The MSS-1 satellite began mapping Earth's magnetic field in November 2023.Here,we perform a preliminary assessment of the new information provided on Earth's lithospheric magnetic field from the first 12 month...The MSS-1 satellite began mapping Earth's magnetic field in November 2023.Here,we perform a preliminary assessment of the new information provided on Earth's lithospheric magnetic field from the first 12 months of data from MSS-1.We analyze data from the low-inclination orbital tracks of MSS-1 alongside data collected contemporaneously by the Swarm mission,and compare these to models for the lithospheric field from older satellite data and to predictions from models of lithospheric magnetization from tectonic constraints.We find that 1 year of data grouped into geographical bins is sufficient to produce a robust map of lithospheric anomalies.Time series analysis reveals that bins further from the equator arrive at stable values more rapidly,while equatorial regions require 9-10months of data accumulation for stable signal recovery.The mapped data agree well with older satellite models and with predictions from a lithospheric magnetization model,with the largest mismatches suggesting that models of continental magnetization in particular require further revision.These results demonstrate the value of MSS-1's unique orbital configuration in complementing existing satellite magnetic field measurements.展开更多
Mineralogical data are presented for the peridotite xenoliths from Miocene(~19 Ma)Qingyuan basalts in the eastern North China Craton(NCC),with the aim of constraining on property of the sub-continental lithospheric ma...Mineralogical data are presented for the peridotite xenoliths from Miocene(~19 Ma)Qingyuan basalts in the eastern North China Craton(NCC),with the aim of constraining on property of the sub-continental lithospheric mantle(SCLM)beneath the northern Tan-Lu fault zone(TLFZ)during the Cenozoic.The Qingyuan peridotites are dominated by spinel lherzolites with moderate-Mg^(#)olivines(89.4 to 91.2),suggesting that the regional SCLM is mainly transitional and fertile.Light rare earth element(LREE)-depleted,slightly depleted and enriched clinopyroxenes(Cpx)are identified in different peridotites.Chemical compositions of the LREE-enriched Cpx and the presence of phlogopite suggest that the Qingyuan SCLM has experienced silicate-related metasomatism.The synthesis of available mineral chemical data of the mantle xenoliths across the NCC confirms the SCLM beneath the NCC is highly heterogeneous in time and space.The Mesozoic–Cenozoic SCLM beneath the TLFZ and neighboring regions are more fertile and thinner than that beneath the region away from the fault zone.The fertile and refractory peridotite xenoliths experienced varying degrees of silicate and carbonatite metasomatism,respectively.The spatial-temporal lithospheric mantle heterogeneity in composition,age and thickness suggest that the trans-lithosphere fault zone played an important role in heterogeneous replacement of refractory cratonic lithospheric mantle.展开更多
The equivalent source(ES)method in the spherical coordinate system has been widely applied to processing,reduction,field modeling,and geophysical and geological interpretation of satellite magnetic anomaly data.Howeve...The equivalent source(ES)method in the spherical coordinate system has been widely applied to processing,reduction,field modeling,and geophysical and geological interpretation of satellite magnetic anomaly data.However,the inversion for the ES model suffers from nonuniqueness and instability,which remain unresolved.To mitigate these issues,we introduce both the minimum and flattest models into the model objective function as an alternative regularization approach in the spherical ES method.We first present the methods,then analyze the accuracy of forward calculation and test the proposed ES method in this study by using synthetic data.The experimental results from simulation data indicate that our proposed regularization effectively suppresses the Backus effect and mitigates inversion instability in the low-latitude region.Finally,we apply the proposed method to magnetic anomaly data from China Seismo-Electromagnetic Satellite-1(CSES-1)and Macao Science Satellite-1(MSS-1)magnetic measurements over Africa by constructing an ES model of the large-scale lithospheric magnetic field.Compared with existing global lithospheric magnetic field models,our ES model demonstrates good consistency at high altitudes and predicts more stable fields at low altitudes.Furthermore,we derive the reduction to the pole(RTP)magnetic anomaly fields and the apparent susceptibility contrast distribution based on the ES model.The latter correlates well with the regional tectonic framework in Africa and surroundings.展开更多
As a means of quantitative interpretation,forward calculations of the global lithospheric magnetic field in the Spherical Harmonic(SH)domain have been widely used to reveal geophysical,lithological,and geothermal vari...As a means of quantitative interpretation,forward calculations of the global lithospheric magnetic field in the Spherical Harmonic(SH)domain have been widely used to reveal geophysical,lithological,and geothermal variations in the lithosphere.Traditional approaches either do not consider the non-axial dipolar terms of the inducing field and its radial variation or do so by means of complicated formulae.Moreover,existing methods treat the magnetic lithosphere either as an infinitesimally thin layer or as a radially uniform spherical shell of constant thickness.Here,we present alternative forward formulae that account for an arbitrarily high maximum degree of the inducing field and for a magnetic lithosphere of variable thickness.Our simulations based on these formulae suggest that the satellite magnetic anomaly field is sensitive to the non-axial dipolar terms of the inducing field but not to its radial variation.Therefore,in forward and inverse calculations of satellite magnetic anomaly data,the non-axial dipolar terms of the inducing field should not be ignored.Furthermore,our results show that the satellite magnetic anomaly field is sensitive to variability in the lateral thickness of the magnetized shell.In particular,we show that for a given vertically integrated susceptibility distribution,underestimating the thickness of the magnetic layer overestimates the induced magnetic field.This discovery bridges the greatest part of the alleged gap between the susceptibility values measured from rock samples and the susceptibility values required to match the observed magnetic field signal.We expect the formulae and conclusions of this study to be a valuable tool for the quantitative interpretation of the Earth's global lithospheric magnetic field,through an inverse or forward modelling approach.展开更多
We combine gradient data from the Macao Science Satellite-1(MSS-1),CHAllenging Minisatellite Payload(CHAMP),Swarm-A,and Swarm-C satellites to develop a 110-degree lithospheric magnetic field model.We then comprehensiv...We combine gradient data from the Macao Science Satellite-1(MSS-1),CHAllenging Minisatellite Payload(CHAMP),Swarm-A,and Swarm-C satellites to develop a 110-degree lithospheric magnetic field model.We then comprehensively evaluate the performance of the model by power spectral comparisons,correlation analyses,sensitivity matrix assessments,and comparisons with existing lithospheric field models.Results showed that using near east–west gradient data from MSS-1 significantly enhances the model correlation in the spherical harmonic degree(N) range of 45–60 while also mitigating the decline in correlation at higher degrees(N > 60).Furthermore,the unique orbital characteristics of MSS-1 enable its gradient data to provide substantial contributions to modeling in the mid-to low-latitude regions.With continued data acquisition from MSS-1 and further optimization of data processing methods,the performance of the model is expected to improve.展开更多
The CUG_CLMFM3D series comprises high-resolution three-dimensional lithospheric magnetic field models for China and its surroundings.The first version,CUG_CLMFM3Dv1,is a spherical cap harmonic model integrating the WD...The CUG_CLMFM3D series comprises high-resolution three-dimensional lithospheric magnetic field models for China and its surroundings.The first version,CUG_CLMFM3Dv1,is a spherical cap harmonic model integrating the WDMAMv2(World Digital Magnetic Anomaly Map version 2)global magnetic anomaly grid and nearly a decade of CHAMP(Challenging Minisatellite Payload for Geophysical Research and Application)satellite vector data.It achieves a~5.7 km resolution but has limitations:the WDMAMv2 grid lacks high-resolution data in the southern Xinjiang and Tibet regions,which leads to missing small-to medium-scale anomalies,and unfiltered CHAMP data introduce low-frequency conflicts with global spherical harmonic models.Above the altitude of 150 km,correlations with global models drop below 0.9.The second version,CUG_CLMFM3Dv2,addresses these issues by incorporating 5-km-resolution aeromagnetic data and rigorously processed satellite data from CHAMP,Swarm,CSES-1(China Seismo-Electromagnetic Satellite 1),and MSS-1(Macao Science Satellite 1).The comparison analysis shows that the CUG_CLMFM3Dv2 captures finer high-frequency details and more stable long-wavelength signals,offering improved magnetic anomaly maps for further geological and geophysical studies.展开更多
