Strategies for achieving high-energy-density lithium-ion batteries include using high-capacity materials such as high-nickel NCM,increasing the active material content in the electrode by utilizing high-conductivity c...Strategies for achieving high-energy-density lithium-ion batteries include using high-capacity materials such as high-nickel NCM,increasing the active material content in the electrode by utilizing high-conductivity carbon nanotubes(CNT)conductive materials,and electrode thickening.However,these methods are still limited due to the limitation in the capacity of high-nickel NCM,aggregation of CNT conductive materials,and nonuniform material distribution of thick-film electrodes,which ultimately damage the mechanical and electrical integrity of the electrode,leading to a decrease in electrochemical performance.Here,we present an integrated binder-CNT composite dispersion solution to realize a high-solids-content(>77 wt%)slurry for high-mass-loading electrodes and to mitigate the migration of binder and conductive additives.Indeed,the approach reduces solvent usage by approximately 30%and ensures uniform conductive additive-binder domain distribution during electrode manufacturing,resulting in improved coating quality and adhesive strength for high-mass-loading electrodes(>12 mAh cm^(−2)).In terms of various electrode properties,the presented electrode showed low resistance and excellent electrochemical properties despite the low CNT contents of 0.6 wt%compared to the pristine-applied electrode with 0.85 wt%CNT contents.Moreover,our strategy enables faster drying,which increases the coating speed,thereby offering potential energy savings and supporting carbon neutrality in wet-based electrode manufacturing processes.展开更多
Lithium-ion batteries(LIBs),while dominant in energy storage due to high energy density and cycling stability,suffer from severe capacity decay,rate capability degradation,and lithium dendrite formation under low-temp...Lithium-ion batteries(LIBs),while dominant in energy storage due to high energy density and cycling stability,suffer from severe capacity decay,rate capability degradation,and lithium dendrite formation under low-temperature(LT)operation.Therefore,a more comprehensive and systematic understanding of LIB behavior at LT is urgently required.This review article comprehensively reviews recent advancements in electrolyte engineering strategies aimed at improving the low-temperature operational capabilities of LIBs.The study methodically examines critical performance-limiting mechanisms through fundamental analysis of four primary challenges:insufficient ionic conductivity under cryogenic conditions,kinetically hindered charge transfer processes,Li+transport limitations across the solidelectrolyte interphase(SEI),and uncontrolled lithium dendrite growth.The work elaborates on innovative optimization approaches encompassing lithium salt molecular design with tailored dissociation characteristics,solvent matrix optimization through dielectric constant and viscosity regulation,interfacial engineering additives for constructing low-impedance SEI layers,and gel-polymer composite electrolyte systems.Notably,particular emphasis is placed on emerging machine learning-guided electrolyte formulation strategies that enable high-throughput virtual screening of constituent combinations and prediction of structure-property relationships.These artificial intelligence-assisted rational design frameworks demonstrate significant potential for accelerating the development of next-generation LT electrolytes by establishing quantitative composition-performance correlations through advanced data-driven methodologies.展开更多
To enhance the electrochemical performance of lithium-ion battery anodes with higher silicon content,it is essential to engineer their microstructure for better lithium-ion transport and mitigated volume change as wel...To enhance the electrochemical performance of lithium-ion battery anodes with higher silicon content,it is essential to engineer their microstructure for better lithium-ion transport and mitigated volume change as well.Herein,we suggest an effective approach to control the micropore structure of silicon oxide(SiO_(x))/artificial graphite(AG)composite electrodes using a perforated current collector.The electrode features a unique pore structure,where alternating high-porosity domains and low-porosity domains markedly reduce overall electrode resistance,leading to a 20%improvement in rate capability at a 5C-rate discharge condition.Using microstructure-resolved modeling and simulations,we demonstrate that the patterned micropore structure enhances lithium-ion transport,mitigating the electrolyte concentration gradient of lithium-ion.Additionally,perforating current collector with a chemical etching process increases the number of hydrogen bonding sites and enlarges the interface with the SiO_(x)/AG composite electrode,significantly improving adhesion strength.This,in turn,suppresses mechanical degradation and leads to a 50%higher capacity retention.Thus,regularly arranged micropore structure enabled by the perforated current collector successfully improves both rate capability and cycle life in SiO_(x)/AG composite electrodes,providing valuable insights into electrode engineering.展开更多
Precisely estimating the state of health(SOH)of lithium-ion batteries is essential for battery management systems(BMS),as it plays a key role in ensuring the safe and reliable operation of battery systems.However,curr...Precisely estimating the state of health(SOH)of lithium-ion batteries is essential for battery management systems(BMS),as it plays a key role in ensuring the safe and reliable operation of battery systems.However,current SOH estimation methods often overlook the valuable temperature information that can effectively characterize battery aging during capacity degradation.Additionally,the Elman neural network,which is commonly employed for SOH estimation,exhibits several drawbacks,including slow training speed,a tendency to become trapped in local minima,and the initialization of weights and thresholds using pseudo-random numbers,leading to unstable model performance.To address these issues,this study addresses the challenge of precise and effective SOH detection by proposing a method for estimating the SOH of lithium-ion batteries based on differential thermal voltammetry(DTV)and an SSA-Elman neural network.Firstly,two health features(HFs)considering temperature factors and battery voltage are extracted fromthe differential thermal voltammetry curves and incremental capacity curves.Next,the Sparrow Search Algorithm(SSA)is employed to optimize the initial weights and thresholds of the Elman neural network,forming the SSA-Elman neural network model.To validate the performance,various neural networks,including the proposed SSA-Elman network,are tested using the Oxford battery aging dataset.The experimental results demonstrate that the method developed in this study achieves superior accuracy and robustness,with a mean absolute error(MAE)of less than 0.9%and a rootmean square error(RMSE)below 1.4%.展开更多
Electrospinning technology has emerged as a promising method for fabricating flexible lithium-ion batter-ies(FLIBs)due to its ability to create materials with desir-able properties for energy storage applications.FLIB...Electrospinning technology has emerged as a promising method for fabricating flexible lithium-ion batter-ies(FLIBs)due to its ability to create materials with desir-able properties for energy storage applications.FLIBs,which are foldable and have high energy densities,are be-coming increasingly important as power sources for wear-able devices,flexible electronics,and mobile energy applica-tions.Carbon materials,especially carbon nanofibers,are pivotal in improving the performance of FLIBs by increas-ing electrical conductivity,chemical stability,and surface area,as well as reducing costs.These materials also play a significant role in establishing conducting networks and im-proving structural integrity,which are essential for extend-ing the cycle life and enhancing the safety of the batteries.This review considers the role of electrospinning in the fabrication of critical FLIB components,with a particular emphasis on the integration of carbon materials.It explores strategies to optimize FLIB performance by fine-tuning the electrospinning para-meters,such as electric field strength,spinning rate,solution concentration,and carbonization process.Precise control over fiber properties is crucial for enhancing battery reliability and stability during folding and bending.It also highlights the latest research findings in carbon-based electrode materials,high-performance electrolytes,and separator structures,discussing the practical challenges and opportunities these materials present.It underscores the significant impact of carbon materials on the evolution of FLIBs and their potential to shape future energy storage technologies.展开更多
