Lysosomal acid lipase-deficiency(LAL-D)is a rare and systemic condition,secondary to lipase A gene mutations,responsible for lysosomal accumulation of cholesteryl esters and triglycerides in many tissues.It is a very ...Lysosomal acid lipase-deficiency(LAL-D)is a rare and systemic condition,secondary to lipase A gene mutations,responsible for lysosomal accumulation of cholesteryl esters and triglycerides in many tissues.It is a very heterogeneous disease in terms of the age of onset,severity,and the type of clinical and radiological manifestations.Dyslipidemia,hepatomegaly,and hepatosteatosis with increased levels of transaminases are the most common features.In association with liver dysfunction and evolution to cirrhosis,there is an increased risk of premature atherosclerosis and cardiovascular disorders,secondary to a generalized alteration of lipid profile and lipoprotein dysfunction associated with LAL-D.Therefore,we provide an update on the frequently under-recognized LAL-D,focusing on the late-onset form:Cholesteryl ester storage disease.展开更多
The preparation of immobilized enzyme with excellent performance is one of the difficulties that restrict the application of enzyme catalysis technology.Here,Candida rugosa lipase(CRL)was firstly adsorbed on the surfa...The preparation of immobilized enzyme with excellent performance is one of the difficulties that restrict the application of enzyme catalysis technology.Here,Candida rugosa lipase(CRL)was firstly adsorbed on the surface of magnetic zeolitic imidazolate framework-8(ZIF-8)nanospheres,which was further encapsulated with a mesoporous SiO_(2)nano-membrane formed by tetraethyl orthosilicate(TEOS)polycondensation.Consequently,lipase could be firmly immobilized on carrier surface by physical binding rather than chemical binding,which did not damage the active conformation of enzyme.There were mesopores on the silica nano-membrane,which could improve the accessibility of enzyme and its apparent catalytic activity.Moreover,silica membrane encapsulation could also improve the stability of enzyme,suggesting an effective enzyme immobilization strategy.It showed that TEOS amount and the encapsulation time had significant effects on the thickness of silica membrane and the enzyme activity.The analysis in enzyme activity and protein secondary structure showed that lipase encapsulated in silica membrane retained the active conformation to the greatest extent.Compared with the adsorbed lipase,the encapsulated lipase increased its thermostability by 3 times and resistance to chemical denaturants by 7 times.The relative enzyme activity remained around 80%after 8 repetitions,while the adsorbed lipase only remained at7.3%.展开更多
Background:The prediction of postoperative pancreatic fistula(POPF)is important.This study aimed to investigate the role of postoperative serum lipase level in predicting POPF.Methods:Data from 234 consecutive patient...Background:The prediction of postoperative pancreatic fistula(POPF)is important.This study aimed to investigate the role of postoperative serum lipase level in predicting POPF.Methods:Data from 234 consecutive patients who underwent pancreaticoduodenectomy(PD)were collected.The predictive values of serum amylase and serum lipase during postoperative days(PODs)1 to 3 for POPF were compared.Subgroup analyses were performed to determine the prognostic value of different levels and durations of elevated serum lipase.Results:Fifty-six patients developed POPF.The POPF group exhibited increased levels of serum amylase and lipase from PODs 1 to 3(all P<0.001).Compared with serum amylase,serum lipase has greater predictive value for POPF.Specifically,serum lipase had the highest area under the receiver operating characteristic curve(AUC)at POD 1(0.791).Body mass index>24 kg/m2[odds ratio(OR)=2.431,95%confidence interval(CI):1.094–5.404,P=0.029],soft pancreatic texture(OR=3.189,95%CI:1.263–8.056,P=0.014),serum lipase>60 U/L at POD 1(OR=5.135,95%CI:1.257–20.982,P=0.023),and C-reactive protein>167 mg/dL at POD 3(OR=3.607,95%CI:1.431–9.090,P=0.007)were identified as independent risk factors for POPF.Patients with serum lipase≤60 U/L at POD 1(n=104)exhibited lower rates of POPF(3.8%vs.40.0%,P<0.001)and severe complications(Clavien-Dindo≥IIIa)(4.8%vs.25.4%,P<0.001)than those with serum lipase>60 U/L at POD 1.Moreover,no additional elevation or duration of serum lipase offered any further prognostic value.Conclusions:Postoperative serum lipase outperformed serum amylase in the prediction of POPF,and patients with normal serum lipase level at POD 1 had favorable outcomes.A sustained increase in the serum lipase level offers no additional prognostic value.展开更多