By combining data from the Challenging Minisatellite Payload(CHAMP),Swarm-A,and newest Macao Science Satellite-1(MSS-1) missions,we constructed a lithospheric magnetic field model up to spherical harmonic degree N = 1...By combining data from the Challenging Minisatellite Payload(CHAMP),Swarm-A,and newest Macao Science Satellite-1(MSS-1) missions,we constructed a lithospheric magnetic field model up to spherical harmonic degree N = 100.To isolate the lithospheric magnetic field signals,we utilized the latest CHAOS-8(CHAMP,Φrsted,and SAC-C 8) model and MGFM(Multisource Geomagnetic Field Model) to remove nonlithospheric sources,including the core field,magnetospheric field,ocean tidal field,and ocean circulation field.Subsequently,orbit-by-orbit processing was applied to both scalar and vector data,such as spherical harmonic high-pass filtering,singular spectrum analysis,and line leveling,to suppress noise and residual signals along the satellite tracks.With an orbital inclination of only 41°,MSS-1 effectively captures fine-scale lithospheric magnetic field signals in mid-to low-latitude regions.Its data exhibit a root mean square error of only 0.77 nT relative to the final model,confirming the high quality and utility of lithospheric field modeling.The resulting model exhibits excellent consistency with the MF7(Magnetic Field Model 7),maintaining a high correlation up to N = 90 and still exceeding 0.65 at N = 100.These results demonstrate the reliability and value of MSS-1 data in global lithospheric magnetic field modeling.展开更多
Fabrics of five spinel peridotites collected from Baker Rocks in northern Victoria Land,Antarctica,were investigated to elucidate the evolution of the lithospheric mantle surrounding the Transantarctic Mountains.Analy...Fabrics of five spinel peridotites collected from Baker Rocks in northern Victoria Land,Antarctica,were investigated to elucidate the evolution of the lithospheric mantle surrounding the Transantarctic Mountains.Analyses revealed the development of crystallographic preferred orientations(CPOs),a slight decrease in mean grain size and J-index across varying proportions of clinopyroxene,and interlobate to amoeboid textures.These findings indicate that dislocation creep is the dominant deformation mechanism for the analyzed samples.展开更多
The Earth's magnetic field,which has been extensively observed from ground to satellite altitudes over several decades,originates from multiple sources,such as the core dynamo,the conductive mantle,the magnetized ...The Earth's magnetic field,which has been extensively observed from ground to satellite altitudes over several decades,originates from multiple sources,such as the core dynamo,the conductive mantle,the magnetized lithosphere,and the space current systems.Modeling of the lithospheric contribution plays an important role in the geophysical studies and industrial applications.In this paper,we propose a new method for global and regional modeling of the lithospheric magnetic field based on the cubed-sphere.An equivalent dipole source method on a quasi-uniform cubed-sphere grid is employed in the forward modeling.The dipole directions are fixed according to a priori magnetization and the relative intensities are estimated by an inversion procedure of least-squares fitting with minimum model regularization.Several numerical tests are performed to validate the accuracy and efficiency of both forward modeling and inversion procedure.The proposed method is applied to the global and regional modeling based on the latest magnetic data from Swarm Alpha satellite and MSS-1 mission.The model results indicate that the proposed method works quite well for realistic satellite data and MSS-1 data is consistent with the Swarm data in terms of lithospheric field modeling.展开更多
Situated in the southwestern Pacific,the Tonga-Kermadec subduction zone is separated into two parts by the Louisvlle Ridge Seamount Chain(LRSC),i.e.,the Tanga subduction zone and the Kermadec subduction zone.Known for...Situated in the southwestern Pacific,the Tonga-Kermadec subduction zone is separated into two parts by the Louisvlle Ridge Seamount Chain(LRSC),i.e.,the Tanga subduction zone and the Kermadec subduction zone.Known for its vigorous volcanic activity,frequent large earthquakes,rapid plate subduction,and distinctive subducting plate morphology,this subduction zone provides valuable insights into its structures,dynamics,and associated geohazards.This study compiles geological and geophysical datasets in this region,including seismicity,focal mechanisms,seismic reflection and refraction profiles,and seismic tomography,to understand the relationship between lithospheric structures of the subduction system and associated seismicity-volcanic activities.Our analysis suggests that variations in overlying sediment thickness,subduction rate,and subduction angle significantly influence the lithospheric deformation processes within the Tonga-Kermadec subduction system.Furthermore,these factors contribute to the notable differences in seismicity and volcanism observed between the Tonga subduction zone and the Kermadec subduction zone.This study enhances our understanding of plate tectonics by providing insights into the interplay between subduction dynamics and lithospheric deformation,which are crucial for analyzing geological and geophysical behaviors in similar subduction environments.展开更多
The China Seismo-Electromagnetic Satellite(CSES) was successfully launched in February 2018. The high precision magnetometer(HPM) on board the CSES has captured high-quality magnetic data that have been used to derive...The China Seismo-Electromagnetic Satellite(CSES) was successfully launched in February 2018. The high precision magnetometer(HPM) on board the CSES has captured high-quality magnetic data that have been used to derive a global lithospheric magnetic field model. While preparing the datasets for this lithospheric magnetic field model, researchers found that they still contained prominent residual trends within the magnetic anomaly even once signals from other sources had been eliminated. However, no processing was undertaken to deal with the residual trends during modeling to avoid subjective processing and represent the realistic nature of the data. In this work, we analyze the influence of these residual trends on the lithospheric magnetic field modeling.Polynomials of orders 0–3 were used to fit the trend of each track and remove it for detrending. We then derived four models through detrending-based processing, and compared their power spectra and grid maps with those of the CSES original model and CHAOS-7model. The misfit between the model and the dataset decreased after detrending the data, and the convergence of the inverted spherical harmonic coefficients improved. However, detrending reduced the signal strength and the power spectrum, while detrending based on high-order polynomials introduced prominent distortions in details of the magnetic anomaly. Based on this analysis, we recommend along-track detrending by using a zero-order polynomial(removing a constant value) on the CSES magnetic anomaly data to drag its mean value to zero. This would lead to only a slight reduction in the signal strength while significantly improving the stability of the inverted coefficients and details of the anomaly.展开更多
The Cretaceous gold deposits along the margins of the North China Craton(NCC),which formed in a craton destruction setting,display geological characteristics similar to traditional orogenic gold deposits typically ass...The Cretaceous gold deposits along the margins of the North China Craton(NCC),which formed in a craton destruction setting,display geological characteristics similar to traditional orogenic gold deposits typically associated with accretionary orogeny.These deposits,known as Jiaodong-type gold deposits,have attracted considerable attention.However,the lithospheric controls and formation mechanisms of these deposits remain unclear,as they cannot be fully explained by the supracrustal metamorphic genetic model commonly applied to classic orogenic gold deposits.In this study,the compiled S-Hg-Pb isotope ratios of gold deposits on different NCC margins display compatible variations to the Sr-Nd-Hg isotope ratios of mafic dikes spatial-temporally associated with the deposits.This implies that mantle lithosphere,metasomatized by variable proportions of oceanic and continental crust,was the source for both gold deposits and mafic dikes.Increase of oxygen fugacity and zirconεHf(t)from pre-to syn-gold granites suggests continuous basic magma underplating,which could induce concentrations of Au-rich sulfides and contribute additional Au to auriferous CO_(2)-rich fluids derived from metasomatized mantle lithosphere and basic magma.Localization of gold deposits was controlled by craton-margin sinistral shearing induced by clockwise rotation of the craton coincident with distal emplacement of metamorphic core complexes.Thus,the Cretaceous Jiaodong-type orogenic gold deposits were derived from fertilized mantle lithosphere through such crust-mantle processes within a lithosphere thinning background.展开更多
