Pharmaceutical formulations derived from Aristolochiaceae herbs, which contain aristolochic acids(AAs), are widely used for medicinal purposes. However, exposure to these plants and isolated AAs is linked to renal tox...Pharmaceutical formulations derived from Aristolochiaceae herbs, which contain aristolochic acids(AAs), are widely used for medicinal purposes. However, exposure to these plants and isolated AAs is linked to renal toxicity, known as AA nephropathy(AAN). Currently, the mechanisms underlying AAN are not fully understood, leading to unsatisfactory treatment strategies. In this study, we explored the protective role of 84-B10(5-[[2-(4-methoxyphenoxy)-5-(trifluoromethyl) phenyl] amino]-5-oxo-3-phenylpentanoic acid) against AAN. RNA-seq analysis revealed that the mitochondrion and peroxisome were the most affected cellular components following 84-B10 treatment in AAN mice. Consistently, 84-B10 treatment preserved mitochondrial ultrastructure, restored mitochondrial respiration, enhanced the expression of key transporters(carnitine palmitoyltransferase 2) and enzymes(acylCoenzyme A dehydrogenase, medium chain) involved in mitochondrial fatty acid β-oxidation, and reduced mitochondrial ROS generation in both aristolochic acid I(AAI)-challenged mice kidneys and cultured proximal tubular epithelial cells. Additionally, 84-B10 treatment increased the expression of key transporters(ATP binding cassette subfamily D) and rate-limiting enzymes(acyl-CoA oxidase 1) involved in peroxisomal fatty acid β-oxidation and restored peroxisomal redox balance. Knocking down LONP1 expression diminished the protective effects of 84-B10 against AAN, suggesting LONP1-dependent protection. In conclusion, our study provides evidence that AAN is associated with significant disturbances in both mitochondrial and peroxisomal functions. The LONP1 activator 84-B10 demonstrates therapeutic potential against AAN, likely by maintaining homeostasis in both mitochondria and peroxisomes.展开更多
线粒体是真核细胞中最重要的能量产生细胞器,在物质代谢、细胞信号转导、氧化应激,以及多种形式的细胞死亡途径中发挥关键的调控作用。线粒体拥有独立于细胞核基因组的DNA——线粒体DNA(mtDNA),但是只编码13条多肽链、22个转运RNA(tRNA)...线粒体是真核细胞中最重要的能量产生细胞器,在物质代谢、细胞信号转导、氧化应激,以及多种形式的细胞死亡途径中发挥关键的调控作用。线粒体拥有独立于细胞核基因组的DNA——线粒体DNA(mtDNA),但是只编码13条多肽链、22个转运RNA(tRNA)和2个核糖体RNA(r RNA)。线粒体内的其他蛋白质都是由核基因(n DNA)编码的,这两个基因组协同工作,维持细胞的正常功能和稳态。已鉴定的人类细胞线粒体蛋白质组含有超过1158种蛋白质,它们分别定位于线粒体外膜、膜间隙、内膜和基质中,参与氧化磷酸化、三羧酸循环、分裂-融合动力学,以及维持线粒体稳态等重要功能。线粒体稳态和线粒体功能的正常发挥与线粒体蛋白酶密切相关,这些线粒体蛋白酶通过调节线粒体蛋白的活性,去除受损的或不必要的蛋白质,从而维持线粒体稳态并确保细胞存活。其中一组功能依赖于ATP结合和水解的线粒体AAA+蛋白酶(ATPases associated with diverse cellular activities,AAA+proteases),不仅执行降解错误折叠蛋白质的功能,还在线粒体融合蛋白的加工成熟、呼吸链复合物组装、mtDNA复制/转录等过程中发挥关键作用。研究发现,这些线粒体AAA+蛋白酶的基因突变或者表达异常导致其酶活性改变,严重损害线粒体结构和功能的完整性,并导致多种神经系统疾病的发生。本文主要以Lon蛋白酶1(Lon peptidase 1,LONP1)、酵母线粒体逃逸基因1样蛋白1(yeast mitochondrial escape 1 like 1,YME1L1)和ATP酶家族基因3样蛋白2(ATPase family gene 3-like 2,AFG3L2)等3种线粒体AAA+蛋白酶为例,详细阐述了它们的序列相似性和结构特点,以及在线粒体中的不同定位与功能。通过总结这3种蛋白酶基因突变与神经系统疾病的关系,发现已报道的疾病相关突变主要位于ATPase结构域和水解酶或肽酶结构域。因此,解析这些蛋白酶关键结构域的结构和突变导致的功能变化及其对线粒体乃至细胞稳态的影响,将为理解疾病机制和研发靶向干预策略提供参考。展开更多