Male reproductive development is necessary for the alternation of the life cycle in angiosperms.Due to functional redundancy of genes in the allohexaploid genome of common wheat,there are only two loci of recessive nu...Male reproductive development is necessary for the alternation of the life cycle in angiosperms.Due to functional redundancy of genes in the allohexaploid genome of common wheat,there are only two loci of recessive nuclear genic male sterility(GMS)mutations reported in wheat.Here,we report a new wheat recessive GMS gene,Ta Ms6,which encodes a GDSL esterase/lipase protein(GELP).Ta Ms6 is predominantly expressed in the anther during meiosis and the unicellular microspore stage,especially in meiotic cells(MCs),dyad cells,tapetum,and middle layer.The loss of Ta Ms6 function leads to male sterility,likely due to the downregulation of some pollen development-related genes and changes in lipid composition during meiosis.The ms6 mutant and Ms6 gene can potentially be utilized for developing commercialscale hybrid wheat breeding systems.We also systematically analyzed the GELP gene family in wheat,providing a comprehensive understanding of the Ta GELP family and offering valuable references for indepth genetic studies.Additionally,we discovered the nonallelic noncomplementation of two malesterile mutants,which presents an interesting and promising research direction.展开更多
Extreme environmental conditions such as temperature fluctuations,drought,and pathogen attacks can significantly impact plant growth,development,and productivity.Plants have evolved intricate enzymatic systems to miti...Extreme environmental conditions such as temperature fluctuations,drought,and pathogen attacks can significantly impact plant growth,development,and productivity.Plants have evolved intricate enzymatic systems to mitigate these stresses,among which GDSL esterase/lipase proteins(GELPs)―key members of the serine esterase/lipase superfamily―play important roles(Akoh et al.,2004).Characterized by a conserved GDSL motif and four essential amino acids(serine,glycine,asparagine,and histidine),GELPs exhibit versatile catalytic functions in lipid metabolism,cell wall modification,and stress responses(Ursache et al.,2021;Shen et al.,2022).展开更多
Diglycerol(DAG)is a structural lipid with the functions to lower body fat accumulation and decrease serum triglyceride level.However,the enzymatic synthesis of DAG is limited by the high-efficient and economic lipases...Diglycerol(DAG)is a structural lipid with the functions to lower body fat accumulation and decrease serum triglyceride level.However,the enzymatic synthesis of DAG is limited by the high-efficient and economic lipases.In this paper,the immobilized lipase PS@LXTE-1000 was self-made by immobilizing the Pseudomomas cepacian lipase on to the hydrophobic microporous resin LXTE-1000.The results indicate that LXTE-1000 was a uniform mesoporous sphere with the mean diameter of 400μm,pore size of 14.6 nm,pore volume of 0.5 cm3/g and surface area of 126.0 m^(2)/g,showing superior structural properties for lipase immobilization.Under the optimal reaction conditions with the molar ratio of rapeseed oil to glycerol being 1:1,adding amount of immobilized lipase being 4%,reaction at 50℃,the highest DAG content of 46.7%was achieved in 3 h via enzymatic glycerolysis catalyzed by LXTE-1000.After 7 cycles of reuse,the self-made LXTE-1000 could still retain 78.3%of its initial catalytic ability.Besides,LXTE-1000 was observed to facilitate the DAG production via glycerolysis reaction between glycerol with other seven edible oils including corn oil,sesame oil,peony seed oil,rice bran oil,peanut oil,soybean oil and flaxseed oil.Specifically,the glycerolysis reaction with sesame oil,peony seed oil and rice bran oil even led to the DAG content of 52.1%,53.3%and 51.2%,respectively,Hence,this paper provide a novel strategy to produce high-efficient and economic immobilized lipases,which shows great potential in the green synthesis of functional lipids such as DAG.展开更多
Alkane-based biodiesel is considered the next generation of biodiesel owing to its potential environmental benefits and the fact that it exhibits much higher specific caloric values than traditional biodiesel.However,...Alkane-based biodiesel is considered the next generation of biodiesel owing to its potential environmental benefits and the fact that it exhibits much higher specific caloric values than traditional biodiesel.However,the formidable obstacle impeding the commercialization of this cutting-edge fuel alternative lies in the cost associated with its production.In this study,an engineered strain Escherichia coli(E.coli)showcasing harmonized coexpression of a lipase(from Thermomyces lanuginosus lipase,TLL)and a fatty acid photodecarboxylase(from Chlorella variabilis,CvFAP)was first constructed to transform triglycerides into alkanes.The potential of E.coli BL21(DE3)/pRSFDuet-1-TLL-CvFAP for alkane synthesis was evaluated with tripalmitin as a model substrate under various process conditions.Following a comprehensive examination of the reaction parameters,the scope of the biotransformation was expanded to‘real’substrates(vegetable oils).The results showed that bioderived oils can be transformed into alkanes with high yields(0.80-10.20 mmol·L^(-1))under mild conditions(35℃,pH 8.0,and 36 h)and blue light illumination.The selected processes were performed on an increased lab scale(up to 100 ml)with up to 24.77 mmol·L^(-1) tripalmitin,leading to a yield of 18.89 mmol·L^(-1) pentadecane.With the employment of a method for efficiently producing alkanes under mild conditions and a simple procedure to isolate alkanes from the reaction system,the utilization of sustainable biomass as a fundamental feedstock emerges as the primary solution to lower the cost of alkane-based biodiesel.Thus,this study proposes a readily implementable and highly effective approach for alkane-based biodiesel production.展开更多
