期刊文献+
共找到5,588篇文章
< 1 2 250 >
每页显示 20 50 100
Degradation characteristics of high-purity magnesium implants under single static and cyclic compressive loads in vivo and in vitro
1
作者 Long Guo Xuanbin Zhang +1 位作者 Zhishan Zhang Zhixiu Hao 《Journal of Magnesium and Alloys》 2025年第4期1480-1494,共15页
The degradation characteristics of high-purity(HP)magnesium(Mg)orthopedic implants under static and cyclic compressive loads(SCL and CCL)remain inadequately understood.This study developed an in vivo loading device ca... The degradation characteristics of high-purity(HP)magnesium(Mg)orthopedic implants under static and cyclic compressive loads(SCL and CCL)remain inadequately understood.This study developed an in vivo loading device capable of applying single SCL and CCL while shielding against unpredictable host movements.In vitro degradation experiments of HP Mg implants were conducted to verify the experimental protocol,and in vivo experiments in rabbit tibiae to observe the degradation characteristics of the implants.Micro-computed tomography and scanning electron microscope were used for three-dimensional reconstruction and surface morphology analysis,respectively.Compared to in vitro specimens,in vivo specimens exhibited significantly higher corrosion rates and more extensive cracking.Cracks in the in vivo specimens gradually penetrated deeper from the loading surface,eventually leading to a rapid structural deterioration;whereas in vitro specimens exhibited more surface-localized cracking and a relatively uniform corrosion pattern.Compared to SCL,CCL accelerated both corrosion and cracking to some extent.These findings provide new insights into the in vivo degradation behavior of Mg-based implants under compressive loading conditions. 展开更多
关键词 Magnesium implant Degradable characteristic Compressive loads In vivo experiment In vitro experiment Galvanic corrosion
暂未订购
Two-dimensional plane-strain consolidation for unsaturated soils under non-uniform trapezoidal loads
2
作者 Chengjia TANG Lei WANG +2 位作者 Sidong SHEN Minjie WEN Annan ZHOU 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 2025年第3期277-284,共8页
1 Introduction In highway construction,flled embankments are trapezoidal,and the ground is always improved by sand wells or columns.During embankment construction,because the width and height of the embankment are cha... 1 Introduction In highway construction,flled embankments are trapezoidal,and the ground is always improved by sand wells or columns.During embankment construction,because the width and height of the embankment are changing,a non-uniform load that varies with time and lateral location is applied to the underlying ground.The consolidation phenomenon under two-dimensional(2D)conditions will keep pace with the construction of the embankment.In addition,because of evaporation and rainfall,the soils are mostly unsaturated.Therefore,it is meaningful to research the consolidation properties of unsaturated ground under non-uniform loading. 展开更多
关键词 two dimensional plane strain consolidation highway construction sand wells embankment construction consolidation phenomenon unsaturated soils non uniform trapezoidal loads
原文传递
Models and methods for dynamic response of 3D flexible and rigid pavements to moving loads:A review by representative examples
3
作者 Edmond V.Muho Niki D.Beskou Jiang Qian 《Journal of Road Engineering》 2025年第1期65-91,共27页
This work reviews models and methods for determining the dynamic response of pavements to moving vehicle loads in the framework of continuum-based three dimensional models and linear theories.This review emphasizes th... This work reviews models and methods for determining the dynamic response of pavements to moving vehicle loads in the framework of continuum-based three dimensional models and linear theories.This review emphasizes the most representative models and methods of analysis in the existing literature and illustrates all of them by numerical examples.Thus,13 such examples are presented here in some detail.Both flexible and rigid(concrete)pavement models involving simple and elaborate cases with respect to geometry and material behavior are considered.Thus,homogeneous or layered half-spaces with isotropic or cross-anisotropic and elastic,viscoelastic or poroelastic properties are considered.The vehicles are modeled as simple point or distributed loads or discrete spring-mass-dashpot system moving with constant or variable velocity.The dynamic response of the above pavement-vehicle systems is obtained by analytical/numerical or purely numerical methods of solution.Analytical/numerical methods have mainly to do with Fourier transforms or complex Fourier series with respect to both space and time.Purely numerical methods involve the finite element method(FEM)and the boundary element method(BEM)working in time or frequency domain.Critical discussions on the advantages and disadvantages of the various pavement-vehicle models and their methods of analysis are provided and the effects of the main parameters on the pavement response are determined through parametric studies and presented in the examples.Finally,conclusions are provided and suggestions for future research are made. 展开更多