动脉粥样硬化作为心脑血管疾病的核心病理基础,在我国的发病率呈持续攀升态势,构成了巨大的公共卫生负担。中医学理论认为,“脾气散精”是调控水谷精微化生、转运与输布的关键环节。脾不散精,则膏脂转运障碍,内生痰浊,积聚血脉,化为斑块...动脉粥样硬化作为心脑血管疾病的核心病理基础,在我国的发病率呈持续攀升态势,构成了巨大的公共卫生负担。中医学理论认为,“脾气散精”是调控水谷精微化生、转运与输布的关键环节。脾不散精,则膏脂转运障碍,内生痰浊,积聚血脉,化为斑块,此乃动脉粥样硬化发生与发展的重要中医病机。本研究立足于“脾气散精”理论,以脾虚痰浊这一动脉粥样硬化关键病因为切入点,旨在将动脉粥样硬化防治研究重心前移。课题组前期研究发现,健脾祛痰方能有效减少主动脉管腔粥样斑块面积,延缓脂肪异常沉积,抑制血管周围脂肪组织细胞内脂滴形成,并显著促进白色脂肪向棕色脂肪转化(即白色脂肪棕色化)。分子机制研究表明,该方能上调解偶联蛋白1(Uncoupling Protein 1,UCP1)、线粒体动力相关蛋白1(Dynamin-related Protein 1,DRP1)及线粒体三磷酸腺苷(Adenosine Triphosphate,ATP)依赖的LON蛋白酶1(Lon Protease 1,LONP1)的表达水平。线粒体动力学通过裂变与融合维持网络稳态,直接调控UCP1转录,驱动脂肪细胞产热代谢。LONP1是线粒体基质核心蛋白酶。最新研究发现,LONP1可调控心肌细胞线粒体裂变-融合动态变化。另有研究表明,LONP1在白色脂肪棕色化中起重要作用。因此,本研究从LONP1介导线粒体动力学角度探讨其调控白色脂肪棕色化治疗动脉粥样硬化的作用机制,丰富“脾气散精”理论的科学内涵,为中医药防治动脉粥样硬化的治疗策略提供科学依据。展开更多
基金supported by the National Key Research and Development Program of China (Nos. 2019YFA0802-702-1, 2022YFC2705100, 2022YFC2705105)the National Natural Science Foundation of China (Nos. 82070701, 82090022, and 8183-0020)+4 种基金the Natural Science Foundation of Jiangsu Province (No. BK20231130)the Social Development Foundation of Jiangsu Province(No. BE2021607)the “333” Talent Plan of Jiangsu Province (No.333-2022001)the Medical Research Project from Jiangsu Health and Health Commission (No. Z2022071)the Outstanding Youth Project from Nanjing Health and Health Commission (No.JQX22010)。
文摘Pharmaceutical formulations derived from Aristolochiaceae herbs, which contain aristolochic acids(AAs), are widely used for medicinal purposes. However, exposure to these plants and isolated AAs is linked to renal toxicity, known as AA nephropathy(AAN). Currently, the mechanisms underlying AAN are not fully understood, leading to unsatisfactory treatment strategies. In this study, we explored the protective role of 84-B10(5-[[2-(4-methoxyphenoxy)-5-(trifluoromethyl) phenyl] amino]-5-oxo-3-phenylpentanoic acid) against AAN. RNA-seq analysis revealed that the mitochondrion and peroxisome were the most affected cellular components following 84-B10 treatment in AAN mice. Consistently, 84-B10 treatment preserved mitochondrial ultrastructure, restored mitochondrial respiration, enhanced the expression of key transporters(carnitine palmitoyltransferase 2) and enzymes(acylCoenzyme A dehydrogenase, medium chain) involved in mitochondrial fatty acid β-oxidation, and reduced mitochondrial ROS generation in both aristolochic acid I(AAI)-challenged mice kidneys and cultured proximal tubular epithelial cells. Additionally, 84-B10 treatment increased the expression of key transporters(ATP binding cassette subfamily D) and rate-limiting enzymes(acyl-CoA oxidase 1) involved in peroxisomal fatty acid β-oxidation and restored peroxisomal redox balance. Knocking down LONP1 expression diminished the protective effects of 84-B10 against AAN, suggesting LONP1-dependent protection. In conclusion, our study provides evidence that AAN is associated with significant disturbances in both mitochondrial and peroxisomal functions. The LONP1 activator 84-B10 demonstrates therapeutic potential against AAN, likely by maintaining homeostasis in both mitochondria and peroxisomes.