Carbon nanotubes(CNTs)have many excellent properties that make them ideally suited for use in lithium-ion batteries(LIBs).In this review,the recent research on applications of CNTs in LIBs,including their usage as fre...Carbon nanotubes(CNTs)have many excellent properties that make them ideally suited for use in lithium-ion batteries(LIBs).In this review,the recent research on applications of CNTs in LIBs,including their usage as freestanding anodes,conductive additives,and current collectors,are discussed.Challenges,strategies,and progress are analyzed by selecting typical examples.Particularly,when CNTs are used with relatively large mass fractions,the relevant interfacial electrochemistry in such a CNT-based electrode,which dictates the quality of the resulting solid-electrolyte interface,becomes a concern.Hence,in this review the different lithium-ion adsorption and insertion mechanisms inside and outside of CNTs are compared;the influence of not only CNT structural features(including their length,defect density,diameter,and wall thickness)but also the electrolyte composition on the solid-electrolyte interfacial reactions is analyzed in detail.Strategies to optimize the solid-solid interface between CNTs and the other solid components in various composite electrodes are also covered.By emphasizing the importance of such a structure-performance relationship,the merits and weaknesses of various applications of CNTs in various advanced LIBs are clarified.展开更多
Silicon stands as a key anode material in lithium-ion battery ascribing to its high energy density.Nevertheless,the poor rate performance and limited cycling life remain unresolved through conventional approaches that...Silicon stands as a key anode material in lithium-ion battery ascribing to its high energy density.Nevertheless,the poor rate performance and limited cycling life remain unresolved through conventional approaches that involve carbon composites or nanostructures,primarily due to the un-controllable effects arising from the substantial formation of a solid electrolyte interphase(SEI)during the cycling.Here,an ultra-thin and homogeneous Ti doping alumina oxide catalytic interface is meticulously applied on the porous Si through a synergistic etching and hydrolysis process.This defect-rich oxide interface promotes a selective adsorption of fluoroethylene carbonate,leading to a catalytic reaction that can be aptly described as“molecular concentration-in situ conversion”.The resultant inorganic-rich SEI layer is electrochemical stable and favors ion-transport,particularly at high-rate cycling and high temperature.The robustly shielded porous Si,with a large surface area,achieves a high initial Coulombic efficiency of 84.7%and delivers exceptional high-rate performance at 25 A g^(−1)(692 mAh g^(−1))and a high Coulombic efficiency of 99.7%over 1000 cycles.The robust SEI constructed through a precious catalytic layer promises significant advantages for the fast development of silicon-based anode in fast-charging batteries.展开更多
With the approaching of large-scale retirement of power lithium-ion batteries(LIBs),their urgent handling is required for environmental protection and resource reutilization.However,at present,substantial spent power ...With the approaching of large-scale retirement of power lithium-ion batteries(LIBs),their urgent handling is required for environmental protection and resource reutilization.However,at present,substantial spent power batteries,especially for those high recovery value cathode materials,have not been greenly,sustainably,and efficiently recycled.Compared to the traditional recovery method for cathode materials with high energy consumption and severe secondary pollution,the direct repair regeneration,as a new type of short-process and efficient treatment methods,has attracted widespread attention.However,it still faces challenges in homogenization repair,electrochemical performance decline,and scaling-up production.To promote the direct regeneration technology development of failed NCM materials,herein we deeply discuss the failure mechanism of nickel-cobalt-manganese(NCM)ternary cathode materials,including element loss,Li/Ni mixing,phase transformation,structural defects,oxygen release,and surface degradation and reconstruction.Based on this,the detailed analysis and summary of the direct regeneration method embracing solid-phase sintering,eutectic salt assistance,solvothermal synthesis,sol-gel process,spray drying,and redox mediation are provided.Further,the upcycling strategy for regeneration materials,such as single-crystallization and high-nickelization,structural regulation,ion doping,and surface engineering,are discussed in deep.Finally,the challenges faced by the direct regeneration and corresponding countermeasures are pointed out.Undoubtedly,this review provides valuable guidance for the efficient and high-value recovery of failed cathode materials.展开更多
The cobalt-free Mn-based Li-rich layered oxide material has the advantages of low cost,high energy density,and good performance at low temperatures,and is the promising choice for energy storage batteries.However,the ...The cobalt-free Mn-based Li-rich layered oxide material has the advantages of low cost,high energy density,and good performance at low temperatures,and is the promising choice for energy storage batteries.However,the long-cycling stability of batteries needs to be improved.Herein,the Mn-based Li-rich cathode materials with small amounts of Li2 MnO3 crystal domains and gradient doping of Al and Ti elements from the surface to the bulk have been developed to improve the structure and interface stability.Then the batteries with a high energy density of 600 Wh kg^(-1),excellent capacity retention of 99.7%with low voltage decay of 0.03 mV cycle^(-1) after 800 cycles,and good rates performances can be achieved.Therefore,the structure and cycling stability of low voltage Mn-based Li-rich cathode materials can be significantly improved by the bulk structure design and interface regulation,and this work has paved the way for developing low-cost and high-energy Mn-based energy storage batteries with long lifetime.展开更多
The development of lithium-ion batteries with high-energy densities is substantially hampered by the graphite anode's low theoretical capacity(372 mAh g^(-1)).There is an urgent need to explore novel anode materia...The development of lithium-ion batteries with high-energy densities is substantially hampered by the graphite anode's low theoretical capacity(372 mAh g^(-1)).There is an urgent need to explore novel anode materials for lithium-ion batteries.Silicon(Si),the second-largest element outside of Earth,has an exceptionally high specific capacity(3579 mAh g^(-1)),regarded as an excellent choice for the anode material in high-capacity lithium-ion batteries.However,it is low intrinsic conductivity and volume amplification during service status,prevented it from developing further.These difficulties can be successfully overcome by incorporating carbon into pure Si systems to form a composite anode and constructing a buffer structure.This review looks at the diffusion mechanism,various silicon-based anode material configurations(including sandwich,core-shell,yolk-shell,and other 3D mesh/porous structures),as well as the appropriate binders and electrolytes.Finally,a summary and viewpoints are offered on the characteristics and structural layout of various structures,metal/non-metal doping,and the compatibility and application of various binders and electrolytes for silicon-based anodes.This review aims to provide valuable insights into the research and development of silicon-based carbon anodes for high-performance lithium-ion batteries,as well as their integration with binders and electrolyte.展开更多