关键词 Flexible pavements Rigid(concrete)pavements Moving vehicle loads Three dimensional models LINEARITY Dynamic response
在线阅读 下载PDF
A stochastic energy finite element method for predicting the high-frequency dynamic response of panels under aero-thermo-acoustic loads
4
作者 Zhaolin CHEN Yueming DU +1 位作者 Yingsong GU Zhichun YANG 《Chinese Journal of Aeronautics》 2025年第8期367-387,共21页
Skin panels on supersonic vehicles are subjected to aero-thermo-acoustic loads,resulting in a well-known multi-physics dynamic problem.The high-frequency dynamic response of these panels significantly impacts the stru... Skin panels on supersonic vehicles are subjected to aero-thermo-acoustic loads,resulting in a well-known multi-physics dynamic problem.The high-frequency dynamic response of these panels significantly impacts the structural safety of supersonic vehicles,but it has been rarely investigated.Given that existing methods are inefficient for high-frequency dynamic analysis in multi-physics fields,the present work addresses this challenge by proposing a Stochastic Energy Finite Element Method(SEFEM).SEFEM uses energy density instead of displacement to describe the dynamic response,thereby significantly enhancing its efficiency.In SEFEM,the effects of aerodynamic and thermal loads on the energy propagation characteristics are studied analytically and incorporated into the energy density governing equation.These effects are also considered when calculating the input power generated by the acoustic load,and two effective approaches named Frequency Response Function Method(FRFM)and Mechanical Impedance Method(MIM)are developed accordingly and integrated into SEFEM.The good accuracy,applicability,and high efficiency of the proposed SEFEM are demonstrated through numerical simulations performed on a two-dimensional panel under aero-thermoacoustic loads.Additionally,the effects and underlying mechanisms of aero-thermo-acoustic loads on the high-frequency response are explored.This work not only presents an efficient approach for predicting high-frequency dynamic response of panels subjected to aero-thermo-acoustic loads,but also provides insights into the high-frequency dynamic characteristics in multi-physics fields. 展开更多
关键词 Aero-thermo-acoustic loads High frequency Multi-physics field Stochastic energy finite element method Vibration analysis
原文传递
A Review of Ice Deformation and Breaking Under Flexural–Gravity Waves Induced by Moving Loads 被引量:1
5
作者 Baoyu Ni Hang Xiong +3 位作者 Duanfeng Han Lingdong Zeng Linhua Sun Hao Tan 《哈尔滨工程大学学报(英文版)》 2025年第1期35-52,共18页
Ice-breaking methods have become increasingly significant with the ongoing development of the polar regions.Among many ice-breaking methods,ice-breaking that utilizes a moving load is unique compared with the common c... Ice-breaking methods have become increasingly significant with the ongoing development of the polar regions.Among many ice-breaking methods,ice-breaking that utilizes a moving load is unique compared with the common collision or impact methods.A moving load can generate flexural-gravity waves(FGWs),under the influence of which the ice sheet undergoes deformation and may even experience structural damage.Moving loads can be divided into above-ice loads and underwater loads.For the above-ice loads,we discuss the characteristics of the FGWs generated by a moving load acting on a complete ice sheet,an ice sheet with a crack,and an ice sheet with a lead of open water.For underwater loads,we discuss the influence on the ice-breaking characteristics of FGWs of the mode of motion,the geometrical features,and the trajectory of motion of the load.In addition to discussing the status of current research and the technical challenges of ice-breaking by moving loads,this paper also looks ahead to future research prospects and presents some preliminary ideas for consideration. 展开更多
关键词 ICE-BREAKING Moving load Flexural-gravity wave Ice sheet Above-ice load Underwater load
在线阅读 下载PDF
Cyclic shear responses of rough-walled rock joints subjected to dynamic normal loads
6
作者 Qiang Zhu Qian Yin +1 位作者 Zhigang Tao Manchao He 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第5期3289-3297,共9页