Carboxyl ester lipase(CEL),a pivotal enzyme involved in lipid metabolism,is recurrently mutated in obese mice.Here,we aimed to elucidate the functional significance,molecular mechanism,and therapeutic potential of CEL...Carboxyl ester lipase(CEL),a pivotal enzyme involved in lipid metabolism,is recurrently mutated in obese mice.Here,we aimed to elucidate the functional significance,molecular mechanism,and therapeutic potential of CEL in metabolic dysfunction-associated steatohepatitis(MASH).Hepatocyte-specific carboxyl ester lipase gene(Cel)knockout(Cel^(DHEP))and wildtype(WT)littermates were fed with cholinedeficient high-fat diet(CD-HFD)for 16 weeks,or methionine-and choline-deficient diet(MCD)for three weeks to induce MASH.Liquid chromatography–mass spectrometry and co-immunoprecipitation were employed to identify the downstream targets of CEL.CD-HFD/MCD-fed WT mice received intravenous injections of CEL-adeno-associated viral,serotype 8(AAV8)to induce specific overexpression of CEL in the liver.We observed a decrease in CEL protein levels in MASH induced by CD-HFD or MCD in mice.Cel^(DHEP) mice fed with CD-HFD or MCD exhibited pronounced hepatic steatosis,inflammation,lipid peroxidation,and liver injury compared to WT littermates,accompanied by increased hepatic nuclear factor kappa-light-chain-enhancer of activated B cell(NF-jB)activation.Consistently,Cel knockdown in mouse primary hepatocytes and AML12 cells aggravated lipid accumulation and inflammation,whereas CEL overexpression exerted the opposite effect.Mechanistically,CEL directly bound to fatty acid synthase(FASN),resulting in reduced FASN SUMOylation,which in turn promoted FASN degradation through the proteasome pathway.Furthermore,inhibition of FASN ameliorated hepatocyte lipid accumulation and inflammation induced by Cel knockdown in vivo and in vitro.Hepatocyte-specific CEL overexpression using AAV8-Cel significantly mitigated steatohepatitis in mice fed with CD-HFD or MCD.CEL protects against steatohepatitis development by directly interacting with FASN and suppressing its expression for de novo lipogenesis.CEL overexpression confers a therapeutic benefit in steatohepatitis.展开更多
The Thermomyces lanuginosus lipase(TLLs)was successfully immobilized within a novel hydrogel matrix through a two-step crosslinking method.TLLs were initially crosslinked through the Schiff base reaction by oxidized c...The Thermomyces lanuginosus lipase(TLLs)was successfully immobilized within a novel hydrogel matrix through a two-step crosslinking method.TLLs were initially crosslinked through the Schiff base reaction by oxidized carboxymethyl cellulose(OCMC).The water-soluble OCMC@TLLs complex was subsequently crosslinked by carboxymethyl chitosan(CMCSH)in a microfluidic apparatus to form the CMCHS/OCMC@TLLs microspheres.The CD(Circular Dichroism,CD)and FT-IR(Fourier Transform infrared spectroscopy,FT-IR)spectra demonstrated that the crosslinking of TLLs with OCMC resulted in a less significant impact on their structure compared to that with glutaraldehyde.CMCHS/OCMC@TLLs showed decreased catalytic performance due to the mass transfer resistance,while its thermal stability was greatly improved.The CMCHS/OCMC@TLLs were used to catalyze the lauroylation of arbutin in tetrahydrofuran.After 12 h of reaction under optimal conditions,the yield of 6′-O-lauryl arbutin reached an impres-sive 92.12%.The prepared 6′-O-lauryl arbutin has high lipophilicity and exhibits similar tyrosinase inhibitory activity and higher antioxidant activity compared to its parent compound.展开更多
[Objective] The aim of this study was to investigate the prokaryotic expression of pseudomonas aeruginosa Lipase gene.[Method]Lipase gene was amplified by PCR from the genome DNA of pseudomonas aeruginosa,and its nucl...[Objective] The aim of this study was to investigate the prokaryotic expression of pseudomonas aeruginosa Lipase gene.[Method]Lipase gene was amplified by PCR from the genome DNA of pseudomonas aeruginosa,and its nucleotide sequence was determined.The prokaryotic expression vector of Lipase gene was constructed by the gene recombination technique.The protein expression was induced for 4 hours by IPTG with the final concentration of 1.0 mmol/L,and then SDS-PAGE electrophoresis was analyzed.[Result]The sequence of mature peptides in Lipase gene cloned from pseudomonas aeruginosa had a 99.36% homology with that of pseudomonas aeruginosa lipase submitted in NCBI,so the prokaryotic expression vector of Lipase gene pET32a-Lip was successfully constructed.Furthermore,the results of SDS-PAGE electrophoresis showed that the target gene was expressed highly and effectively.[Conclusion]The cloned pseudomonas aeruginosa lipase with its signal peptide could be normally expressed in E.coli and also used for further study.展开更多