A tunable oxidization and reduction strategy was proposed to directly regenerate spent LiFePO_(4)/C cathode materials by oxidizing excessive carbon powders with the addition of FePO_(4).Experimental results indicate t...A tunable oxidization and reduction strategy was proposed to directly regenerate spent LiFePO_(4)/C cathode materials by oxidizing excessive carbon powders with the addition of FePO_(4).Experimental results indicate that spent LiFePO_(4)/C cathode materials with good performance can be regenerated by roasting at 650℃ for 11 h with the addition ofLi_(2)CO_(3),FePO_(4),V_(2)O_(5),and glucose.V_(2)O_(5) is added to improve the cycle performance of regenerated cathode materials.Glucose is used to revitalize the carbon layers on the surface of spent LiFePO_(4)/C particles for improving their conductivity.The regenerated V-doped LiFePO_(4)/C shows an excellent electrochemical performance with the discharge specific capacity of 161.36 mA·h/g at 0.2C,under which the capacity retention is 97.85%after 100 cycles.展开更多
As energy demands continue to rise in modern society,the development of high-performance lithium-ion batteries(LIBs)has become crucial.However,traditional research methods of material science face challenges such as l...As energy demands continue to rise in modern society,the development of high-performance lithium-ion batteries(LIBs)has become crucial.However,traditional research methods of material science face challenges such as lengthy timelines and complex processes.In recent years,the integration of machine learning(ML)in LIB materials,including electrolytes,solid-state electrolytes,and electrodes,has yielded remarkable achievements.This comprehensive review explores the latest applications of ML in predicting LIB material performance,covering the core principles and recent advancements in three key inverse material design strategies:high-throughput virtual screening,global optimization,and generative models.These strategies have played a pivotal role in fostering LIB material innovations.Meanwhile,the paper briefly discusses the challenges associated with applying ML to materials research and offers insights and directions for future research.展开更多
To accelerate the development of lithium-ion batteries(LIBs),researchers should urgently exploit next-generation electrodes with high specific capacity,long cycle stability,and excellent rate performance,such as TMOs,...To accelerate the development of lithium-ion batteries(LIBs),researchers should urgently exploit next-generation electrodes with high specific capacity,long cycle stability,and excellent rate performance,such as TMOs,silicon-based materials,and alloys.Among all the modification measures,hierarchical micro-nano structure and yolk–shell structure are considered suitable and effective ways to improve the electrochemical performance of those novel materials.Herein,a facile glucose-assisted solvothermal method combined with heat treatment was implemented to synthesize hierarchical micro-nano yolk–shell V_(2)O_(3).The special-structured material exhibited higher specific capacity,better structure stability,and faster electrochemical kinetics compared with nanosheet-structured and micro-nano-cluster-structured V_(2)O_(3).When used as an anode for LIB,mnYS-V_(2)O_(3)delivered high specific capacity of 650.1 mA h g^(-1)after over 500 cycles at a current density of 100 mA g^(-1),with a retention of 93.4%.Moreover,the morphology evolution mechanism of micro-nano structure and yolk–shell structure was investigated in this work,which is beneficial to the design of other mnYS-structured TMOs.展开更多
For the diagnostics and health management of lithium-ion batteries,numerous models have been developed to understand their degradation characteristics.These models typically fall into two categories:data-driven models...For the diagnostics and health management of lithium-ion batteries,numerous models have been developed to understand their degradation characteristics.These models typically fall into two categories:data-driven models and physical models,each offering unique advantages but also facing limitations.Physics-informed neural networks(PINNs)provide a robust framework to integrate data-driven models with physical principles,ensuring consistency with underlying physics while enabling generalization across diverse operational conditions.This study introduces a PINN-based approach to reconstruct open circuit voltage(OCV)curves and estimate key ageing parameters at both the cell and electrode levels.These parameters include available capacity,electrode capacities,and lithium inventory capacity.The proposed method integrates OCV reconstruction models as functional components into convolutional neural networks(CNNs)and is validated using a public dataset.The results reveal that the estimated ageing parameters closely align with those obtained through offline OCV tests,with errors in reconstructed OCV curves remaining within 15 mV.This demonstrates the ability of the method to deliver fast and accurate degradation diagnostics at the electrode level,advancing the potential for precise and efficient battery health management.展开更多
Exploring electrode materials with larger capacity,higher power density and longer cycle life was critical for developing advanced flexible lithium-ion batteries(LIBs).Herein,we used a controlled two-step method inclu...Exploring electrode materials with larger capacity,higher power density and longer cycle life was critical for developing advanced flexible lithium-ion batteries(LIBs).Herein,we used a controlled two-step method including electrospraying followed with calcination treatment by CVD furnace to design novel electrodes of Si/Si_(x)/C and Sn/C microrods array consisting of nanospheres on flexible carbon cloth substrate(denoted as Si/Si_(x)/C@CC,Sn/C@CC).Microrods composed of cumulated nanospheres(the diameter was approximately 120 nm)had a mean diameter of approximately 1.5μm and a length of around 4.0μm,distributing uniformly along the entire woven carbon fibers.Both of Si/Si/Si_(x)/C@CC and Sn/C@CC products were synthesized as binder-free anodes for Li-ion battery with the features of high reversible capacity and excellent cycling.Especially Si/Six/C electrode exhibited high specific capacity of about 1750 mA∙h∙g^(−1)at 0.5 A∙g^(−1)and excellent cycling ability even after 1050 cycles with a capacity of 1388 mA∙h∙g^(−1).Highly flexible Si/Si_(x)/C@CC//LiCoO_(2)batteries based on liquid and solid electrolytes were also fabricated,exhibiting high flexibility,excellent electrical stability and potential applications in flexible wearable electronics.展开更多
The implementation of ultrahigh-Ni cathodes in high-energy lithium-ion batteries(LIBs)is constrained by significant structural and interfacial degradation during cycling.In this study,doping-induced surface restructur...The implementation of ultrahigh-Ni cathodes in high-energy lithium-ion batteries(LIBs)is constrained by significant structural and interfacial degradation during cycling.In this study,doping-induced surface restructuring in ultrahigh-nickel cathode materials is rapidly facilitated through an ultrafast Joule heating method.Density functional theory(DFT)calculations,synchrotron X-ray absorption spectroscopy(XAS),and single-particle force test confirmed the establishment of a stable crystal framework and lattice oxygen,which mitigated H2-H3 phase transitions and improved structural reversibility.Additionally,the Sc doping process exhibits a pinning effect on the grain boundaries,as shown by scanning transmission electron microscopy(STEM),enhancing Li~+diffusion kinetics and decreasing mechanical strain during cycling.The in situ development of a cation-mixing layer at grain boundaries also creates a robust cathode/electrolyte interphase,effectively reducing interfacial parasitic reactions and transition metal dissolution,as validated by STEM and time-of-flight secondary ion mass spectrometry(TOF-SIMS).These synergistic modifications reduce particle cracking and surface/interface degradation,leading to enhanced rate capability,structural integrity,and thermal stability.Consequently,the optimized Sc-modified ultrahigh-Ni cathode(Sc-1)exhibits 93.99%capacity retention after 100 cycles at 1 C(25℃)and87.06%capacity retention after 100 cycles at 1 C(50℃),indicating excellent cycling and thermal stability.By presenting a one-step multifunctional modification approach,this research delivers an extensive analysis of the mechanisms governing the structure,microstructure,and interface properties of nickel-rich layered cathode materials(NCMs).These results underscore the potential of ultrahigh-Ni cathodes as viable candidates for advanced lithium-ion batteries(LIBs)in next-generation electric vehicles(EVs).展开更多