In rock engineering,the cyclic shear characteristics of rough joints under dynamic disturbances are still insufficiently studied.This study conducted cyclic shear experiments on rough joints under dynamic normal loads... In rock engineering,the cyclic shear characteristics of rough joints under dynamic disturbances are still insufficiently studied.This study conducted cyclic shear experiments on rough joints under dynamic normal loads to assess the impact of shear frequency(f_(h))and shear displacement amplitude(u_(d))on the frictional properties of the joint.The results reveal that within a single shearing cycle,the normal displacement negatively correlates with the dynamic normal force.As the shear cycle number increases,the joint surface undergoes progressive wear,resulting in an exponential decrease in the peak normal displacement.In the cyclic shearing procedure,the forward peak values of shear force and friction coefficient display larger fluctuations at either lower or higher shear frequencies.However,under moderate shear frequency conditions,the changes in the shear strength of the joint surface are smaller,and the degree of degradation post-shearing is relatively limited.As the shear displacement amplitude increases,the range of normal deformation within the joint widens.Furthermore,after shearing,the corresponding joint roughness coefficient trend shows a gradual decrease with an increasing shear displacement amplitude,while varying with the shearing frequency in a pattern that initially rises and then falls,with a turning point at 0.05 Hz.The findings of this research contribute to a profound comprehension of the cyclic frictional properties of rock joints under dynamic disturbances. 展开更多
关键词 Dynamic normal load Dynamic shear load Rough joints Friction mechanisms
在线阅读 下载PDF
Cyclic Response Characteristics of Rigid Piles in Dense Sand Under One-way Oblique Tensile Loads
7
作者 HUANG Ting DAI Guo-liang +2 位作者 TIAN Ying-hui ZHANG Ji-sheng XU Qing-yun 《China Ocean Engineering》 2025年第4期698-707,共10页
The behavior of rigid piles in sandy soils under one-way cyclic oblique tensile loading represents a critical design consideration for floating renewable devices.These piles,when moored with catenary or taut moorings,... The behavior of rigid piles in sandy soils under one-way cyclic oblique tensile loading represents a critical design consideration for floating renewable devices.These piles,when moored with catenary or taut moorings,experience one-way cyclic tensile loads at inclinations ranging from 0°(horizontal)to 90°(vertical).However,the combined effects of cyclic loading and load inclination remain inadequately understood.This study presents findings from centrifuge tests conducted on rough rigid piles installed in dense sand samples.The results demonstrate that load inclinations significantly influence both cyclic response and ultimate capacity of the piles.Based on the observed cyclic response characteristics,the vertical cyclic load amplitude should not exceed 25%of the ultimate bearing capacity to maintain pile stability.A power expression(with exponent m values ranging from 0.055 to 0.065)is proposed for predicting cumulative pile displacement under unidirectional cyclic loading at inclinations from 0°to 60°.The cyclic response exhibits reduced sensitivity to horizontal cyclic load magnitude,with m-value increasing from 0.06 to 0.14 as load magnitude increases from 0.3 to 0.9.For piles maintaining stability under oblique cyclic loading,the average normalized secant stiffness exceeds 1 and increases with decreasing inclination,indicating enhanced pile stiffness under cyclic loading.For load inclinations below 30°,pile stiffness can be determined using logarithmic function. 展开更多
关键词 PILE centrifuge test oblique load ultimate capacity cyclic response power expression STIFFNESS
在线阅读 下载PDF
Flexible region aggregation of adjustable loads via an adaptive convex hull strategy
8
作者 Yisha Lin Zongxiang Lu +1 位作者 Ying Qiao Ruijie Chen 《Global Energy Interconnection》 2025年第1期106-120,共15页
Increasing interest has been directed toward the potential of heterogeneous flexible loads to mitigate the challenges associated with the increasing variability and uncertainty of renewable generation.Evaluating the a... Increasing interest has been directed toward the potential of heterogeneous flexible loads to mitigate the challenges associated with the increasing variability and uncertainty of renewable generation.Evaluating the aggregated flexible region of load clusters managed by load aggregators is the crucial basis of power system scheduling for the system operator.This is because the aggregation result affects the qual-ity of the scheduling schemes.A stringent computation based on the Minkowski sum is NP-hard,whereas existing approximation meth-ods that use a special type of polytope exhibit limited adaptability when aggregating heterogeneous loads.This study proposes a stringent internal approximation method based on the convex hull of multiple layers of maximum volume boxes and embeds it into a day-ahead scheduling optimization model.The numerical results indicate that the aggregation accuracy can be improved compared with methods based on one type of special polytope,including boxes,zonotopes,and homothets.Hence,the reliability and economy of the power sys-tem scheduling can be enhanced. 展开更多