The post-collisional Cenozoic basic volcanic rocks in NE Turkey show temporal variations in whole-rock lithophile element and highly siderophile element(HSE)systematics that are mainly associated with the nature of su...The post-collisional Cenozoic basic volcanic rocks in NE Turkey show temporal variations in whole-rock lithophile element and highly siderophile element(HSE)systematics that are mainly associated with the nature of sub-continental lithospheric mantle(SCLM)sources and parental melt generation.So far,the traditional whole-rock lithophile geochemical data of these basic volcanic rocks have provided important constraints on the nature of SCLM sources.Integrated lithophile element and HSE geochemical data of these basic volcanic rocks also reveal the heterogeneity of the SCLM source,which is principally related to variable metasomatism resulting from previous subduction(s)and post-collisional mantle-crust interactions in an extensional setting.Lithophile element geochemical features suggest that the parental magmas have derived from metasomatized spinel-to garnet-bearing SCLM sources for Eocene and Miocene basic volcanic rocks with subduction signatures whereas originated from spinel-to garnet-bearing SCLM sources for Mio-Pliocene and Plio-Quaternary basaltic volcanic rocks without the subduction signature.Lithophile element and HSE geo-chemistry also reveal that Eocene and Miocene basic vol-canic rocks were affected by more pronounced crustal contamination than the basaltic volcanic rocks of Mio-Pliocene and Quaternary.Furthermore,the integrated lithophile element and HSE compositions of these basic volcanic rocks,together with the regional asymmetric lithospheric delamination model,reveal that the compositional variation(especially due to metasomatism)was significant temporally in the heterogeneity of the SCLM sources from which parental magmas formed during the Cenozoic era.展开更多
It is well established that Cretaceous magmatism in the South China Block(SCB)is related to the Paleo-Pacific subduction.However,the starting time and the associated deep crust-mantle processes are still debatable.Maf...It is well established that Cretaceous magmatism in the South China Block(SCB)is related to the Paleo-Pacific subduction.However,the starting time and the associated deep crust-mantle processes are still debatable.Mafic dike swarms carry important information on the deep earth(including mantle)geodynamics and geochemical evolution.In the Jiangnan Orogen(South China).there is no information on whether the Mesozoic magmatic activities in this region are also directly related to the Pacific subduction or not.In this study,we present detailed zircon U-Pb geochronological,wholerock element and Sr-Nd isotope data for Early Cretaceous Tuanshanbei dolerite dikes,and provide new constraints on the condition of the lithospheric mantle and mantle dynamics of the SCB during that time.LA-ICP-MS zircon U-Pb dating suggests that this dolerite erupted in the Early Cretaceous(~145 Ma).All samples have alkaline geochemical affinities with K_(2)O+Na_(2)O=3.11-4.04 wt%,K_(2)O/Na_(2)O=0.50-0.72,and Mg^(#)=62.24-65.13.They are enriched in LILE but depleted in HFSE with higher initial^(87)Sr/^(86)Sr ratio(0.706896-0.714743)and lower ε_(Nd)(t)(-2.61 to-1.67).They have high Nb/U,Nb/La,La/Sm and Rb/Sr,and low La/Nb,La/Ta,Ce/Pb,Ba/Rb,Tb/Yb and Gd/Yb ratios.Such geochemical signatures suggest that the fractional crystallization is obvious but crustal contamination play a negligible role during magmatic evolution.Tuanshanbei dolerite were most likely derived from low-degree(2%-5%)partial melting of a phlogopite-bearing mantle material consisted of~85% spinel peridotite and~15% garnet peridotite previously metasomatized by asthenospherederived fluids/melts with minor subduction-derived fluids/melts.Slab-rollback generally lead to the upwelling of the hot asthenosphere.The upwelling of asthenosphere consuming the lithospheric mantle by thermo-mechanical-chemical erosion.The lithospheric mantle may have partially melted due to the heating by the upwelling asthenosphere and lithospheric extension.It is inferred that the Tuanshanbei dolerite might be associated with the initial slab rollback and corresponding lithospheric extension occurred potentially at ca.145 Ma.展开更多
Post-collisional magmatism contains important clues for understanding the reworking and growth of continental crust,as well as lithospheric delamination and orogenic collapse.Early Devonian magmatism has been identifi...Post-collisional magmatism contains important clues for understanding the reworking and growth of continental crust,as well as lithospheric delamination and orogenic collapse.Early Devonian magmatism has been identified in the North Qilian Orogenic Belt(NQOB).This paper reports an integrated study of petrology,whole-rock geochemistry,Sm-Nd isotope and zircon U-Pb dating,as well as Lu-Hf isotopic data,for two Early Devonian intrusive plutons.The Yongchang and Chijin granites yield zircon U-Pb ages of 394-407 Ma and 414 Ma,respectively.Both of them are characterized by weakly peraluminous to metaluminous without typical aluminium-rich minerals,LREE-enriched patterns with negative Eu anomalies and a negative correlation between P_(2)O_(5) and SiO_(2) contents,consistent with geochemical features of I-type granitoids.Zircons from the studied granites display negative to weak positive ε_(Hf)(t)values(−5.7 to 2.1),which agree well with those of negative ε_(Nd)(t)values(−6.4 to−2.9)for the whole-rock samples,indicating that they were derived from the partial melting of Mesoproterozoic crust.Furthermore,low Sr/Y ratios(1.13-21.28)and high zircon saturation temperatures(745℃ to 839℃,with the majority being>800℃)demonstrated a relatively shallow depth level below the garnet stability field and an additional heat source.Taken together,the Early Devonian granitic magmatism could have been produced by the partial melting of ancient crustal materials heated by mantle-derived magmas at high-temperature and low-pressure conditions during postcollisional extensional collapse.The data obtained in this study,when viewed in conjunction with previous studies,provides more information about the tectonic processes that followed the closure of the North Qilian Ocean.The tectonic transition from continental collision to post-collisional delamination could be constrained to~430 Ma,which is provided by the sudden decrease of Sr/Y and La/Yb ratios and an increase in zircon ε_(Hf)(t)values for granitoids.A two-stage tectonic evolution model from continental collision to post-collisional extensional collapse for the NQOB includes(a)continental collision and crustal thickening during ca.455-430 Ma,characterized by granulite-facies metamorphism and widespread low-Mg adakitic magmatism;(b)post-collisional delamination of thickened continental crust and extensional collapse of orogen during ca.430-390 Ma,provided by coeval high-Mg adakitic magmatism,A-type granites and I-type granitoids with low Sr-Y ratios.展开更多