Objective: To investigate the association between the mutations in lipoprotein lipase gene and hypertriglyceridemia (HTG). Methods: The lipoprotein lipase (LPL) gene was screened for mutations in 386 Chinese sub...Objective: To investigate the association between the mutations in lipoprotein lipase gene and hypertriglyceridemia (HTG). Methods: The lipoprotein lipase (LPL) gene was screened for mutations in 386 Chinese subjects with (108 cases in the HTG group) or without HTG (278 cases in the control group), by single-strand conformation polymorphism (SSCP) analysis and DNA sequencing. Results: One novel silent mutation L103L, one missense mutation P207L, three splicing mutations Int3/3' -ass/C(-6)→T, and the common S447X polymorphism has been identified in the whole coding region and exon-intron junctions of the LPL gene were examined. Heterozygous P207L found in the HTG group was the first case reported in Asia and subsequently another P207L heterozygote was found in the proband's family, all of which suggested that P207L was one of the causes of familial combined hyperlipidemia, but was not so prevalent as that in French Canadian. Int3/3'-ass/C(-6)→T was found in both groups in the present study although it was regarded as a pathogenic variant to HTG earlier on. Moreover about the beneficial polymorphism S447X, there was also some supportive evidence that the levels of triglycerides (TG) in S447X carriers were significantly lower than noncarders in the subjects without HTG. Conclusions: The association between the LPL variants and HTG is quite complicated and versatile, genotyping of LPL in a larger-scale screening should be necessary and justifiable.展开更多
Strain of Pseudomonas Lip35 producing lipase was isolated in a refrigerator. Lipase production and characterization of this strain were investigated under different conditions. The Pseudomonas was cultivated in shakin...Strain of Pseudomonas Lip35 producing lipase was isolated in a refrigerator. Lipase production and characterization of this strain were investigated under different conditions. The Pseudomonas was cultivated in shaking flasks in a fermentation medium in various nutritional and physical environments. Lipase production has been influenced by the presence of yeast-extract, soybean powder, NaCI, and Tween-80. Maximum lipase productivity was obtained when the physical environment of the fermentation medium was optimal for 67 h. The production of lipase reached 58.9 U·mL^-1. The lipase of Pseudomonas Lip35 can be considered to be inducible, but the inducer had little influence on the production of lipase. The lipase was characterized and showed high lipolytic activity from pH 7.5-8.0. The optimum temperature was observed at 20℃ and the thermal inactivation of lipase was obvious at 60℃. The lipase activity was inhibited by K+, stimulated by Ca^2+, and thermostability decreased in the presence of Ca^2+, therefore the lipase was Ca^2+ -dependent cold-adapted enzyme.展开更多
Gullo's syndrome is a newly identified condition characterized by a chronic elevation of pancreatic amylase and/or lipase in the absence of pancreatic disease. Until now, only one case of benign isolated hyperlipa...Gullo's syndrome is a newly identified condition characterized by a chronic elevation of pancreatic amylase and/or lipase in the absence of pancreatic disease. Until now, only one case of benign isolated hyperlipasemia in children has been recorded. We describe two children with benign and not familial increase of serum lipase. Case 1: a six year old girl presented with occasional discovery of serum lipase elevation. Medical history was silent for pancreatic hyperenzymemia. The screening for possible causes for elevated lipase(genetic, autoimmune and infectious diseases) was normal. The serum lipase increased three fold over the upper limit(193 U/L; reference range 0-60 U/L), with daily fluctuation of values. Both ultrasound scan and magnetic resonance imaging were normal. The genetic mutation associated with chronic pancreatitis was negative. We followed up this patient for two years with blood tests every six months and she did not show any signs or symptoms of pancreatic disease, except for the high level of lipase serum. Case 2: an eight year old girl complained of nausea, vomiting and severe abdominal pain in theepigastric region after eating for the last two weeks. Full blood count, electrolytes, C-reactive protein, liver and renal function were normal. Serum lipase was 96 U/L(reference range 0-60 U/L). The screening for the possible causes of pancreatic disease was negative. Endoscopy of the upper gastrointestinal tract, ultrasound, computed tomography scan and magnetic resonance imaging were normal. One year after the presentation of the symptoms, the patient became asymptomatic although the level of serum lipase continued to be high.展开更多