Micro-silicon(Si)anode that features high theoretical capacity and fine tap density is ideal for energy-dense lithiumion batteries.However,the substantial localized mechanical strain caused by the large volume expansi...Micro-silicon(Si)anode that features high theoretical capacity and fine tap density is ideal for energy-dense lithiumion batteries.However,the substantial localized mechanical strain caused by the large volume expansion often results in electrode disintegration and capacity loss.Herein,a microporous Si anode with the SiO_(x)/C layer functionalized all-surface and high tap density(~0.65 g cm^(-3))is developed by the hydrolysis-driven strategy that avoids the common use of corrosive etchants and toxic siloxane reagents.The functionalized inner pore with superior structural stability can effectively alleviate the volume change and enhance the electrolyte contact.Simultaneously,the outer particle surface forms a continuous network that prevents electrolyte parasitic decomposition,disperses the interface stress of Si matrix and facilitates electron/ion transport.As a result,the micron-sized Si anode shows only~9.94 GPa average stress at full lithiation state and delivers an impressive capacity of 901.1 mAh g^(-1)after 500 cycles at 1 A g^(-1).It also performs excellent rate performance of 1123.0 mAh g^(-1)at 5 A g^(-1)and 850.4 at 8 A g^(-1),far exceeding most of reported literatures.Furthermore,when paired with a commercial LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2),the pouch cell demonstrates high capacity and desirable cyclic performance.展开更多
Lithium-ion batteries(LIBs)are an electrochemical energy storage technology that has been widely used for portable electrical devices,electric vehicles,and grid storage,etc.To satisfy the demand for user convenience e...Lithium-ion batteries(LIBs)are an electrochemical energy storage technology that has been widely used for portable electrical devices,electric vehicles,and grid storage,etc.To satisfy the demand for user convenience especially for electric vehicles,the development of a fast-charging technology for LIBs has become a critical focus.In commercial LIBs,the slow kinetics of Li+intercalation into the graphite anode from the electrolyte solution is known as the main restriction for fast-charging.We summarize the recent advances in obtaining fast-charging graphite-based anodes,mainly involving modifications of the electrolyte solution and graphite anode.Specifically,strategies for increasing the ionic conductivity and regulating the Li+solvation/desolvation state in the electrolyte solution,as well as optimizing the fabrication and the intrinsic activity of graphite-based anodes are discussed in detail.This review considers practical ways to obtain fast Li+intercalation kinetics into a graphite anode from the electrolyte as well as analysing progress in the commercialization of fast-charging LIBs.展开更多
In the context of rapid economic development,the pursuit of sustainable energy solutions has become a major challenge.Lithium-ion capacitors(LICs),which integrate the high energy density of lithium-ion batteries with ...In the context of rapid economic development,the pursuit of sustainable energy solutions has become a major challenge.Lithium-ion capacitors(LICs),which integrate the high energy density of lithium-ion batteries with the high power density of supercapacitors,have emerged as promising candidates.However,challenges such as poor capacity matching and limited energy density still hinder their practical application.Carbon nanofibers(CNFs),with their high specific surface area,excellent electrical conductivity,mechanical flexibility,and strong compatibility with active materials,are regarded as ideal electrode frameworks for LICs.This review summarizes key strategies to improve the electrochemical performance of CNF-based LICs,including structural engineering,heteroatom doping,and hybridization with transition metal oxides.The underlying mechanisms of each approach are discussed in detail,with a focus on their roles in improving capacitance,energy density,and cycling stability.This review aims to provide insights into material design and guide future research toward high-performance LICs for next-generation energy storage applications.展开更多
Energy storage is a key factor in the drive for carbon neutrality and carbon nanotubes(CNTs)may have an important role in this.Their intrinsic sp2 covalent structure gives them excellent electrical conductivity,mechan...Energy storage is a key factor in the drive for carbon neutrality and carbon nanotubes(CNTs)may have an important role in this.Their intrinsic sp2 covalent structure gives them excellent electrical conductivity,mechanical strength,and chemical stability,making them suitable for many uses in energy storage,such as lithium-ion batteries(LIBs).Currently,their use in LIBs mainly focuses on conductive networks,current collectors,and dry electrodes.The review outlines advances in the use of CNTs in the cathodes and anodes of LIBs,especially in the electrode fabrication and mechanical sensors,as well as providing insights into their future development.展开更多
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(No.2022M3H4A6A0103720142)the National Research Council of Science&Technology(NST)grant by the Korea government(MSIT)(No.GTL24011-000)+1 种基金the Technology Innovation Program(RS-2024-00404165)through the Korea Planning&Evaluation Institute of Industrial Technology(KEIT)funded by the Ministry of Trade,Industry&Energy(MOTIE,Korea)supported by the Samsung SDI Co.Ltd.and the Korea Institute of Science and Technology(KIST)institutional program(2E33942,2E3394B)。
文摘Strategies for achieving high-energy-density lithium-ion batteries include using high-capacity materials such as high-nickel NCM,increasing the active material content in the electrode by utilizing high-conductivity carbon nanotubes(CNT)conductive materials,and electrode thickening.However,these methods are still limited due to the limitation in the capacity of high-nickel NCM,aggregation of CNT conductive materials,and nonuniform material distribution of thick-film electrodes,which ultimately damage the mechanical and electrical integrity of the electrode,leading to a decrease in electrochemical performance.Here,we present an integrated binder-CNT composite dispersion solution to realize a high-solids-content(>77 wt%)slurry for high-mass-loading electrodes and to mitigate the migration of binder and conductive additives.Indeed,the approach reduces solvent usage by approximately 30%and ensures uniform conductive additive-binder domain distribution during electrode manufacturing,resulting in improved coating quality and adhesive strength for high-mass-loading electrodes(>12 mAh cm^(−2)).In terms of various electrode properties,the presented electrode showed low resistance and excellent electrochemical properties despite the low CNT contents of 0.6 wt%compared to the pristine-applied electrode with 0.85 wt%CNT contents.Moreover,our strategy enables faster drying,which increases the coating speed,thereby offering potential energy savings and supporting carbon neutrality in wet-based electrode manufacturing processes.