The experimental results of the reactions between an alkaline basaltic melt and mantle orthopyroxenes under high-temperature and high-pressure conditions of 1300–1400℃ and 2.0–3.0 GPa using a six-anvil apparatus ar...The experimental results of the reactions between an alkaline basaltic melt and mantle orthopyroxenes under high-temperature and high-pressure conditions of 1300–1400℃ and 2.0–3.0 GPa using a six-anvil apparatus are reported in this paper.The reactions are proposed to simulate the interactions between melts from the asthenospheric mantle and the lithospheric mantle.The starting melt in the experiments was made from the alkaline basalt occurring in Fuxin,Liaoning Province,and the orthopyroxenes were separated from the mantle xenoliths in Damaping,Hebei Province.The results show that clinopyroxenes were formed in all the reactions between the alkaline basaltic melt and orthopyroxenes under the studied P–T conditions.The formation of clinopyroxene in the reaction zone is mainly controlled by dissolution–crystallization,and the chemical compositions of the reacted melt are primarily infl uenced by the diff usion eff ect.Temperature is the most important parameter controlling the reactions between the melt and orthopyroxenes,which has a direct impact on the melting of orthopyroxenes and the diff usion of chemical components in the melt.Temperature also directly controls the chemical compositions of the newly formed clinopyroxenes in the reaction zone and the reacted melt.The formation of clinopyroxenes from the reactions between the alkaline basaltic melt and orthopyroxenes can result in an increase of CaO and Al_(2)O_(3) contents in the rocks containing this mineral.Therefore,the reactions between the alkaline basaltic melt from the asthenospheric mantle and orthopyroxenes from the lithospheric mantle can lead to the evolution of lithospheric mantle in the North China Craton from refractory to fertile with relatively high CaO and Al 2 O 3 contents.In addition,the reacted melts in some runs were transformed from the starting alkaline basaltic into tholeiitic after reactions,indicating that tholeiitic magma could be generated from alkaline basaltic one via reactions between the latter and orthopyroxene.展开更多
The distribution of oil and gas resources is intricately connected to the underlying structure of the lithosphere.Therefore,investigating the characteristics of lithospheric thickness and its correlation with oil and ...The distribution of oil and gas resources is intricately connected to the underlying structure of the lithosphere.Therefore,investigating the characteristics of lithospheric thickness and its correlation with oil and gas basins is highly important.This research utilizes recently enhanced geological–geophysical data,including topographic,geoid,rock layer thickness,variable rock layer density,and interface depth data.Employing the principles of lithospheric isostasy and heat conduction,we compute the laterally varying lithospheric thickness in the China seas and adjacent areas.From these results,two pivotal parameters for different types of oil and gas basins were statistically analyzed:the minimum lithospheric thickness and the relative fluctuation in lithospheric thickness.A semiquantitative analysis was used to explore the connection between these parameters and the hydrocarbon abundance within the oil and gas basins.This study unveils distinct variations in lithospheric thickness among basins,with oil and gas rich basins exhibiting a thicker lithosphere in the superimposed basins of central China and a thinner lithosphere in the rift basins of eastern China.Notably,the relative fluctuations in lithospheric thickness in basins demonstrate significant disparities:basins rich in oil and gas often exhibit greater thickness fluctuations.Additionally,in the offshore basins of China,a conspicuous negative linear correlation is observed between the minimum lithospheric thickness and the relative fluctuation in lithospheric thickness.This study posits that deep-seated thermal upwelling results in lithospheric undulations and extensional thinning in oil and gas basins.Concurrently,sustained deep-seated heat influences sedimentary materials in basins,creating favorable conditions for oil and gas generation.The insights derived from this study contribute to a quantitative understanding of the intricate relationships between deep lithospheric structures and oil and gas basins.These findings provide valuable guidance for future oil and gas exploration in the studied areas.展开更多
Existing lithospheric velocity models exhibit similar structures typically associated with the first-order tectonic features,with dissimilarities due to different data and methods used in model generation.The quantifi...Existing lithospheric velocity models exhibit similar structures typically associated with the first-order tectonic features,with dissimilarities due to different data and methods used in model generation.The quantification of model structural similarity can help in interpreting the geophysical properties of Earth's interior and establishing unified models crucial in natural hazard assessment and resource exploration.Here we employ the complex wavelet structural similarity index measure(CW-SSIM)active in computer image processing to analyze the structural similarity of four lithospheric velocity models of Chinese mainland published in the past decade.We take advantage of this method in its multiscale definition and insensitivity to slight geometrical distortion like translation and scaling,which is particularly crucial in the structural similarity analysis of velocity models accounting for uncertainty and resolution.Our results show that the CW-SSIM values vary in different model pairs,horizontal locations,and depths.While variations in the inter-model CW-SSIM are partly owing to different databases in the model generation,the difference of tomography methods may significantly impact the similar structural features of models,such as the low similarities between the full-wave based FWEA18 and other three models in northeastern China.We finally suggest potential solutions for the next generation of tomographic modeling in different areas according to corresponding structural similarities of existing models.展开更多
Mid-ocean ridge and oceanic transforms are among the most prominent features on the seafloor surface and are crucial for understanding seafloor spreading and plate tectonic dynamics,but the deep structure of the ocean...Mid-ocean ridge and oceanic transforms are among the most prominent features on the seafloor surface and are crucial for understanding seafloor spreading and plate tectonic dynamics,but the deep structure of the oceanic lithosphere remains poorly understood.The large number of microearthquakes occurring along ridges and transforms provide valuable information for gaining an indepth view of the underlying detailed seismic structures,contributing to understanding geodynamic processes within the oceanic lithosphere.Previous studies have indicated that the maximum depth of microseismicity is controlled by the 600-℃isotherm.However,this perspective is being challenged due to increasing observations of deep earthquakes that far exceed this suggested isotherm along mid-ocean ridges and oceanic transform faults.Several mechanisms have been proposed to explain these deep events,and we suggest that local geodynamic processes(e.g.,magma supply,mylonite shear zone,longlived faults,hydrothermal vents,etc.)likely play a more important role than previously thought.展开更多
Knowledge of the crust and lithospheric structure of the Indian sub-continent primarily comes from several active and passive seismic experiments.These studies are i)controlled source,ii)surface wave studies,iii)recei...Knowledge of the crust and lithospheric structure of the Indian sub-continent primarily comes from several active and passive seismic experiments.These studies are i)controlled source,ii)surface wave studies,iii)receiver functions and v)tomographic studies.The results from these studies in the Indian shield have emanated several interesting features that were hitherto unknown.The peninsular,central and north-western part of the shields,Himalayan and Andaman-Nicobar regions have shown that continental collision and extension from the Proterozoic to Recent time has played an important role in formation and geodynamics of these features.展开更多
基金supported by the Australian Research Council (grants DP200100966, FT210100557)supported as part of the Swarm DISC activities,funded by ESA contact no. 4000109587。
文摘The MSS-1 satellite began mapping Earth's magnetic field in November 2023.Here,we perform a preliminary assessment of the new information provided on Earth's lithospheric magnetic field from the first 12 months of data from MSS-1.We analyze data from the low-inclination orbital tracks of MSS-1 alongside data collected contemporaneously by the Swarm mission,and compare these to models for the lithospheric field from older satellite data and to predictions from models of lithospheric magnetization from tectonic constraints.We find that 1 year of data grouped into geographical bins is sufficient to produce a robust map of lithospheric anomalies.Time series analysis reveals that bins further from the equator arrive at stable values more rapidly,while equatorial regions require 9-10months of data accumulation for stable signal recovery.The mapped data agree well with older satellite models and with predictions from a lithospheric magnetization model,with the largest mismatches suggesting that models of continental magnetization in particular require further revision.These results demonstrate the value of MSS-1's unique orbital configuration in complementing existing satellite magnetic field measurements.