关键词 AGGREGATION Flexible region Heterogeneous load Power system scheduling
在线阅读 下载PDF
Hydrodynamic Response of Floating Photovoltaic with Membrane Structure Under Different Wave Loads
9
作者 LE Conghuan QI Xiling +2 位作者 XIONG Lichao ZHANG Puyang DING Hongyan 《Journal of Ocean University of China》 2025年第4期909-923,共15页
Offshore floating photovoltaic systems have tremendous potential to address the energy crisis.As a novel type of float-ing photovoltaic system,membrane structures are increasingly applied due to their advantages of be... Offshore floating photovoltaic systems have tremendous potential to address the energy crisis.As a novel type of float-ing photovoltaic system,membrane structures are increasingly applied due to their advantages of being lightweight and cost-effective.A 1:40 scaled model for laboratory experiments was designed and developed,considering Ocean Sun’s membrane structure.The study aims to investigate the hydrodynamic characteristics of the membrane structure under wave loading by testing its various mo-tion responses and mooring forces at different wave heights and periods.The conclusions indicate that as the wave period decreases within the range of 1.75 to 1.25 s,the heave motion response of the structure decreases,whereas pitch,surge motion response,heave acceleration,and mooring force increase.The amplitudes of various motions and mooring forces of the structure decrease with de-creasing wave height.The hydrodynamic responses under irregular and regular waves follow similar patterns,but the responses and mooring forces induced by irregular waves are more significant.The structure should be designed based on the actual wave height.In addition,the same frequency resonance phenomenon is avoided because the movement period of each degree of freedom is close to the wave period. 展开更多
关键词 floating photovoltaic membrane structure wave load motion response
在线阅读 下载PDF
Cumulative damage characteristics of fully grouted GFRP bolts in rock under blasting dynamic loads
10
作者 WANG Wenjie SONG Jiale +2 位作者 LIU Chao YU Longzhe KABILA Kevin 《Journal of Mountain Science》 2025年第5期1871-1887,共17页
In the civil and mining industries,bolts are critical components of support systems,playing a vital role in ensuring their stability.Glass fibre reinforced polymer(GFRP)bolts are widely used because they are corrosion... In the civil and mining industries,bolts are critical components of support systems,playing a vital role in ensuring their stability.Glass fibre reinforced polymer(GFRP)bolts are widely used because they are corrosion-resistant and cost-effective.However,the damage mechanisms of GFRP bolts under blasting dynamic loads are still unclear,especially compared to metal bolts.This study investigates the cumulative damage of fully grouted GFRP bolts under blasting dynamic loads.The maximum axial stress at the tails of the bolts is defined as the damage variable,based on the failure characteristics of GFRP bolts.By combining this with Miner's cumulative damage theory,a comprehensive theoretical and numerical model is established to calculate cumulative damage.Field data collected from the Jinchuan No.3 Mining Area,including GFRP bolts parameters and blasting vibration data are used for further analysis of cumulative damage in fully grouted GFRP bolts.Results indicate that with an increasing number of blasts,axial stress increases in all parts of GFRP bolts.The tail exhibits the most significant rise,with stress extending deeper into the anchorage zone.Cumulative damage follows an exponential trend with the number of blasts,although the incremental damage per blast decelerates over time.Higher dynamic load intensities accelerate damage accumulation,leading to an exponential decline in the maximum loading cycles before failure.Additionally,stronger surrounding rock and grout mitigate damage accumulation,with the effect of surrounding rock strength being more pronounced than that of grout.In contrast,the maximum axial stress of metal bolts increases quickly to a certain point and then stabilizes.This shows a clear difference between GFRP and metal bolts.This study presents a new cumulative damage theory that underpins the design of GFRP bolt support systems under blasting conditions,identifies key damage factors,and suggests mitigation measures to enhance system stability. 展开更多
关键词 Blasting dynamic load Fully grouted GFRP bolt Cumulative damage Axial stress
原文传递
Fatigue Performance of Steel-Concrete Composite Beams Under Vehicle Loads
11
作者 WANG Jiansheng ZHANG Jianmeng JIA Yumeng 《吉首大学学报(自然科学版)》 2025年第2期51-57,共7页