基金the financial support from the Key Project of Shaanxi Provincial Natural Science Foundation-Key Project of Laboratory(2025SYS-SYSZD-117)the Natural Science Basic Research Program of Shaanxi(2025JCYBQN-125)+8 种基金Young Talent Fund of Xi'an Association for Science and Technology(0959202513002)the Key Industrial Chain Technology Research Program of Xi'an(24ZDCYJSGG0048)the Key Research and Development Program of Xianyang(L2023-ZDYF-SF-077)Postdoctoral Fellowship Program of CPSF(GZC20241442)Shaanxi Postdoctoral Science Foundation(2024BSHSDZZ070)Research Funds for the Interdisciplinary Projects,CHU(300104240913)the Fundamental Research Funds for the Central Universities,CHU(300102385739,300102384201,300102384103)the Scientific Innovation Practice Project of Postgraduate of Chang'an University(300103725063)the financial support from the Australian Research Council。
文摘Lithium-ion batteries(LIBs),while dominant in energy storage due to high energy density and cycling stability,suffer from severe capacity decay,rate capability degradation,and lithium dendrite formation under low-temperature(LT)operation.Therefore,a more comprehensive and systematic understanding of LIB behavior at LT is urgently required.This review article comprehensively reviews recent advancements in electrolyte engineering strategies aimed at improving the low-temperature operational capabilities of LIBs.The study methodically examines critical performance-limiting mechanisms through fundamental analysis of four primary challenges:insufficient ionic conductivity under cryogenic conditions,kinetically hindered charge transfer processes,Li+transport limitations across the solidelectrolyte interphase(SEI),and uncontrolled lithium dendrite growth.The work elaborates on innovative optimization approaches encompassing lithium salt molecular design with tailored dissociation characteristics,solvent matrix optimization through dielectric constant and viscosity regulation,interfacial engineering additives for constructing low-impedance SEI layers,and gel-polymer composite electrolyte systems.Notably,particular emphasis is placed on emerging machine learning-guided electrolyte formulation strategies that enable high-throughput virtual screening of constituent combinations and prediction of structure-property relationships.These artificial intelligence-assisted rational design frameworks demonstrate significant potential for accelerating the development of next-generation LT electrolytes by establishing quantitative composition-performance correlations through advanced data-driven methodologies.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korean government(MSIT)(No.NRF-2021M3H4A1A02048529)the Ministry of Trade,Industry and Energy(MOTIE)of the Korean government under grant No.RS-2022-00155854support from the DGIST Supercomputing and Big Data Center.
文摘To enhance the electrochemical performance of lithium-ion battery anodes with higher silicon content,it is essential to engineer their microstructure for better lithium-ion transport and mitigated volume change as well.Herein,we suggest an effective approach to control the micropore structure of silicon oxide(SiO_(x))/artificial graphite(AG)composite electrodes using a perforated current collector.The electrode features a unique pore structure,where alternating high-porosity domains and low-porosity domains markedly reduce overall electrode resistance,leading to a 20%improvement in rate capability at a 5C-rate discharge condition.Using microstructure-resolved modeling and simulations,we demonstrate that the patterned micropore structure enhances lithium-ion transport,mitigating the electrolyte concentration gradient of lithium-ion.Additionally,perforating current collector with a chemical etching process increases the number of hydrogen bonding sites and enlarges the interface with the SiO_(x)/AG composite electrode,significantly improving adhesion strength.This,in turn,suppresses mechanical degradation and leads to a 50%higher capacity retention.Thus,regularly arranged micropore structure enabled by the perforated current collector successfully improves both rate capability and cycle life in SiO_(x)/AG composite electrodes,providing valuable insights into electrode engineering.
基金supported by the National Natural Science Foundation of China(NSFC)under Grant(No.51677058).
文摘Precisely estimating the state of health(SOH)of lithium-ion batteries is essential for battery management systems(BMS),as it plays a key role in ensuring the safe and reliable operation of battery systems.However,current SOH estimation methods often overlook the valuable temperature information that can effectively characterize battery aging during capacity degradation.Additionally,the Elman neural network,which is commonly employed for SOH estimation,exhibits several drawbacks,including slow training speed,a tendency to become trapped in local minima,and the initialization of weights and thresholds using pseudo-random numbers,leading to unstable model performance.To address these issues,this study addresses the challenge of precise and effective SOH detection by proposing a method for estimating the SOH of lithium-ion batteries based on differential thermal voltammetry(DTV)and an SSA-Elman neural network.Firstly,two health features(HFs)considering temperature factors and battery voltage are extracted fromthe differential thermal voltammetry curves and incremental capacity curves.Next,the Sparrow Search Algorithm(SSA)is employed to optimize the initial weights and thresholds of the Elman neural network,forming the SSA-Elman neural network model.To validate the performance,various neural networks,including the proposed SSA-Elman network,are tested using the Oxford battery aging dataset.The experimental results demonstrate that the method developed in this study achieves superior accuracy and robustness,with a mean absolute error(MAE)of less than 0.9%and a rootmean square error(RMSE)below 1.4%.