基金supported by funds from the Ministry of Science and Technology of the People's Republic of China(No.2019YFA0708603)NSFC(Nos.41973050,42288201,41930215)the Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou)(No.GML2019ZD0202)。
文摘Mineralogical data are presented for the peridotite xenoliths from Miocene(~19 Ma)Qingyuan basalts in the eastern North China Craton(NCC),with the aim of constraining on property of the sub-continental lithospheric mantle(SCLM)beneath the northern Tan-Lu fault zone(TLFZ)during the Cenozoic.The Qingyuan peridotites are dominated by spinel lherzolites with moderate-Mg^(#)olivines(89.4 to 91.2),suggesting that the regional SCLM is mainly transitional and fertile.Light rare earth element(LREE)-depleted,slightly depleted and enriched clinopyroxenes(Cpx)are identified in different peridotites.Chemical compositions of the LREE-enriched Cpx and the presence of phlogopite suggest that the Qingyuan SCLM has experienced silicate-related metasomatism.The synthesis of available mineral chemical data of the mantle xenoliths across the NCC confirms the SCLM beneath the NCC is highly heterogeneous in time and space.The Mesozoic–Cenozoic SCLM beneath the TLFZ and neighboring regions are more fertile and thinner than that beneath the region away from the fault zone.The fertile and refractory peridotite xenoliths experienced varying degrees of silicate and carbonatite metasomatism,respectively.The spatial-temporal lithospheric mantle heterogeneity in composition,age and thickness suggest that the trans-lithosphere fault zone played an important role in heterogeneous replacement of refractory cratonic lithospheric mantle.
基金supported by the National Natural Science Foundation of China(Grant Nos.42250103 and 42174090)the Opening Fund of Key Laboratory of Geological Survey and Evaluation of Ministry of Education(Grant No.GLAB2023ZR02)the MOST Special Fund from the State Key Laboratory of Geological Processes and Mineral Resources(Grant No.MSFGPMR2022-4).
文摘The equivalent source(ES)method in the spherical coordinate system has been widely applied to processing,reduction,field modeling,and geophysical and geological interpretation of satellite magnetic anomaly data.However,the inversion for the ES model suffers from nonuniqueness and instability,which remain unresolved.To mitigate these issues,we introduce both the minimum and flattest models into the model objective function as an alternative regularization approach in the spherical ES method.We first present the methods,then analyze the accuracy of forward calculation and test the proposed ES method in this study by using synthetic data.The experimental results from simulation data indicate that our proposed regularization effectively suppresses the Backus effect and mitigates inversion instability in the low-latitude region.Finally,we apply the proposed method to magnetic anomaly data from China Seismo-Electromagnetic Satellite-1(CSES-1)and Macao Science Satellite-1(MSS-1)magnetic measurements over Africa by constructing an ES model of the large-scale lithospheric magnetic field.Compared with existing global lithospheric magnetic field models,our ES model demonstrates good consistency at high altitudes and predicts more stable fields at low altitudes.Furthermore,we derive the reduction to the pole(RTP)magnetic anomaly fields and the apparent susceptibility contrast distribution based on the ES model.The latter correlates well with the regional tectonic framework in Africa and surroundings.
基金supported by the National Natural Science Foundation of China(Grant Nos.42250103 and 42174090)the Opening Fund of Key Laboratory of Geological Survey and Evaluation of Ministry of Education(Grant No.GLAB2023ZR02)the Ministry of Science and Technology(MOST)Special Fund from the State Key Laboratory of Geological Processes and Mineral Resources(Grant No.MSFGPMR2022-4)。
文摘As a means of quantitative interpretation,forward calculations of the global lithospheric magnetic field in the Spherical Harmonic(SH)domain have been widely used to reveal geophysical,lithological,and geothermal variations in the lithosphere.Traditional approaches either do not consider the non-axial dipolar terms of the inducing field and its radial variation or do so by means of complicated formulae.Moreover,existing methods treat the magnetic lithosphere either as an infinitesimally thin layer or as a radially uniform spherical shell of constant thickness.Here,we present alternative forward formulae that account for an arbitrarily high maximum degree of the inducing field and for a magnetic lithosphere of variable thickness.Our simulations based on these formulae suggest that the satellite magnetic anomaly field is sensitive to the non-axial dipolar terms of the inducing field but not to its radial variation.Therefore,in forward and inverse calculations of satellite magnetic anomaly data,the non-axial dipolar terms of the inducing field should not be ignored.Furthermore,our results show that the satellite magnetic anomaly field is sensitive to variability in the lateral thickness of the magnetized shell.In particular,we show that for a given vertically integrated susceptibility distribution,underestimating the thickness of the magnetic layer overestimates the induced magnetic field.This discovery bridges the greatest part of the alleged gap between the susceptibility values measured from rock samples and the susceptibility values required to match the observed magnetic field signal.We expect the formulae and conclusions of this study to be a valuable tool for the quantitative interpretation of the Earth's global lithospheric magnetic field,through an inverse or forward modelling approach.
基金the support of the National Natural Science Foundation of China (Nos. 42250103, 41974073, and 41404053)the Macao Foundation and the preresearch project of Civil Aerospace Technologies (Nos. D020308 and D020303)funded by China’s National Space Administration, the Specialized Research Fund for State Key Laboratories。
文摘We combine gradient data from the Macao Science Satellite-1(MSS-1),CHAllenging Minisatellite Payload(CHAMP),Swarm-A,and Swarm-C satellites to develop a 110-degree lithospheric magnetic field model.We then comprehensively evaluate the performance of the model by power spectral comparisons,correlation analyses,sensitivity matrix assessments,and comparisons with existing lithospheric field models.Results showed that using near east–west gradient data from MSS-1 significantly enhances the model correlation in the spherical harmonic degree(N) range of 45–60 while also mitigating the decline in correlation at higher degrees(N > 60).Furthermore,the unique orbital characteristics of MSS-1 enable its gradient data to provide substantial contributions to modeling in the mid-to low-latitude regions.With continued data acquisition from MSS-1 and further optimization of data processing methods,the performance of the model is expected to improve.