In order to more accurately calculate the fatigue damage and fatigue life of steel-concrete composite beam under standard vehicle load,the steel beam components of a large-span steel-concrete composite beam suspension... In order to more accurately calculate the fatigue damage and fatigue life of steel-concrete composite beam under standard vehicle load,the steel beam components of a large-span steel-concrete composite beam suspension bridge were taken as the research object.Based on the S-N curve and linear fatigue damage theory,a standard segment model was established.Accordingly,the welding position of the secondary longitudinal beam was identified as the focus fatigue point,and the stress time course calculation was done for the point.The results showed that when the vehicle mass increases from 50 t to 100 t,the amount of fatigue damage will increase by more than 5 times in the same period of time,and the increase in the vehicle mass will reduce the fatigue life of the bridge structure.The fatigue damage of bridge structures increases with the increase of vehicle speed.The increase rate of fatigue damage is greater at low speeds,and the increase rate of fatigue damage slows down at high speeds. 展开更多
关键词 steel-concrete composite beam vehicle load FATIGUE
在线阅读 下载PDF
BlastGraphNet:An Intelligent Computational Method for the Precise and Rapid Prediction of Blast Loads on Complex 3D Buildings Using Graph Neural Networks
12
作者 Zhiqiao Wang Jiangzhou Peng +6 位作者 Jie Hu Mingchuan Wang Xiaoli Rong Leixiang Bian Mingyang Wang Yong He Weitao Wu 《Engineering》 2025年第6期205-224,共20页
Accurate and efficient prediction of the distribution of surface loads on buildings subjected to explosive effects is crucial for rapidly calculating structural dynamic responses,establishing effective protective meas... Accurate and efficient prediction of the distribution of surface loads on buildings subjected to explosive effects is crucial for rapidly calculating structural dynamic responses,establishing effective protective measures,and designing civil defense engineering solutions.Current state-of-the-art methods face several issues:Experimental research is difficult and costly to implement,theoretical research is limited to simple geometries and lacks precision,and direct simulations require substantial computational resources.To address these challenges,this paper presents a data-driven method for predicting blast loads on building surfaces.This approach increases both the accuracy and computational efficiency of load predictions when the geometry of the building changes while the explosive yield remains constant,significantly improving its applicability in complex scenarios.This study introduces an innovative encoder-decoder graph neural network model named BlastGraphNet,which uses a message-passing mechanism to predict the overpressure and impulse load distributions on buildings with conventional and complex geometries during explosive events.The model also facilitates related downstream applications,such as damage mode identification and rapid assessment of virtual city explosions.The calculation results indicate that the prediction error of the model for conventional building tests is less than 2%,and its inference speed is 3-4 orders of magnitude faster than that of state-of-the-art numerical methods.In extreme test cases involving buildings with complex geometries and building clusters,the method achieved high accuracy and excellent generalizability.The strong adaptability and generalizability of BlastGraphNet confirm that this novel method enables precise real-time prediction of blast loads and provides a new paradigm for damage assessment in protective engineering. 展开更多
关键词 Blast load prediction Graph neural networks Data-driven learning Real-time prediction Protective engineering
在线阅读 下载PDF
An efficient and accurate numerical method for simulating close-range blast loads of cylindrical charges based on neural network
13
作者 Ting Liu Changhai Chen +2 位作者 Han Li Yaowen Yu Yuansheng Cheng 《Defence Technology(防务技术)》 2025年第2期257-271,共15页
To address the problems of low accuracy by the CONWEP model and poor efficiency by the Coupled Eulerian-Lagrangian(CEL)method in predicting close-range air blast loads of cylindrical charges,a neural network-based sim... To address the problems of low accuracy by the CONWEP model and poor efficiency by the Coupled Eulerian-Lagrangian(CEL)method in predicting close-range air blast loads of cylindrical charges,a neural network-based simulation(NNS)method with higher accuracy and better efficiency was proposed.The NNS method consisted of three main steps.First,the parameters of blast loads,including the peak pressures and impulses of cylindrical charges with different aspect ratios(L/D)at different stand-off distances and incident angles were obtained by two-dimensional numerical simulations.Subsequently,incident shape factors