Wastewaters from slaughterhouses are characterized by a high concentration of oils and greases that can cause problems in conventional treatments. The degradation of difficult pollutants in more easily degradable prod...Wastewaters from slaughterhouses are characterized by a high concentration of oils and greases that can cause problems in conventional treatments. The degradation of difficult pollutants in more easily degradable products can be mediated by enzymes. Enzymatic hydrolysis facilitates the biodegradation because it makes the organic material is made available as compounds of lower molecular weight, the lipids being made available in the form of free fatty acids. The application of enzymes as processing aids in wastewater treatment has some advantages, such as the specificity that allows control of the products, which leads to increased income generation for the non-toxic byproducts and moderate conditions of operation. The objective of this work was optimizing the conditions for lipids enzymatic hydrolysis present in swine slaughterhouse wastewaters using lipolytic enzymes and subsequent biological treatment study. Temperature, pH and enzyme concentration were the variables tested. The enzymes showed good activity and could therefore be used for the hydrolysis process proposed here. The optimized conditions to maximize the release of fatty acids were: temperature of 36 ℃, pH 8.5 and enzyme concentration of 1.1%, yielding fatty acids in the order of 31.50μmol/mL for lipase and 31.13 μmol/mL for phospholipase. All variables influenced the release of fatty acids. The maximum yield of biogas was 89.65 mL in the reactor added the sludge, raw wastewater and phospholipase in the conditions optimized the hydrolysis step, obtaining a chemical oxygen demand (COD) reduction of 90.01% in relation to the value of the COD of the raw wastewater.展开更多
文摘Lysosomal acid lipase-deficiency(LAL-D)is a rare and systemic condition,secondary to lipase A gene mutations,responsible for lysosomal accumulation of cholesteryl esters and triglycerides in many tissues.It is a very heterogeneous disease in terms of the age of onset,severity,and the type of clinical and radiological manifestations.Dyslipidemia,hepatomegaly,and hepatosteatosis with increased levels of transaminases are the most common features.In association with liver dysfunction and evolution to cirrhosis,there is an increased risk of premature atherosclerosis and cardiovascular disorders,secondary to a generalized alteration of lipid profile and lipoprotein dysfunction associated with LAL-D.Therefore,we provide an update on the frequently under-recognized LAL-D,focusing on the late-onset form:Cholesteryl ester storage disease.
基金the financial supports from the National Natural Science Foundation of China(Nos.22378093,21878065)Natural Science Foundation of Hebei Province,China(No.E2022201100)+2 种基金the Science and Technology Support Plan of Baoding City(No.2241ZF111)the Medical Science Foundation of Hebei University(No.2021A09)the Foundation of Affiliated Hospital of Hebei University(No.2021Z003)。
文摘The preparation of immobilized enzyme with excellent performance is one of the difficulties that restrict the application of enzyme catalysis technology.Here,Candida rugosa lipase(CRL)was firstly adsorbed on the surface of magnetic zeolitic imidazolate framework-8(ZIF-8)nanospheres,which was further encapsulated with a mesoporous SiO_(2)nano-membrane formed by tetraethyl orthosilicate(TEOS)polycondensation.Consequently,lipase could be firmly immobilized on carrier surface by physical binding rather than chemical binding,which did not damage the active conformation of enzyme.There were mesopores on the silica nano-membrane,which could improve the accessibility of enzyme and its apparent catalytic activity.Moreover,silica membrane encapsulation could also improve the stability of enzyme,suggesting an effective enzyme immobilization strategy.It showed that TEOS amount and the encapsulation time had significant effects on the thickness of silica membrane and the enzyme activity.The analysis in enzyme activity and protein secondary structure showed that lipase encapsulated in silica membrane retained the active conformation to the greatest extent.Compared with the adsorbed lipase,the encapsulated lipase increased its thermostability by 3 times and resistance to chemical denaturants by 7 times.The relative enzyme activity remained around 80%after 8 repetitions,while the adsorbed lipase only remained at7.3%.