基金supported by the National Natural Science Foundation of China(Grant Nos.42250103,42174090,42250101,42250102,and 41774091)the Macao Foundation+1 种基金the Opening Fund of Key Laboratory of Geological Survey and Evaluation of Ministry of Education(Grant No.GLAB2023ZR02)the MOST Special Fund from the State Key Laboratory of Geological Processes and Mineral Resources(Grant No.MSFGPMR2022-4)。
文摘The CUG_CLMFM3D series comprises high-resolution three-dimensional lithospheric magnetic field models for China and its surroundings.The first version,CUG_CLMFM3Dv1,is a spherical cap harmonic model integrating the WDMAMv2(World Digital Magnetic Anomaly Map version 2)global magnetic anomaly grid and nearly a decade of CHAMP(Challenging Minisatellite Payload for Geophysical Research and Application)satellite vector data.It achieves a~5.7 km resolution but has limitations:the WDMAMv2 grid lacks high-resolution data in the southern Xinjiang and Tibet regions,which leads to missing small-to medium-scale anomalies,and unfiltered CHAMP data introduce low-frequency conflicts with global spherical harmonic models.Above the altitude of 150 km,correlations with global models drop below 0.9.The second version,CUG_CLMFM3Dv2,addresses these issues by incorporating 5-km-resolution aeromagnetic data and rigorously processed satellite data from CHAMP,Swarm,CSES-1(China Seismo-Electromagnetic Satellite 1),and MSS-1(Macao Science Satellite 1).The comparison analysis shows that the CUG_CLMFM3Dv2 captures finer high-frequency details and more stable long-wavelength signals,offering improved magnetic anomaly maps for further geological and geophysical studies.
基金the support of the National Natural Science Foundation of China (Nos. 42250103, 41974073, and 41404053)the Macao Foundation and the preresearch project of Civil Aerospace Technologies (Nos. D020308 and D020303)funded by China’s National Space Administration, and the Specialized Research Fund for State Key Laboratories。
文摘By combining data from the Challenging Minisatellite Payload(CHAMP),Swarm-A,and newest Macao Science Satellite-1(MSS-1) missions,we constructed a lithospheric magnetic field model up to spherical harmonic degree N = 100.To isolate the lithospheric magnetic field signals,we utilized the latest CHAOS-8(CHAMP,Φrsted,and SAC-C 8) model and MGFM(Multisource Geomagnetic Field Model) to remove nonlithospheric sources,including the core field,magnetospheric field,ocean tidal field,and ocean circulation field.Subsequently,orbit-by-orbit processing was applied to both scalar and vector data,such as spherical harmonic high-pass filtering,singular spectrum analysis,and line leveling,to suppress noise and residual signals along the satellite tracks.With an orbital inclination of only 41°,MSS-1 effectively captures fine-scale lithospheric magnetic field signals in mid-to low-latitude regions.Its data exhibit a root mean square error of only 0.77 nT relative to the final model,confirming the high quality and utility of lithospheric field modeling.The resulting model exhibits excellent consistency with the MF7(Magnetic Field Model 7),maintaining a high correlation up to N = 90 and still exceeding 0.65 at N = 100.These results demonstrate the reliability and value of MSS-1 data in global lithospheric magnetic field modeling.
基金supported by the Korea Polar Research Institute project PE24050.
文摘Fabrics of five spinel peridotites collected from Baker Rocks in northern Victoria Land,Antarctica,were investigated to elucidate the evolution of the lithospheric mantle surrounding the Transantarctic Mountains.Analyses revealed the development of crystallographic preferred orientations(CPOs),a slight decrease in mean grain size and J-index across varying proportions of clinopyroxene,and interlobate to amoeboid textures.These findings indicate that dislocation creep is the dominant deformation mechanism for the analyzed samples.
基金supported by the National Natural Science Foundation of China(42250101,42250102,42250103,12250013)the Macao Foundation。
文摘The Earth's magnetic field,which has been extensively observed from ground to satellite altitudes over several decades,originates from multiple sources,such as the core dynamo,the conductive mantle,the magnetized lithosphere,and the space current systems.Modeling of the lithospheric contribution plays an important role in the geophysical studies and industrial applications.In this paper,we propose a new method for global and regional modeling of the lithospheric magnetic field based on the cubed-sphere.An equivalent dipole source method on a quasi-uniform cubed-sphere grid is employed in the forward modeling.The dipole directions are fixed according to a priori magnetization and the relative intensities are estimated by an inversion procedure of least-squares fitting with minimum model regularization.Several numerical tests are performed to validate the accuracy and efficiency of both forward modeling and inversion procedure.The proposed method is applied to the global and regional modeling based on the latest magnetic data from Swarm Alpha satellite and MSS-1 mission.The model results indicate that the proposed method works quite well for realistic satellite data and MSS-1 data is consistent with the Swarm data in terms of lithospheric field modeling.
基金supported by Special Projects in Universities’Key Fields of Guangdong Province(No.2023ZDZX3017)the 2022 Tertiary Education Scientific Research Project of Guangzhou Municipal Education Bureau(No.202234607)+1 种基金the Guangdong Basic and Applied Basic Research Foundation(No.2025A1515012983)the National Natural Science Foundation of China(Nos.52371059 and 52101358).
文摘Situated in the southwestern Pacific,the Tonga-Kermadec subduction zone is separated into two parts by the Louisvlle Ridge Seamount Chain(LRSC),i.e.,the Tanga subduction zone and the Kermadec subduction zone.Known for its vigorous volcanic activity,frequent large earthquakes,rapid plate subduction,and distinctive subducting plate morphology,this subduction zone provides valuable insights into its structures,dynamics,and associated geohazards.This study compiles geological and geophysical datasets in this region,including seismicity,focal mechanisms,seismic reflection and refraction profiles,and seismic tomography,to understand the relationship between lithospheric structures of the subduction system and associated seismicity-volcanic activities.Our analysis suggests that variations in overlying sediment thickness,subduction rate,and subduction angle significantly influence the lithospheric deformation processes within the Tonga-Kermadec subduction system.Furthermore,these factors contribute to the notable differences in seismicity and volcanism observed between the Tonga subduction zone and the Kermadec subduction zone.This study enhances our understanding of plate tectonics by providing insights into the interplay between subduction dynamics and lithospheric deformation,which are crucial for analyzing geological and geophysical behaviors in similar subduction environments.
基金a project funded by the China National Space Administration (CNSA) and the Ministry of Emergency Management of Chinasupported by the Civil Aerospace Technology Pilot Research Project (D040203)+1 种基金the National Natural Science Foundation of China (42004051, 42274214)the APSCO Earthquake Research Project Phase Ⅱ and Dragon 6 cooperation 2025-2029 (95437)。
文摘The China Seismo-Electromagnetic Satellite(CSES) was successfully launched in February 2018. The high precision magnetometer(HPM) on board the CSES has captured high-quality magnetic data that have been used to derive a global lithospheric magnetic field model. While preparing the datasets for this lithospheric magnetic field model, researchers found that they still contained prominent residual trends within the magnetic anomaly even once signals from other sources had been eliminated. However, no processing was undertaken to deal with the residual trends during modeling to avoid subjective processing and represent the realistic nature of the data. In this work, we analyze the influence of these residual trends on the lithospheric magnetic field modeling.Polynomials of orders 0–3 were used to fit the trend of each track and remove it for detrending. We then derived four models through detrending-based processing, and compared their power spectra and grid maps with those of the CSES original model and CHAOS-7model. The misfit between the model and the dataset decreased after detrending the data, and the convergence of the inverted spherical harmonic coefficients improved. However, detrending reduced the signal strength and the power spectrum, while detrending based on high-order polynomials introduced prominent distortions in details of the magnetic anomaly. Based on this analysis, we recommend along-track detrending by using a zero-order polynomial(removing a constant value) on the CSES magnetic anomaly data to drag its mean value to zero. This would lead to only a slight reduction in the signal strength while significantly improving the stability of the inverted coefficients and details of the anomaly.