of cylindrical charges with arbitrary aspect ratios were predicted by a neural network.Finally,reflected shape factors were derived and implemented into the subroutine of the ABAQUS code to modify the CONWEP model,including modifications of impulse and overpressure.The reliability of the proposed NNS method was verified by related experimental results.Remarkable accuracy improvement was acquired by the proposed NNS method compared with the unmodified CONWEP model.Moreover,huge efficiency superiority was obtained by the proposed NNS method compared with the CEL method.The proposed NNS method showed good accuracy when the scaled distance was greater than 0.2 m/kg^(1/3).It should be noted that there is no need to generate a new dataset again since the blast loads satisfy the similarity law,and the proposed NNS method can be directly used to simulate the blast loads generated by different cylindrical charges.The proposed NNS method with high efficiency and accuracy can be used as an effective method to analyze the dynamic response of structures under blast loads,and it has significant application prospects in designing protective structures. 展开更多
关键词 Close-range air blast load Cylindrical charge Numerical method Neural network CEL method CONWEP model
在线阅读 下载PDF
Energy mechanism of bolt supporting effect to fissured rock under static and dynamic loads in deep coal mines 被引量:6
14
作者 Deyuan Fan Xuesheng Liu +2 位作者 Yunliang Tan Xuebin Li Shenglong Yang 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第3期371-384,共14页
The stability control of fissured rock is difficult,especially under static and dynamic loads in deep coal mines.In this paper,the dynamic mechanical properties,strain rate evolution and energy dissipation of fissured... The stability control of fissured rock is difficult,especially under static and dynamic loads in deep coal mines.In this paper,the dynamic mechanical properties,strain rate evolution and energy dissipation of fissured and anchored rocks were respectively obtained by SHPB tests.It was found that bolt can provide supporting efficiency-improving effect for fissured rock against dynamic disturbance,and this effect increased quadratically with decrease in anchoring angles.Then,the energy dissipation mechanism of anchored rock was obtained by slipping model.Furthermore,bolt energy-absorbing mechanism by instantaneous tensile-shear deformation was expressed based on material mechanics,which was the larger the anchoring angle,the smaller the energy absorption,and the less the contribution to supporting efficiency improvement.On this basis,the functional relationship between energy dissipation of anchored rock and energy absorption of bolt was established.Taking the coal-gangue separation system of Longgu coal mine as an example,the optimal anchoring angle can be determined as 57.5°–67.5°.Field monitoring showed fissured rock with the optimal anchoring angle,can not only effectively control the deformation,but also fully exert the energy-absorbing and efficiency-improving effect of bolt itself.This study provides guidance to the stability control and supporting design for deep engineering under the same or similar conditions. 展开更多
关键词 Static and dynamic loads Anchored rock Energy absorption Anchoring angle Engineering verification
在线阅读 下载PDF
Loads and Dynamic Response Characteristic on FPSO Under Internal Solitary Waves
15
作者 ZHANG Rui-rui LI Cui +2 位作者 PU Chun-rong LIU Qian YOU Yun-xiang 《China Ocean Engineering》 SCIE EI CSCD 2024年第5期785-796,共12页
According to the established prediction model of internal solitary wave loads on FPSO in the previous work,the lumped mass model and the movement equations of finite displacement in time domain,the dynamic response mo... According to the established prediction model of internal solitary wave loads on FPSO in the previous work,the lumped mass model and the movement equations of finite displacement in time domain,the dynamic response model of interaction between internal solitary waves and FPSO with mooring lines were established.Through calculations and analysis,time histories of dynamic loads of FPSO exerted by internal solitary waves,FPSO’s motion and dynamic tension of mooring line were obtained.The effects of the horizontal pretension of mooring line,the amplitude of internal solitary wave and layer fluid depth on dynamic response behavior of FPSO were mastered.It was shown that the internal solitary waves had significant influence on FPSO,such as the large magnitude horizontal drift and a sudden tension increment.With internal solitary wave of −170 m amplitude in the ocean with upper and lower layer fluid depth ratio being 60:550,the dynamic loads reached 991.132 kN(horizontal force),18067.3 kN(vertical force)and−5042.92 kN·m(pitching moment).Maximum of FPSO’s horizontal drift was 117.56 m.Tension increment of upstream mooring line approached 401.48 kN and that of backflow mooring line was−140 kN.Moreover,the loads remained nearly constant with different pretension but increased obviously with the changing amplitude and layer fluid depth ratio.Tension increments of mooring lines also changed little with the pretension but increased rapidly when amplitude and layer fluid depth ratio increased.However,FPSO’s motion increased quickly with not only the horizontal pretension but also the amplitude of internal solitary wave and layer fluid depth ratio. 展开更多