基金supported by grants from the Chinese Academy of Medical Sciences Innovation Fund for Medical Sciences(2019-I2M-5–056)the National Natural Science Foundation of China(81930119,82090050,and 82090053)。
文摘Background:The prediction of postoperative pancreatic fistula(POPF)is important.This study aimed to investigate the role of postoperative serum lipase level in predicting POPF.Methods:Data from 234 consecutive patients who underwent pancreaticoduodenectomy(PD)were collected.The predictive values of serum amylase and serum lipase during postoperative days(PODs)1 to 3 for POPF were compared.Subgroup analyses were performed to determine the prognostic value of different levels and durations of elevated serum lipase.Results:Fifty-six patients developed POPF.The POPF group exhibited increased levels of serum amylase and lipase from PODs 1 to 3(all P<0.001).Compared with serum amylase,serum lipase has greater predictive value for POPF.Specifically,serum lipase had the highest area under the receiver operating characteristic curve(AUC)at POD 1(0.791).Body mass index>24 kg/m2[odds ratio(OR)=2.431,95%confidence interval(CI):1.094–5.404,P=0.029],soft pancreatic texture(OR=3.189,95%CI:1.263–8.056,P=0.014),serum lipase>60 U/L at POD 1(OR=5.135,95%CI:1.257–20.982,P=0.023),and C-reactive protein>167 mg/dL at POD 3(OR=3.607,95%CI:1.431–9.090,P=0.007)were identified as independent risk factors for POPF.Patients with serum lipase≤60 U/L at POD 1(n=104)exhibited lower rates of POPF(3.8%vs.40.0%,P<0.001)and severe complications(Clavien-Dindo≥IIIa)(4.8%vs.25.4%,P<0.001)than those with serum lipase>60 U/L at POD 1.Moreover,no additional elevation or duration of serum lipase offered any further prognostic value.Conclusions:Postoperative serum lipase outperformed serum amylase in the prediction of POPF,and patients with normal serum lipase level at POD 1 had favorable outcomes.A sustained increase in the serum lipase level offers no additional prognostic value.
基金supported by Shandong Provincial Natural Science Foundation(ZR2022ZD22,ZR2021ZD30,SYS202206)Shandong Agricultural University Dezhou(Qihe)Wheat Research Institute。
文摘Male reproductive development is necessary for the alternation of the life cycle in angiosperms.Due to functional redundancy of genes in the allohexaploid genome of common wheat,there are only two loci of recessive nuclear genic male sterility(GMS)mutations reported in wheat.Here,we report a new wheat recessive GMS gene,Ta Ms6,which encodes a GDSL esterase/lipase protein(GELP).Ta Ms6 is predominantly expressed in the anther during meiosis and the unicellular microspore stage,especially in meiotic cells(MCs),dyad cells,tapetum,and middle layer.The loss of Ta Ms6 function leads to male sterility,likely due to the downregulation of some pollen development-related genes and changes in lipid composition during meiosis.The ms6 mutant and Ms6 gene can potentially be utilized for developing commercialscale hybrid wheat breeding systems.We also systematically analyzed the GELP gene family in wheat,providing a comprehensive understanding of the Ta GELP family and offering valuable references for indepth genetic studies.Additionally,we discovered the nonallelic noncomplementation of two malesterile mutants,which presents an interesting and promising research direction.
基金supported by the National Natural Science Foundation of China(Grant No.32402580)the Science and Technology Program of Guangdong Province(Grant No.2023A0505090005)Modern Seed Industry Innovation Capability Enhancement Project of Guangdong Academy of Agricultural Sciences.
文摘Extreme environmental conditions such as temperature fluctuations,drought,and pathogen attacks can significantly impact plant growth,development,and productivity.Plants have evolved intricate enzymatic systems to mitigate these stresses,among which GDSL esterase/lipase proteins(GELPs)―key members of the serine esterase/lipase superfamily―play important roles(Akoh et al.,2004).Characterized by a conserved GDSL motif and four essential amino acids(serine,glycine,asparagine,and histidine),GELPs exhibit versatile catalytic functions in lipid metabolism,cell wall modification,and stress responses(Ursache et al.,2021;Shen et al.,2022).
基金supported by the National Key Research and Development Project of China(2021YFD2100303)the National Natural Science Foundation of China(32272271,32302021)+2 种基金the Hubei Province Natural Science Foundation of China(2021CFB209,2023AFB324)the Major Project of Hubei Hongshan Laboratory(2022hszd002)Central Public-interest Scientific Institution Basal Research Fund(No.1610172024002).
