期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
地震前井水位下降型异常成因的LOCF模式
1
作者 王六桥 李善因 《中国地震》 CSCD 北大核心 1989年第3期89-96,共8页
本文综述了国内外对震前地下水位下降型异常现象研究的现状,指出该异常具有规律性和复杂性的双重表现,提出了“震前应力集中区的‘断层裂隙带裂隙开合的渗漏模式”——LOCF模式。LOCF模式的中心思想是求解平面问题中的变强度线汇的降深... 本文综述了国内外对震前地下水位下降型异常现象研究的现状,指出该异常具有规律性和复杂性的双重表现,提出了“震前应力集中区的‘断层裂隙带裂隙开合的渗漏模式”——LOCF模式。LOCF模式的中心思想是求解平面问题中的变强度线汇的降深场,在观测水层是承压水层的情况下,作者从单井定流量抽水降深的泰斯(Theis)公式出发导出平面连续点汇的微分降深表达式,通过对平面连续点汇微分降深场在时、空上的叠加给出了平面连续线汇降深方程的一般表达式。文中还计算了定流量平面连续线汇条件下,由于裂隙开合而得到的水位下降型理论曲线实例,由此分析出,只有通过变流量平面连续线汇的降深方程才能模拟实际观测到的水位下降型异常曲线。文中最后还对某些有关问题进行了讨论。 展开更多
关键词 地震前兆 地下水异常 locf模式
在线阅读 下载PDF
Comparative Study of Four Methods in Missing Value Imputations under Missing Completely at Random Mechanism 被引量:3
2
作者 Michikazu Nakai Ding-Geng Chen +1 位作者 Kunihiro Nishimura Yoshihiro Miyamoto 《Open Journal of Statistics》 2014年第1期27-37,共11页
In analyzing data from clinical trials and longitudinal studies, the issue of missing values is always a fundamental challenge since the missing data could introduce bias and lead to erroneous statistical inferences. ... In analyzing data from clinical trials and longitudinal studies, the issue of missing values is always a fundamental challenge since the missing data could introduce bias and lead to erroneous statistical inferences. To deal with this challenge, several imputation methods have been developed in the literature to handle missing values where the most commonly used are complete case method, mean imputation method, last observation carried forward (LOCF) method, and multiple imputation (MI) method. In this paper, we conduct a simulation study to investigate the efficiency of these four typical imputation methods with longitudinal data setting under missing completely at random (MCAR). We categorize missingness with three cases from a lower percentage of 5% to a higher percentage of 30% and 50% missingness. With this simulation study, we make a conclusion that LOCF method has more bias than the other three methods in most situations. MI method has the least bias with the best coverage probability. Thus, we conclude that MI method is the most effective imputation method in our MCAR simulation study. 展开更多
关键词 MISSING Data IMPUTATION MCAR COMPLETE Case locf
暂未订购
Comparison of Four Methods for Handing Missing Data in Longitudinal Data Analysis through a Simulation Study
3
作者 Xiaoping Zhu 《Open Journal of Statistics》 2014年第11期933-944,共12页
Missing data can frequently occur in a longitudinal data analysis. In the literature, many methods have been proposed to handle such an issue. Complete case (CC), mean substitution (MS), last observation carried forwa... Missing data can frequently occur in a longitudinal data analysis. In the literature, many methods have been proposed to handle such an issue. Complete case (CC), mean substitution (MS), last observation carried forward (LOCF), and multiple imputation (MI) are the four most frequently used methods in practice. In a real-world data analysis, the missing data can be MCAR, MAR, or MNAR depending on the reasons that lead to data missing. In this paper, simulations under various situations (including missing mechanisms, missing rates, and slope sizes) were conducted to evaluate the performance of the four methods considered using bias, RMSE, and 95% coverage probability as evaluation criteria. The results showed that LOCF has the largest bias and the poorest 95% coverage probability in most cases under both MAR and MCAR missing mechanisms. Hence, LOCF should not be used in a longitudinal data analysis. Under MCAR missing mechanism, CC and MI method are performed equally well. Under MAR missing mechanism, MI has the smallest bias, smallest RMSE, and best 95% coverage probability. Therefore, CC or MI method is the appropriate method to be used under MCAR while MI method is a more reliable and a better grounded statistical method to be used under MAR. 展开更多
关键词 MCAR MAR COMPLETE Case Mean SUBSTITUTION locf Multiple IMPUTATION
暂未订购
定量纵向数据缺失值处理方法的模拟比较研究 被引量:14
4
作者 陈丽嫦 衡明莉 +1 位作者 王骏 陈平雁 《中国卫生统计》 CSCD 北大核心 2020年第3期384-388,共5页
目的比较末次观测结转法(LOCF)、重复测量的混合效应模型法(MMRM)、多重填补法(MI)在处理纵向缺失数据中的统计性能。方法以双臂设计、4次访视、3种访视间相关程度为应用背景,采用Monte Carlo模拟技术,产生模拟完整纵向数据后考虑两种... 目的比较末次观测结转法(LOCF)、重复测量的混合效应模型法(MMRM)、多重填补法(MI)在处理纵向缺失数据中的统计性能。方法以双臂设计、4次访视、3种访视间相关程度为应用背景,采用Monte Carlo模拟技术,产生模拟完整纵向数据后考虑两种缺失比例和三种缺失机制,即完全随机缺失(MCAR)、随机缺失(MAR)和非随机缺失(MNAR)的缺失数据集。以完整纵向数据的分析结果为基准,评价不同处理方法的统计性能,包括Ⅰ类错误、检验效能、组间疗效差的估计误差及其95%置信区间(95%CI)宽度。结果所有情况下,MMRM和MI均可控制Ⅰ类错误,检验效能略低于完整数据;LOCF大多难以控制Ⅰ类错误,检验效能变异较大。多数情况下MMRM和MI的点估计误差较低,LOCF则表现不稳定。所有情况下,MI的95%CI最宽,MMRM次之,LOCF最窄。结论 MCAR和MAR缺失机制下,MMRM与MI的统计性能相当,受各种因素影响较有规律,可根据实际情况选择其中一个作为主要分析。LOCF因填补方法的特殊性使得变异较小,精度较高,但其最大的缺陷是不够稳健且不能有效控制I类错误,需谨慎使用。基于MNAR缺失机制对缺失数据进行敏感性分析以考察试验结果的稳健性是必要的。 展开更多
关键词 缺失数据 纵向数据 末次观测结转法 重复测量的混合效应模型 多重填补
暂未订购
How to implement the‘one patient,one vote’principle under the framework of estimand
5
作者 Naitee Ting 《Statistical Theory and Related Fields》 CSCD 2023年第3期202-212,共11页
The scientific foundation of a modern clinical trial is randomization–each patient is randomized to a treatment group,and statistical comparisons are made between treatment groups.Because the study units are individu... The scientific foundation of a modern clinical trial is randomization–each patient is randomized to a treatment group,and statistical comparisons are made between treatment groups.Because the study units are individual patients,this‘one patient,one vote’principle needs to be fol-lowed–bothinstudydesignandindataanalysis.Fromthephysicians’pointofview,eachpatient is equally important,and they need to be treated equally in data analysis.It is critical that statisti-cal analysis should respect design and study design is based on randomization.Hence from both statistical and medical points of view,data analysis needs to follow this‘one patient,one vote’principle.Under ICH E9(R1),five strategies are recommended to establish‘estimand’.This paper discusses how to implement these strategies using the‘one patient,one vote’principle. 展开更多
关键词 Estimand locf one patient one vote
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部