关键词 internal solitary wave(ISW) dynamic response FPSO dynamic loads tension increment
在线阅读 下载PDF
Modelling dynamic pantograph loads with combined numerical analysis
16
作者 F.F.Jackson R.Mishra +6 位作者 J.M.Rebelo J.Santos P.Antunes J.Pombo H.Magalhaes L.Wills M.Askill 《Railway Engineering Science》 EI 2024年第1期81-94,共14页
Appropriate interaction between pantograph and catenary is imperative for smooth operation of electric trains.Changing heights of overhead lines to accommodate level crossings,overbridges,and tunnels pose significant ... Appropriate interaction between pantograph and catenary is imperative for smooth operation of electric trains.Changing heights of overhead lines to accommodate level crossings,overbridges,and tunnels pose significant challenges in maintaining consistent current collection performance as the pantograph aerodynamic profile,and thus aerodynamic load changes significantly with operational height.This research aims to analyse the global flow characteristics and aerodynamic forces acting on individual components of an HSX pantograph operating in different configurations and orientations,such that the results can be combined with multibody simulations to obtain accurate dynamic insight into contact forces.Specifically,computational fluid dynamics simulations are used to investigate the pantograph component loads in a representative setting,such as that of the recessed cavity on a Class 800 train.From an aerodynamic perspective,this study indicates that the total drag force acting on non-fixed components of the pantograph is larger for the knuckle-leading orientation rather than the knuckle-trailing,although the difference between the two is found to reduce with increasing pantograph extension.Combining the aerodynamic loads acting on individual components with multibody tools allows for realistic dynamic insight into the pantograph behaviour.The results obtained show how considering aerodynamic forces enhance the realism of the models,leading to behaviour of the pantograph-catenary contact forces closely matching that seen in experimental tests. 展开更多
关键词 Pantograph-catenary interaction Pantograph aerodynamics Computational fluid dynamics Pantograph loads Current collection performance
在线阅读 下载PDF
A Two-Layer Optimal Scheduling Strategy for Rural Microgrids Accounting for Flexible Loads
17
作者 Guo Zhao Chi Zhang Qiyuan Ren 《Energy Engineering》 EI 2024年第11期3355-3379,共25页
In the context of China’s“double carbon”goals and rural revitalization strategy,the energy transition promotes the large-scale integration of distributed renewable energy into rural power grids.Considering the oper... In the context of China’s“double carbon”goals and rural revitalization strategy,the energy transition promotes the large-scale integration of distributed renewable energy into rural power grids.Considering the operational characteristics of rural microgrids and their impact on users,this paper establishes a two-layer scheduling model incorporating flexible loads.The upper-layer aims to minimize the comprehensive operating cost of the rural microgrid,while the lower-layer aims to minimize the total electricity cost for rural users.An Improved Adaptive Genetic Algorithm(IAGA)is proposed to solve the model.Results show that the two-layer scheduling model with flexible loads can effectively smooth load fluctuations,enhance microgrid stability,increase clean energy consumption,and balance microgrid operating costs with user benefits. 展开更多
关键词 Double carbon flexible loads ruralmicrogrid clean energy consumption two-layer scheduling improved adaptive genetic algorithm
在线阅读 下载PDF
Resilience of coastal bridges under extreme wave-induced loads
18
作者 Jesika Rahman Vahid Aghaeidoost AHM Muntasir Billah 《Resilient Cities and Structures》 2024年第2期85-100,共16页
