为了降低在网络教学中,由于学生自主学习行为的多样性和技术平台存在的差异性,导致传统评价方法难以准确给出评价反馈的问题,引入LMBP(Levenberg-Marquardt Back Propagation)算法,构建了一个能够利用权重化的评价指标对学生的学习表现...为了降低在网络教学中,由于学生自主学习行为的多样性和技术平台存在的差异性,导致传统评价方法难以准确给出评价反馈的问题,引入LMBP(Levenberg-Marquardt Back Propagation)算法,构建了一个能够利用权重化的评价指标对学生的学习表现进行量化分析的自动评价模型。确定网络教学在线学习的评价指标权重,筛选出关键评价指标,并合理分配权重值,降低数据的无序性。基于LMBP算法构建自动评价模型,通过模型的运算,自动计算出每个学生的在线学习评价分数,降低评价的滞后性,实现客观、准确的评价。实验结果显示,模型计算得到的各项指标权重值在0.96以上,拟合度高于0.98,评价分数高于97分,可以实现网络教学的有效评价。展开更多
文摘为了降低在网络教学中,由于学生自主学习行为的多样性和技术平台存在的差异性,导致传统评价方法难以准确给出评价反馈的问题,引入LMBP(Levenberg-Marquardt Back Propagation)算法,构建了一个能够利用权重化的评价指标对学生的学习表现进行量化分析的自动评价模型。确定网络教学在线学习的评价指标权重,筛选出关键评价指标,并合理分配权重值,降低数据的无序性。基于LMBP算法构建自动评价模型,通过模型的运算,自动计算出每个学生的在线学习评价分数,降低评价的滞后性,实现客观、准确的评价。实验结果显示,模型计算得到的各项指标权重值在0.96以上,拟合度高于0.98,评价分数高于97分,可以实现网络教学的有效评价。