文摘Electrospinning technology has emerged as a promising method for fabricating flexible lithium-ion batter-ies(FLIBs)due to its ability to create materials with desir-able properties for energy storage applications.FLIBs,which are foldable and have high energy densities,are be-coming increasingly important as power sources for wear-able devices,flexible electronics,and mobile energy applica-tions.Carbon materials,especially carbon nanofibers,are pivotal in improving the performance of FLIBs by increas-ing electrical conductivity,chemical stability,and surface area,as well as reducing costs.These materials also play a significant role in establishing conducting networks and im-proving structural integrity,which are essential for extend-ing the cycle life and enhancing the safety of the batteries.This review considers the role of electrospinning in the fabrication of critical FLIB components,with a particular emphasis on the integration of carbon materials.It explores strategies to optimize FLIB performance by fine-tuning the electrospinning para-meters,such as electric field strength,spinning rate,solution concentration,and carbonization process.Precise control over fiber properties is crucial for enhancing battery reliability and stability during folding and bending.It also highlights the latest research findings in carbon-based electrode materials,high-performance electrolytes,and separator structures,discussing the practical challenges and opportunities these materials present.It underscores the significant impact of carbon materials on the evolution of FLIBs and their potential to shape future energy storage technologies.
基金Xiamen Science and Technology Project,Grant/Award Number:3502Z20231057National Key Research and Development Program of China,Grant/Award Number:3502Z20231057National Natural Science Foundation of China,Grant/Award Numbers:22279107,22288102。
文摘Carbon nanotubes(CNTs)have many excellent properties that make them ideally suited for use in lithium-ion batteries(LIBs).In this review,the recent research on applications of CNTs in LIBs,including their usage as freestanding anodes,conductive additives,and current collectors,are discussed.Challenges,strategies,and progress are analyzed by selecting typical examples.Particularly,when CNTs are used with relatively large mass fractions,the relevant interfacial electrochemistry in such a CNT-based electrode,which dictates the quality of the resulting solid-electrolyte interface,becomes a concern.Hence,in this review the different lithium-ion adsorption and insertion mechanisms inside and outside of CNTs are compared;the influence of not only CNT structural features(including their length,defect density,diameter,and wall thickness)but also the electrolyte composition on the solid-electrolyte interfacial reactions is analyzed in detail.Strategies to optimize the solid-solid interface between CNTs and the other solid components in various composite electrodes are also covered.By emphasizing the importance of such a structure-performance relationship,the merits and weaknesses of various applications of CNTs in various advanced LIBs are clarified.
基金the National Key R&D Plan of the Ministry of Science and Technology of China(2022YFE0122400)National Natural Science Foundation of China(52002238,22102207)+1 种基金Science and Technology Commission of Shanghai Municipality(22ZR1423800,21ZR1465200,23ZR1423600)Shanghai Municipal Education Commission and the NSRF via the Program Management Unit for Human Resources&Institutional Development,Research and Innovation(B49G680115).
文摘Silicon stands as a key anode material in lithium-ion battery ascribing to its high energy density.Nevertheless,the poor rate performance and limited cycling life remain unresolved through conventional approaches that involve carbon composites or nanostructures,primarily due to the un-controllable effects arising from the substantial formation of a solid electrolyte interphase(SEI)during the cycling.Here,an ultra-thin and homogeneous Ti doping alumina oxide catalytic interface is meticulously applied on the porous Si through a synergistic etching and hydrolysis process.This defect-rich oxide interface promotes a selective adsorption of fluoroethylene carbonate,leading to a catalytic reaction that can be aptly described as“molecular concentration-in situ conversion”.The resultant inorganic-rich SEI layer is electrochemical stable and favors ion-transport,particularly at high-rate cycling and high temperature.The robustly shielded porous Si,with a large surface area,achieves a high initial Coulombic efficiency of 84.7%and delivers exceptional high-rate performance at 25 A g^(−1)(692 mAh g^(−1))and a high Coulombic efficiency of 99.7%over 1000 cycles.The robust SEI constructed through a precious catalytic layer promises significant advantages for the fast development of silicon-based anode in fast-charging batteries.
基金financially supported by the National Key Research and Development Program of China(2023YFB3809300)。
文摘With the approaching of large-scale retirement of power lithium-ion batteries(LIBs),their urgent handling is required for environmental protection and resource reutilization.However,at present,substantial spent power batteries,especially for those high recovery value cathode materials,have not been greenly,sustainably,and efficiently recycled.Compared to the traditional recovery method for cathode materials with high energy consumption and severe secondary pollution,the direct repair regeneration,as a new type of short-process and efficient treatment methods,has attracted widespread attention.However,it still faces challenges in homogenization repair,electrochemical performance decline,and scaling-up production.To promote the direct regeneration technology development of failed NCM materials,herein we deeply discuss the failure mechanism of nickel-cobalt-manganese(NCM)ternary cathode materials,including element loss,Li/Ni mixing,phase transformation,structural defects,oxygen release,and surface degradation and reconstruction.Based on this,the detailed analysis and summary of the direct regeneration method embracing solid-phase sintering,eutectic salt assistance,solvothermal synthesis,sol-gel process,spray drying,and redox mediation are provided.Further,the upcycling strategy for regeneration materials,such as single-crystallization and high-nickelization,structural regulation,ion doping,and surface engineering,are discussed in deep.Finally,the challenges faced by the direct regeneration and corresponding countermeasures are pointed out.Undoubtedly,this review provides valuable guidance for the efficient and high-value recovery of failed cathode materials.
基金supported by the National Key R&D Program of China(No.2022YFB2404400)the National Natural Science Foundation of China(Nos.U23A20577,52372168,92263206 and 21975006)+1 种基金the“The Youth Beijing Scholars program”(No.PXM2021_014204_000023)the Beijing Natural Science Foundation(Nos.2222001 and KM202110005009).
文摘The cobalt-free Mn-based Li-rich layered oxide material has the advantages of low cost,high energy density,and good performance at low temperatures,and is the promising choice for energy storage batteries.However,the long-cycling stability of batteries needs to be improved.Herein,the Mn-based Li-rich cathode materials with small amounts of Li2 MnO3 crystal domains and gradient doping of Al and Ti elements from the surface to the bulk have been developed to improve the structure and interface stability.Then the batteries with a high energy density of 600 Wh kg^(-1),excellent capacity retention of 99.7%with low voltage decay of 0.03 mV cycle^(-1) after 800 cycles,and good rates performances can be achieved.Therefore,the structure and cycling stability of low voltage Mn-based Li-rich cathode materials can be significantly improved by the bulk structure design and interface regulation,and this work has paved the way for developing low-cost and high-energy Mn-based energy storage batteries with long lifetime.