Records of wave-induced damage on coastal bridges during natural hazards have been well documented over the past two decades.It is of utmost importance to decipher the loading mechanism and enhance the resilience of c... Records of wave-induced damage on coastal bridges during natural hazards have been well documented over the past two decades.It is of utmost importance to decipher the loading mechanism and enhance the resilience of coastal bridges during extreme wave-inducing events.Quantification of vulnerability of these structures is an essential step in designing a resilient bridge system.Recently,considerable efforts have been made to study the force applied and the response of coastal bridge systems during extreme wave loading conditions.Although remarkable progress can be found in the quantification of load and response of coastal superstructures,very few studies assessed coastal bridge resiliency against extreme wave-induced loads.This paper adopts a simplified and practical technique to analyze and assess the resilience of coastal bridges exposed to extreme waves.Component-level and system-level fragility analyses form the basis of the resiliency analysis where the recovery functions are adopted based on the damage levels.It is shown that wave period has the highest contribution to the variation of bridge resiliency.Moreover,this study presents the uncertainty quantification in resiliency variation due to changes in wave load intensity.Results show that the bridge resiliency becomes more uncertain as the intensity of wave parameters increases.Finally,possible restoration strategies based on the desired resilience level and the attitude of decision-makers are also discussed. 展开更多
关键词 Coastal bridges Resiliency Extreme wave loads Elastomeric bearing Fragility curves Resilience index Recovery function Restoration strategy
在线阅读 下载PDF
Evaluation of the dynamic sealing performance of cap rocks of underground gas storage under multi-cycle alternating loads 被引量:5
19
作者 Lidong Mi Yandong Guo +3 位作者 Yanfeng Li Daqian Zeng Chunhua Lu Guangquan Zhang 《Energy Geoscience》 EI 2024年第4期125-132,共8页
The static sealing of underground gas storage(UGS),including the integrity of cap rocks and the stability of faults,is analyzed from a macro perspective using a comprehensive geological evaluation method.Changes in po... The static sealing of underground gas storage(UGS),including the integrity of cap rocks and the stability of faults,is analyzed from a macro perspective using a comprehensive geological evaluation method.Changes in pore structure,permeability,and mechanical strength of cap rocks under cyclic loads may impact the rock sealing integrity during the injection and recovery phases of UGS.In this work,the mechanical deformation and failure tests of rocks,as well as rock damage tests under alternating loads,are conducted to analyze the changes in the strength and permeability of rocks under multiple-cycle intense injection and recovery of UGS.Additionally,this study proposes an evaluation method for the dynamic sealing performance of UGS cap rocks under multi-cycle alternating loads.The findings suggest that the failure strength(70%)can be used as the critical value for rock failure,thus providing theoretical support for determining the upper limit of operating pressure and the number of injection-recovery cycles for the safe operation of a UGS system. 展开更多
关键词 Alternating load Cap rock Dynamic sealing performance Underground gas storage
在线阅读 下载PDF
Mechanical behavior and failure mechanisms of rock bolts subjected to static-dynamic loads 被引量:1
20
作者 Hongpu Kang Guiyang Yuan +4 位作者 Linpo Si Fuqiang Gao Jinfu Lou Jinghe Yang Shuangyong Dong 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第3期281-288,共8页
This study explores the effects of dynamic and static loading on rock bolt performance a key factor in maintaining the structural safety of coal mine roadways susceptible to coal bursts.Employing a housemade load fram... This study explores the effects of dynamic and static loading on rock bolt performance a key factor in maintaining the structural safety of coal mine roadways susceptible to coal bursts.Employing a housemade load frame to simulate various failure scenarios,pretension-impact-pull tests on rock bolts were conducted to scrutinize their dynamic responses under varied static load conditions and their failure traits under combined loads.The experimental results denote that with increased impact energy,maximum and average impact loads on rock bolts escalate significantly under pretension,initiating plastic deformation beyond a certain threshold.Despite minor reductions in the yield load due to impactinduced damage,pretension aids in constraining post-impact deformation rate and fluctuation degree of rock bolts.Moreover,impact-induced plastic deformation causes internal microstructure dislocation,fortifying the stiffness of the rock bolt support system.The magnitude of this fortification is directly related to the plastic deformation induced by the impact.These findings provide crucial guidance for designing rock bolt support in coal mine roadway excavation,emphasizing the necessity to consider both static and dynamic loads for improved safety and efficiency. 展开更多
关键词 Rock bolt PRETENSION Static and dynamic load IMPACT
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部