基金funded by the National Natural Science Foundation of China(42125203,42330809)the 111 project of the Ministry of Science and Technology(BP0719021).
文摘The Cretaceous gold deposits along the margins of the North China Craton(NCC),which formed in a craton destruction setting,display geological characteristics similar to traditional orogenic gold deposits typically associated with accretionary orogeny.These deposits,known as Jiaodong-type gold deposits,have attracted considerable attention.However,the lithospheric controls and formation mechanisms of these deposits remain unclear,as they cannot be fully explained by the supracrustal metamorphic genetic model commonly applied to classic orogenic gold deposits.In this study,the compiled S-Hg-Pb isotope ratios of gold deposits on different NCC margins display compatible variations to the Sr-Nd-Hg isotope ratios of mafic dikes spatial-temporally associated with the deposits.This implies that mantle lithosphere,metasomatized by variable proportions of oceanic and continental crust,was the source for both gold deposits and mafic dikes.Increase of oxygen fugacity and zirconεHf(t)from pre-to syn-gold granites suggests continuous basic magma underplating,which could induce concentrations of Au-rich sulfides and contribute additional Au to auriferous CO_(2)-rich fluids derived from metasomatized mantle lithosphere and basic magma.Localization of gold deposits was controlled by craton-margin sinistral shearing induced by clockwise rotation of the craton coincident with distal emplacement of metamorphic core complexes.Thus,the Cretaceous Jiaodong-type orogenic gold deposits were derived from fertilized mantle lithosphere through such crust-mantle processes within a lithosphere thinning background.
文摘The post-collisional Cenozoic basic volcanic rocks in NE Turkey show temporal variations in whole-rock lithophile element and highly siderophile element(HSE)systematics that are mainly associated with the nature of sub-continental lithospheric mantle(SCLM)sources and parental melt generation.So far,the traditional whole-rock lithophile geochemical data of these basic volcanic rocks have provided important constraints on the nature of SCLM sources.Integrated lithophile element and HSE geochemical data of these basic volcanic rocks also reveal the heterogeneity of the SCLM source,which is principally related to variable metasomatism resulting from previous subduction(s)and post-collisional mantle-crust interactions in an extensional setting.Lithophile element geochemical features suggest that the parental magmas have derived from metasomatized spinel-to garnet-bearing SCLM sources for Eocene and Miocene basic volcanic rocks with subduction signatures whereas originated from spinel-to garnet-bearing SCLM sources for Mio-Pliocene and Plio-Quaternary basaltic volcanic rocks without the subduction signature.Lithophile element and HSE geo-chemistry also reveal that Eocene and Miocene basic vol-canic rocks were affected by more pronounced crustal contamination than the basaltic volcanic rocks of Mio-Pliocene and Quaternary.Furthermore,the integrated lithophile element and HSE compositions of these basic volcanic rocks,together with the regional asymmetric lithospheric delamination model,reveal that the compositional variation(especially due to metasomatism)was significant temporally in the heterogeneity of the SCLM sources from which parental magmas formed during the Cenozoic era.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.42302235,41830211,42272100)Fundamental Research Funds for the Central Universities,Sun Yat-sen University(Grant No.23ptpy143)。
文摘It is well established that Cretaceous magmatism in the South China Block(SCB)is related to the Paleo-Pacific subduction.However,the starting time and the associated deep crust-mantle processes are still debatable.Mafic dike swarms carry important information on the deep earth(including mantle)geodynamics and geochemical evolution.In the Jiangnan Orogen(South China).there is no information on whether the Mesozoic magmatic activities in this region are also directly related to the Pacific subduction or not.In this study,we present detailed zircon U-Pb geochronological,wholerock element and Sr-Nd isotope data for Early Cretaceous Tuanshanbei dolerite dikes,and provide new constraints on the condition of the lithospheric mantle and mantle dynamics of the SCB during that time.LA-ICP-MS zircon U-Pb dating suggests that this dolerite erupted in the Early Cretaceous(~145 Ma).All samples have alkaline geochemical affinities with K_(2)O+Na_(2)O=3.11-4.04 wt%,K_(2)O/Na_(2)O=0.50-0.72,and Mg^(#)=62.24-65.13.They are enriched in LILE but depleted in HFSE with higher initial^(87)Sr/^(86)Sr ratio(0.706896-0.714743)and lower ε_(Nd)(t)(-2.61 to-1.67).They have high Nb/U,Nb/La,La/Sm and Rb/Sr,and low La/Nb,La/Ta,Ce/Pb,Ba/Rb,Tb/Yb and Gd/Yb ratios.Such geochemical signatures suggest that the fractional crystallization is obvious but crustal contamination play a negligible role during magmatic evolution.Tuanshanbei dolerite were most likely derived from low-degree(2%-5%)partial melting of a phlogopite-bearing mantle material consisted of~85% spinel peridotite and~15% garnet peridotite previously metasomatized by asthenospherederived fluids/melts with minor subduction-derived fluids/melts.Slab-rollback generally lead to the upwelling of the hot asthenosphere.The upwelling of asthenosphere consuming the lithospheric mantle by thermo-mechanical-chemical erosion.The lithospheric mantle may have partially melted due to the heating by the upwelling asthenosphere and lithospheric extension.It is inferred that the Tuanshanbei dolerite might be associated with the initial slab rollback and corresponding lithospheric extension occurred potentially at ca.145 Ma.
基金supported by the Natural Science Foundation of Shandong Province(Grant No.ZR2022QD055)the Taishan Scholars(Grant No.tstp 20231214)the National Natural Science Foundation of China(Grant No.42372247).
文摘Post-collisional magmatism contains important clues for understanding the reworking and growth of continental crust,as well as lithospheric delamination and orogenic collapse.Early Devonian magmatism has been identified in the North Qilian Orogenic Belt(NQOB).This paper reports an integrated study of petrology,whole-rock geochemistry,Sm-Nd isotope and zircon U-Pb dating,as well as Lu-Hf isotopic data,for two Early Devonian intrusive plutons.The Yongchang and Chijin granites yield zircon U-Pb ages of 394-407 Ma and 414 Ma,respectively.Both of them are characterized by weakly peraluminous to metaluminous without typical aluminium-rich minerals,LREE-enriched patterns with negative Eu anomalies and a negative correlation between P_(2)O_(5) and SiO_(2) contents,consistent with geochemical features of I-type granitoids.Zircons from the studied granites display negative to weak positive ε_(Hf)(t)values(−5.7 to 2.1),which agree well with those of negative ε_(Nd)(t)values(−6.4 to−2.9)for the whole-rock samples,indicating that they were derived from the partial melting of Mesoproterozoic crust.Furthermore,low Sr/Y ratios(1.13-21.28)and high zircon saturation temperatures(745℃ to 839℃,with the majority being>800℃)demonstrated a relatively shallow depth level below the garnet stability field and an additional heat source.Taken together,the Early Devonian granitic magmatism could have been produced by the partial melting of ancient crustal materials heated by mantle-derived magmas at high-temperature and low-pressure conditions during postcollisional extensional collapse.The data obtained in this study,when viewed in conjunction with previous studies,provides more information about the tectonic processes that followed the closure of the North Qilian Ocean.The tectonic transition from continental collision to post-collisional delamination could be constrained to~430 Ma,which is provided by the sudden decrease of Sr/Y and La/Yb ratios and an increase in zircon ε_(Hf)(t)values for granitoids.A two-stage tectonic evolution model from continental collision to post-collisional extensional collapse for the NQOB includes(a)continental collision and crustal thickening during ca.455-430 Ma,characterized by granulite-facies metamorphism and widespread low-Mg adakitic magmatism;(b)post-collisional delamination of thickened continental crust and extensional collapse of orogen during ca.430-390 Ma,provided by coeval high-Mg adakitic magmatism,A-type granites and I-type granitoids with low Sr-Y ratios.