基金supported by National Natural Science Foundation of China(No.22205182)National Science Fund for Distinguished Young Scholars(No.52025034)+2 种基金China Postdoctoral Science Foundation(Nos.2022M722594/2024T171170)Guangdong Basic and Applied Basic Research Foundation(No.2024A1515011516)financially supported by Innovation Team of Shaanxi Sanqin Scholars。
文摘The development of lithium-ion batteries with high-energy densities is substantially hampered by the graphite anode's low theoretical capacity(372 mAh g^(-1)).There is an urgent need to explore novel anode materials for lithium-ion batteries.Silicon(Si),the second-largest element outside of Earth,has an exceptionally high specific capacity(3579 mAh g^(-1)),regarded as an excellent choice for the anode material in high-capacity lithium-ion batteries.However,it is low intrinsic conductivity and volume amplification during service status,prevented it from developing further.These difficulties can be successfully overcome by incorporating carbon into pure Si systems to form a composite anode and constructing a buffer structure.This review looks at the diffusion mechanism,various silicon-based anode material configurations(including sandwich,core-shell,yolk-shell,and other 3D mesh/porous structures),as well as the appropriate binders and electrolytes.Finally,a summary and viewpoints are offered on the characteristics and structural layout of various structures,metal/non-metal doping,and the compatibility and application of various binders and electrolytes for silicon-based anodes.This review aims to provide valuable insights into the research and development of silicon-based carbon anodes for high-performance lithium-ion batteries,as well as their integration with binders and electrolyte.
基金National Natural Science Foundation of China(Nos.52174269,52374293)Science and Technology Innovation Program of Hunan Province,China(Nos.2024CK1009,2022RC1123)。
文摘A tunable oxidization and reduction strategy was proposed to directly regenerate spent LiFePO_(4)/C cathode materials by oxidizing excessive carbon powders with the addition of FePO_(4).Experimental results indicate that spent LiFePO_(4)/C cathode materials with good performance can be regenerated by roasting at 650℃ for 11 h with the addition ofLi_(2)CO_(3),FePO_(4),V_(2)O_(5),and glucose.V_(2)O_(5) is added to improve the cycle performance of regenerated cathode materials.Glucose is used to revitalize the carbon layers on the surface of spent LiFePO_(4)/C particles for improving their conductivity.The regenerated V-doped LiFePO_(4)/C shows an excellent electrochemical performance with the discharge specific capacity of 161.36 mA·h/g at 0.2C,under which the capacity retention is 97.85%after 100 cycles.
基金supported by the National Natural Science Foundation of China(Grant Nos.22225801,W2441009,22408228)。
文摘As energy demands continue to rise in modern society,the development of high-performance lithium-ion batteries(LIBs)has become crucial.However,traditional research methods of material science face challenges such as lengthy timelines and complex processes.In recent years,the integration of machine learning(ML)in LIB materials,including electrolytes,solid-state electrolytes,and electrodes,has yielded remarkable achievements.This comprehensive review explores the latest applications of ML in predicting LIB material performance,covering the core principles and recent advancements in three key inverse material design strategies:high-throughput virtual screening,global optimization,and generative models.These strategies have played a pivotal role in fostering LIB material innovations.Meanwhile,the paper briefly discusses the challenges associated with applying ML to materials research and offers insights and directions for future research.
基金supported by the National Natural Science Foundation of China(NSFC No.52372200)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.KYCX23_0360).
文摘To accelerate the development of lithium-ion batteries(LIBs),researchers should urgently exploit next-generation electrodes with high specific capacity,long cycle stability,and excellent rate performance,such as TMOs,silicon-based materials,and alloys.Among all the modification measures,hierarchical micro-nano structure and yolk–shell structure are considered suitable and effective ways to improve the electrochemical performance of those novel materials.Herein,a facile glucose-assisted solvothermal method combined with heat treatment was implemented to synthesize hierarchical micro-nano yolk–shell V_(2)O_(3).The special-structured material exhibited higher specific capacity,better structure stability,and faster electrochemical kinetics compared with nanosheet-structured and micro-nano-cluster-structured V_(2)O_(3).When used as an anode for LIB,mnYS-V_(2)O_(3)delivered high specific capacity of 650.1 mA h g^(-1)after over 500 cycles at a current density of 100 mA g^(-1),with a retention of 93.4%.Moreover,the morphology evolution mechanism of micro-nano structure and yolk–shell structure was investigated in this work,which is beneficial to the design of other mnYS-structured TMOs.
基金supported by the Beijing Natural Science Foundation(Grant No.L223013)。
文摘For the diagnostics and health management of lithium-ion batteries,numerous models have been developed to understand their degradation characteristics.These models typically fall into two categories:data-driven models and physical models,each offering unique advantages but also facing limitations.Physics-informed neural networks(PINNs)provide a robust framework to integrate data-driven models with physical principles,ensuring consistency with underlying physics while enabling generalization across diverse operational conditions.This study introduces a PINN-based approach to reconstruct open circuit voltage(OCV)curves and estimate key ageing parameters at both the cell and electrode levels.These parameters include available capacity,electrode capacities,and lithium inventory capacity.The proposed method integrates OCV reconstruction models as functional components into convolutional neural networks(CNNs)and is validated using a public dataset.The results reveal that the estimated ageing parameters closely align with those obtained through offline OCV tests,with errors in reconstructed OCV curves remaining within 15 mV.This demonstrates the ability of the method to deliver fast and accurate degradation diagnostics at the electrode level,advancing the potential for precise and efficient battery health management.
基金support from the National Nature Science Foundation of China(Grant No.52273256).
文摘Exploring electrode materials with larger capacity,higher power density and longer cycle life was critical for developing advanced flexible lithium-ion batteries(LIBs).Herein,we used a controlled two-step method including electrospraying followed with calcination treatment by CVD furnace to design novel electrodes of Si/Si_(x)/C and Sn/C microrods array consisting of nanospheres on flexible carbon cloth substrate(denoted as Si/Si_(x)/C@CC,Sn/C@CC).Microrods composed of cumulated nanospheres(the diameter was approximately 120 nm)had a mean diameter of approximately 1.5μm and a length of around 4.0μm,distributing uniformly along the entire woven carbon fibers.Both of Si/Si/Si_(x)/C@CC and Sn/C@CC products were synthesized as binder-free anodes for Li-ion battery with the features of high reversible capacity and excellent cycling.Especially Si/Six/C electrode exhibited high specific capacity of about 1750 mA∙h∙g^(−1)at 0.5 A∙g^(−1)and excellent cycling ability even after 1050 cycles with a capacity of 1388 mA∙h∙g^(−1).Highly flexible Si/Si_(x)/C@CC//LiCoO_(2)batteries based on liquid and solid electrolytes were also fabricated,exhibiting high flexibility,excellent electrical stability and potential applications in flexible wearable electronics.
