from origin zones, origin to destination(O-D) trip flows, O-D trip flows by mode, and trip flows on the network links. 展开更多
关键词 Combined model Parameterized dogit model Nested loot model Wardrop's user equilibrium Equivalent minimization problem
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部