基金supported by the National Natural Science Foundation of China(Nos.41472065 and 42073059).
文摘The experimental results of the reactions between an alkaline basaltic melt and mantle orthopyroxenes under high-temperature and high-pressure conditions of 1300–1400℃ and 2.0–3.0 GPa using a six-anvil apparatus are reported in this paper.The reactions are proposed to simulate the interactions between melts from the asthenospheric mantle and the lithospheric mantle.The starting melt in the experiments was made from the alkaline basalt occurring in Fuxin,Liaoning Province,and the orthopyroxenes were separated from the mantle xenoliths in Damaping,Hebei Province.The results show that clinopyroxenes were formed in all the reactions between the alkaline basaltic melt and orthopyroxenes under the studied P–T conditions.The formation of clinopyroxene in the reaction zone is mainly controlled by dissolution–crystallization,and the chemical compositions of the reacted melt are primarily infl uenced by the diff usion eff ect.Temperature is the most important parameter controlling the reactions between the melt and orthopyroxenes,which has a direct impact on the melting of orthopyroxenes and the diff usion of chemical components in the melt.Temperature also directly controls the chemical compositions of the newly formed clinopyroxenes in the reaction zone and the reacted melt.The formation of clinopyroxenes from the reactions between the alkaline basaltic melt and orthopyroxenes can result in an increase of CaO and Al_(2)O_(3) contents in the rocks containing this mineral.Therefore,the reactions between the alkaline basaltic melt from the asthenospheric mantle and orthopyroxenes from the lithospheric mantle can lead to the evolution of lithospheric mantle in the North China Craton from refractory to fertile with relatively high CaO and Al 2 O 3 contents.In addition,the reacted melts in some runs were transformed from the starting alkaline basaltic into tholeiitic after reactions,indicating that tholeiitic magma could be generated from alkaline basaltic one via reactions between the latter and orthopyroxene.
基金supported by the National Key Research and Development Plan project“Research on Comprehensive Processing and Interpretation Methods of Aeronautical Geophysical Data and Soft ware Development”under contract No.2017YFC0602202。
文摘The distribution of oil and gas resources is intricately connected to the underlying structure of the lithosphere.Therefore,investigating the characteristics of lithospheric thickness and its correlation with oil and gas basins is highly important.This research utilizes recently enhanced geological–geophysical data,including topographic,geoid,rock layer thickness,variable rock layer density,and interface depth data.Employing the principles of lithospheric isostasy and heat conduction,we compute the laterally varying lithospheric thickness in the China seas and adjacent areas.From these results,two pivotal parameters for different types of oil and gas basins were statistically analyzed:the minimum lithospheric thickness and the relative fluctuation in lithospheric thickness.A semiquantitative analysis was used to explore the connection between these parameters and the hydrocarbon abundance within the oil and gas basins.This study unveils distinct variations in lithospheric thickness among basins,with oil and gas rich basins exhibiting a thicker lithosphere in the superimposed basins of central China and a thinner lithosphere in the rift basins of eastern China.Notably,the relative fluctuations in lithospheric thickness in basins demonstrate significant disparities:basins rich in oil and gas often exhibit greater thickness fluctuations.Additionally,in the offshore basins of China,a conspicuous negative linear correlation is observed between the minimum lithospheric thickness and the relative fluctuation in lithospheric thickness.This study posits that deep-seated thermal upwelling results in lithospheric undulations and extensional thinning in oil and gas basins.Concurrently,sustained deep-seated heat influences sedimentary materials in basins,creating favorable conditions for oil and gas generation.The insights derived from this study contribute to a quantitative understanding of the intricate relationships between deep lithospheric structures and oil and gas basins.These findings provide valuable guidance for future oil and gas exploration in the studied areas.
基金supported by the National Natural Science Foundation of China(Nos.42174063,92155307,41976046)Guangdong Provincial Key Laboratory of Geophysical High-resolution Imaging Technology under(No.2022B1212010002)Project for introduced Talents Team of Southern Marine Science and Engineering Guangdong(Guangzhou)(No.GML2019ZD0203)。
文摘Existing lithospheric velocity models exhibit similar structures typically associated with the first-order tectonic features,with dissimilarities due to different data and methods used in model generation.The quantification of model structural similarity can help in interpreting the geophysical properties of Earth's interior and establishing unified models crucial in natural hazard assessment and resource exploration.Here we employ the complex wavelet structural similarity index measure(CW-SSIM)active in computer image processing to analyze the structural similarity of four lithospheric velocity models of Chinese mainland published in the past decade.We take advantage of this method in its multiscale definition and insensitivity to slight geometrical distortion like translation and scaling,which is particularly crucial in the structural similarity analysis of velocity models accounting for uncertainty and resolution.Our results show that the CW-SSIM values vary in different model pairs,horizontal locations,and depths.While variations in the inter-model CW-SSIM are partly owing to different databases in the model generation,the difference of tomography methods may significantly impact the similar structural features of models,such as the low similarities between the full-wave based FWEA18 and other three models in northeastern China.We finally suggest potential solutions for the next generation of tomographic modeling in different areas according to corresponding structural similarities of existing models.
基金Supported by the State Key Program of National Natural Science of China(No.42330308)the Project of Donghai Laboratory(No.DH-2022ZY0005)+4 种基金the Scientific Research Fund of the Second Institute of OceanographyMinistry of Natural Resources(No.QHXZ2301)the National Science Foundation for Distinguished Young Scholars of China(No.42025601)for Young Scientists of China(No.41906064)the Zhejiang Provincial Natural Science Foundation of China(No.LDQ24D060001)。
文摘Mid-ocean ridge and oceanic transforms are among the most prominent features on the seafloor surface and are crucial for understanding seafloor spreading and plate tectonic dynamics,but the deep structure of the oceanic lithosphere remains poorly understood.The large number of microearthquakes occurring along ridges and transforms provide valuable information for gaining an indepth view of the underlying detailed seismic structures,contributing to understanding geodynamic processes within the oceanic lithosphere.Previous studies have indicated that the maximum depth of microseismicity is controlled by the 600-℃isotherm.However,this perspective is being challenged due to increasing observations of deep earthquakes that far exceed this suggested isotherm along mid-ocean ridges and oceanic transform faults.Several mechanisms have been proposed to explain these deep events,and we suggest that local geodynamic processes(e.g.,magma supply,mylonite shear zone,longlived faults,hydrothermal vents,etc.)likely play a more important role than previously thought.
文摘Knowledge of the crust and lithospheric structure of the Indian sub-continent primarily comes from several active and passive seismic experiments.These studies are i)controlled source,ii)surface wave studies,iii)receiver functions and v)tomographic studies.The results from these studies in the Indian shield have emanated several interesting features that were hitherto unknown.The peninsular,central and north-western part of the shields,Himalayan and Andaman-Nicobar regions have shown that continental collision and extension from the Proterozoic to Recent time has played an important role in formation and geodynamics of these features.