基金supported by the National Key R&D Program of China(2022YFB3803501)the National Natural Science Foundation of China(22179008,22209156)+5 种基金support from the Beijing Nova Program(20230484241)support from the China Postdoctoral Science Foundation(2024M754084)the Postdoctoral Fellowship Program of CPSF(GZB20230931)support from beamline BL08U1A of Shanghai Synchrotron Radiation Facility(2024-SSRF-PT-506950)beamline 1W1B of the Beijing Synchrotron Radiation Facility(2021-BEPC-PT-006276)support from Initial Energy Science&Technology Co.,Ltd(IEST)。
文摘The implementation of ultrahigh-Ni cathodes in high-energy lithium-ion batteries(LIBs)is constrained by significant structural and interfacial degradation during cycling.In this study,doping-induced surface restructuring in ultrahigh-nickel cathode materials is rapidly facilitated through an ultrafast Joule heating method.Density functional theory(DFT)calculations,synchrotron X-ray absorption spectroscopy(XAS),and single-particle force test confirmed the establishment of a stable crystal framework and lattice oxygen,which mitigated H2-H3 phase transitions and improved structural reversibility.Additionally,the Sc doping process exhibits a pinning effect on the grain boundaries,as shown by scanning transmission electron microscopy(STEM),enhancing Li~+diffusion kinetics and decreasing mechanical strain during cycling.The in situ development of a cation-mixing layer at grain boundaries also creates a robust cathode/electrolyte interphase,effectively reducing interfacial parasitic reactions and transition metal dissolution,as validated by STEM and time-of-flight secondary ion mass spectrometry(TOF-SIMS).These synergistic modifications reduce particle cracking and surface/interface degradation,leading to enhanced rate capability,structural integrity,and thermal stability.Consequently,the optimized Sc-modified ultrahigh-Ni cathode(Sc-1)exhibits 93.99%capacity retention after 100 cycles at 1 C(25℃)and87.06%capacity retention after 100 cycles at 1 C(50℃),indicating excellent cycling and thermal stability.By presenting a one-step multifunctional modification approach,this research delivers an extensive analysis of the mechanisms governing the structure,microstructure,and interface properties of nickel-rich layered cathode materials(NCMs).These results underscore the potential of ultrahigh-Ni cathodes as viable candidates for advanced lithium-ion batteries(LIBs)in next-generation electric vehicles(EVs).
基金supported by the National Natural Science Foundation of China Projects(Nos.52271213,52202299).
文摘Micro-silicon(Si)anode that features high theoretical capacity and fine tap density is ideal for energy-dense lithiumion batteries.However,the substantial localized mechanical strain caused by the large volume expansion often results in electrode disintegration and capacity loss.Herein,a microporous Si anode with the SiO_(x)/C layer functionalized all-surface and high tap density(~0.65 g cm^(-3))is developed by the hydrolysis-driven strategy that avoids the common use of corrosive etchants and toxic siloxane reagents.The functionalized inner pore with superior structural stability can effectively alleviate the volume change and enhance the electrolyte contact.Simultaneously,the outer particle surface forms a continuous network that prevents electrolyte parasitic decomposition,disperses the interface stress of Si matrix and facilitates electron/ion transport.As a result,the micron-sized Si anode shows only~9.94 GPa average stress at full lithiation state and delivers an impressive capacity of 901.1 mAh g^(-1)after 500 cycles at 1 A g^(-1).It also performs excellent rate performance of 1123.0 mAh g^(-1)at 5 A g^(-1)and 850.4 at 8 A g^(-1),far exceeding most of reported literatures.Furthermore,when paired with a commercial LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2),the pouch cell demonstrates high capacity and desirable cyclic performance.
文摘Lithium-ion batteries(LIBs)are an electrochemical energy storage technology that has been widely used for portable electrical devices,electric vehicles,and grid storage,etc.To satisfy the demand for user convenience especially for electric vehicles,the development of a fast-charging technology for LIBs has become a critical focus.In commercial LIBs,the slow kinetics of Li+intercalation into the graphite anode from the electrolyte solution is known as the main restriction for fast-charging.We summarize the recent advances in obtaining fast-charging graphite-based anodes,mainly involving modifications of the electrolyte solution and graphite anode.Specifically,strategies for increasing the ionic conductivity and regulating the Li+solvation/desolvation state in the electrolyte solution,as well as optimizing the fabrication and the intrinsic activity of graphite-based anodes are discussed in detail.This review considers practical ways to obtain fast Li+intercalation kinetics into a graphite anode from the electrolyte as well as analysing progress in the commercialization of fast-charging LIBs.
文摘In the context of rapid economic development,the pursuit of sustainable energy solutions has become a major challenge.Lithium-ion capacitors(LICs),which integrate the high energy density of lithium-ion batteries with the high power density of supercapacitors,have emerged as promising candidates.However,challenges such as poor capacity matching and limited energy density still hinder their practical application.Carbon nanofibers(CNFs),with their high specific surface area,excellent electrical conductivity,mechanical flexibility,and strong compatibility with active materials,are regarded as ideal electrode frameworks for LICs.This review summarizes key strategies to improve the electrochemical performance of CNF-based LICs,including structural engineering,heteroatom doping,and hybridization with transition metal oxides.The underlying mechanisms of each approach are discussed in detail,with a focus on their roles in improving capacitance,energy density,and cycling stability.This review aims to provide insights into material design and guide future research toward high-performance LICs for next-generation energy storage applications.
文摘Energy storage is a key factor in the drive for carbon neutrality and carbon nanotubes(CNTs)may have an important role in this.Their intrinsic sp2 covalent structure gives them excellent electrical conductivity,mechanical strength,and chemical stability,making them suitable for many uses in energy storage,such as lithium-ion batteries(LIBs).Currently,their use in LIBs mainly focuses on conductive networks,current collectors,and dry electrodes.The review outlines advances in the use of CNTs in the cathodes and anodes of LIBs,especially in the electrode fabrication and mechanical sensors,as well as providing insights into their future development.