文摘Diglycerol(DAG)is a structural lipid with the functions to lower body fat accumulation and decrease serum triglyceride level.However,the enzymatic synthesis of DAG is limited by the high-efficient and economic lipases.In this paper,the immobilized lipase PS@LXTE-1000 was self-made by immobilizing the Pseudomomas cepacian lipase on to the hydrophobic microporous resin LXTE-1000.The results indicate that LXTE-1000 was a uniform mesoporous sphere with the mean diameter of 400μm,pore size of 14.6 nm,pore volume of 0.5 cm3/g and surface area of 126.0 m^(2)/g,showing superior structural properties for lipase immobilization.Under the optimal reaction conditions with the molar ratio of rapeseed oil to glycerol being 1:1,adding amount of immobilized lipase being 4%,reaction at 50℃,the highest DAG content of 46.7%was achieved in 3 h via enzymatic glycerolysis catalyzed by LXTE-1000.After 7 cycles of reuse,the self-made LXTE-1000 could still retain 78.3%of its initial catalytic ability.Besides,LXTE-1000 was observed to facilitate the DAG production via glycerolysis reaction between glycerol with other seven edible oils including corn oil,sesame oil,peony seed oil,rice bran oil,peanut oil,soybean oil and flaxseed oil.Specifically,the glycerolysis reaction with sesame oil,peony seed oil and rice bran oil even led to the DAG content of 52.1%,53.3%and 51.2%,respectively,Hence,this paper provide a novel strategy to produce high-efficient and economic immobilized lipases,which shows great potential in the green synthesis of functional lipids such as DAG.
基金financially supported by the National Natural Science Foundation of China(42376097)Guangdong Basic and Applied Basic Research Foundation(2023A1515030226,2021A1515010829).
文摘Alkane-based biodiesel is considered the next generation of biodiesel owing to its potential environmental benefits and the fact that it exhibits much higher specific caloric values than traditional biodiesel.However,the formidable obstacle impeding the commercialization of this cutting-edge fuel alternative lies in the cost associated with its production.In this study,an engineered strain Escherichia coli(E.coli)showcasing harmonized coexpression of a lipase(from Thermomyces lanuginosus lipase,TLL)and a fatty acid photodecarboxylase(from Chlorella variabilis,CvFAP)was first constructed to transform triglycerides into alkanes.The potential of E.coli BL21(DE3)/pRSFDuet-1-TLL-CvFAP for alkane synthesis was evaluated with tripalmitin as a model substrate under various process conditions.Following a comprehensive examination of the reaction parameters,the scope of the biotransformation was expanded to‘real’substrates(vegetable oils).The results showed that bioderived oils can be transformed into alkanes with high yields(0.80-10.20 mmol·L^(-1))under mild conditions(35℃,pH 8.0,and 36 h)and blue light illumination.The selected processes were performed on an increased lab scale(up to 100 ml)with up to 24.77 mmol·L^(-1) tripalmitin,leading to a yield of 18.89 mmol·L^(-1) pentadecane.With the employment of a method for efficiently producing alkanes under mild conditions and a simple procedure to isolate alkanes from the reaction system,the utilization of sustainable biomass as a fundamental feedstock emerges as the primary solution to lower the cost of alkane-based biodiesel.Thus,this study proposes a readily implementable and highly effective approach for alkane-based biodiesel production.
基金supported by the National Natural Science Foundation of China(82222901,82103355,and 82272619)the Innovation and Technology Fund—Guangdong–Hong Kong Technology Cooperation Funding Scheme(GHP/086/21GD)+4 种基金the Research Grants Council(RGC)Theme-based Research Scheme(T12-703/19-R)the Research Grants Council-General Research Fund(14117422 and 14117123)the Health and Medical Research Fund,Hong Kong(08191336 and 07210097)the CUHK Research Startup Fund(FPU/2023/149)the Natural Science Foundation of Fujian Province(2020J01122587).