文摘线粒体是真核细胞中最重要的能量产生细胞器,在物质代谢、细胞信号转导、氧化应激,以及多种形式的细胞死亡途径中发挥关键的调控作用。线粒体拥有独立于细胞核基因组的DNA——线粒体DNA(mtDNA),但是只编码13条多肽链、22个转运RNA(tRNA)和2个核糖体RNA(r RNA)。线粒体内的其他蛋白质都是由核基因(n DNA)编码的,这两个基因组协同工作,维持细胞的正常功能和稳态。已鉴定的人类细胞线粒体蛋白质组含有超过1158种蛋白质,它们分别定位于线粒体外膜、膜间隙、内膜和基质中,参与氧化磷酸化、三羧酸循环、分裂-融合动力学,以及维持线粒体稳态等重要功能。线粒体稳态和线粒体功能的正常发挥与线粒体蛋白酶密切相关,这些线粒体蛋白酶通过调节线粒体蛋白的活性,去除受损的或不必要的蛋白质,从而维持线粒体稳态并确保细胞存活。其中一组功能依赖于ATP结合和水解的线粒体AAA+蛋白酶(ATPases associated with diverse cellular activities,AAA+proteases),不仅执行降解错误折叠蛋白质的功能,还在线粒体融合蛋白的加工成熟、呼吸链复合物组装、mtDNA复制/转录等过程中发挥关键作用。研究发现,这些线粒体AAA+蛋白酶的基因突变或者表达异常导致其酶活性改变,严重损害线粒体结构和功能的完整性,并导致多种神经系统疾病的发生。本文主要以Lon蛋白酶1(Lon peptidase 1,LONP1)、酵母线粒体逃逸基因1样蛋白1(yeast mitochondrial escape 1 like 1,YME1L1)和ATP酶家族基因3样蛋白2(ATPase family gene 3-like 2,AFG3L2)等3种线粒体AAA+蛋白酶为例,详细阐述了它们的序列相似性和结构特点,以及在线粒体中的不同定位与功能。通过总结这3种蛋白酶基因突变与神经系统疾病的关系,发现已报道的疾病相关突变主要位于ATPase结构域和水解酶或肽酶结构域。因此,解析这些蛋白酶关键结构域的结构和突变导致的功能变化及其对线粒体乃至细胞稳态的影响,将为理解疾病机制和研发靶向干预策略提供参考。
文摘动脉粥样硬化作为心脑血管疾病的核心病理基础,在我国的发病率呈持续攀升态势,构成了巨大的公共卫生负担。中医学理论认为,“脾气散精”是调控水谷精微化生、转运与输布的关键环节。脾不散精,则膏脂转运障碍,内生痰浊,积聚血脉,化为斑块,此乃动脉粥样硬化发生与发展的重要中医病机。本研究立足于“脾气散精”理论,以脾虚痰浊这一动脉粥样硬化关键病因为切入点,旨在将动脉粥样硬化防治研究重心前移。课题组前期研究发现,健脾祛痰方能有效减少主动脉管腔粥样斑块面积,延缓脂肪异常沉积,抑制血管周围脂肪组织细胞内脂滴形成,并显著促进白色脂肪向棕色脂肪转化(即白色脂肪棕色化)。分子机制研究表明,该方能上调解偶联蛋白1(Uncoupling Protein 1,UCP1)、线粒体动力相关蛋白1(Dynamin-related Protein 1,DRP1)及线粒体三磷酸腺苷(Adenosine Triphosphate,ATP)依赖的LON蛋白酶1(Lon Protease 1,LONP1)的表达水平。线粒体动力学通过裂变与融合维持网络稳态,直接调控UCP1转录,驱动脂肪细胞产热代谢。LONP1是线粒体基质核心蛋白酶。最新研究发现,LONP1可调控心肌细胞线粒体裂变-融合动态变化。另有研究表明,LONP1在白色脂肪棕色化中起重要作用。因此,本研究从LONP1介导线粒体动力学角度探讨其调控白色脂肪棕色化治疗动脉粥样硬化的作用机制,丰富“脾气散精”理论的科学内涵,为中医药防治动脉粥样硬化的治疗策略提供科学依据。