文摘Carboxyl ester lipase(CEL),a pivotal enzyme involved in lipid metabolism,is recurrently mutated in obese mice.Here,we aimed to elucidate the functional significance,molecular mechanism,and therapeutic potential of CEL in metabolic dysfunction-associated steatohepatitis(MASH).Hepatocyte-specific carboxyl ester lipase gene(Cel)knockout(Cel^(DHEP))and wildtype(WT)littermates were fed with cholinedeficient high-fat diet(CD-HFD)for 16 weeks,or methionine-and choline-deficient diet(MCD)for three weeks to induce MASH.Liquid chromatography–mass spectrometry and co-immunoprecipitation were employed to identify the downstream targets of CEL.CD-HFD/MCD-fed WT mice received intravenous injections of CEL-adeno-associated viral,serotype 8(AAV8)to induce specific overexpression of CEL in the liver.We observed a decrease in CEL protein levels in MASH induced by CD-HFD or MCD in mice.Cel^(DHEP) mice fed with CD-HFD or MCD exhibited pronounced hepatic steatosis,inflammation,lipid peroxidation,and liver injury compared to WT littermates,accompanied by increased hepatic nuclear factor kappa-light-chain-enhancer of activated B cell(NF-jB)activation.Consistently,Cel knockdown in mouse primary hepatocytes and AML12 cells aggravated lipid accumulation and inflammation,whereas CEL overexpression exerted the opposite effect.Mechanistically,CEL directly bound to fatty acid synthase(FASN),resulting in reduced FASN SUMOylation,which in turn promoted FASN degradation through the proteasome pathway.Furthermore,inhibition of FASN ameliorated hepatocyte lipid accumulation and inflammation induced by Cel knockdown in vivo and in vitro.Hepatocyte-specific CEL overexpression using AAV8-Cel significantly mitigated steatohepatitis in mice fed with CD-HFD or MCD.CEL protects against steatohepatitis development by directly interacting with FASN and suppressing its expression for de novo lipogenesis.CEL overexpression confers a therapeutic benefit in steatohepatitis.
基金supported by the Youth Foundation of Southeast University ChengXian College(z0055).
文摘The Thermomyces lanuginosus lipase(TLLs)was successfully immobilized within a novel hydrogel matrix through a two-step crosslinking method.TLLs were initially crosslinked through the Schiff base reaction by oxidized carboxymethyl cellulose(OCMC).The water-soluble OCMC@TLLs complex was subsequently crosslinked by carboxymethyl chitosan(CMCSH)in a microfluidic apparatus to form the CMCHS/OCMC@TLLs microspheres.The CD(Circular Dichroism,CD)and FT-IR(Fourier Transform infrared spectroscopy,FT-IR)spectra demonstrated that the crosslinking of TLLs with OCMC resulted in a less significant impact on their structure compared to that with glutaraldehyde.CMCHS/OCMC@TLLs showed decreased catalytic performance due to the mass transfer resistance,while its thermal stability was greatly improved.The CMCHS/OCMC@TLLs were used to catalyze the lauroylation of arbutin in tetrahydrofuran.After 12 h of reaction under optimal conditions,the yield of 6′-O-lauryl arbutin reached an impres-sive 92.12%.The prepared 6′-O-lauryl arbutin has high lipophilicity and exhibits similar tyrosinase inhibitory activity and higher antioxidant activity compared to its parent compound.
基金Supported by Subproject of"Development and Utilization of Plant Resources under Special Environment"from the National Project"863"(2007AA021401)Corps Doctoral Foundation of"Study on Transgenic Breeding Technology"(2006JC07)~~
文摘[Objective] The aim of this study was to investigate the prokaryotic expression of pseudomonas aeruginosa Lipase gene.[Method]Lipase gene was amplified by PCR from the genome DNA of pseudomonas aeruginosa,and its nucleotide sequence was determined.The prokaryotic expression vector of Lipase gene was constructed by the gene recombination technique.The protein expression was induced for 4 hours by IPTG with the final concentration of 1.0 mmol/L,and then SDS-PAGE electrophoresis was analyzed.[Result]The sequence of mature peptides in Lipase gene cloned from pseudomonas aeruginosa had a 99.36% homology with that of pseudomonas aeruginosa lipase submitted in NCBI,so the prokaryotic expression vector of Lipase gene pET32a-Lip was successfully constructed.Furthermore,the results of SDS-PAGE electrophoresis showed that the target gene was expressed highly and effectively.[Conclusion]The cloned pseudomonas aeruginosa lipase with its signal peptide could be normally expressed in E.coli and also used for further study.
基金This work was supported by the Grant from Tianjin Municipal Natural Science Foundations (No. 033607311).
文摘Objective: To investigate the association between the mutations in lipoprotein lipase gene and hypertriglyceridemia (HTG). Methods: The lipoprotein lipase (LPL) gene was screened for mutations in 386 Chinese subjects with (108 cases in the HTG group) or without HTG (278 cases in the control group), by single-strand conformation polymorphism (SSCP) analysis and DNA sequencing. Results: One novel silent mutation L103L, one missense mutation P207L, three splicing mutations Int3/3' -ass/C(-6)→T, and the common S447X polymorphism has been identified in the whole coding region and exon-intron junctions of the LPL gene were examined. Heterozygous P207L found in the HTG group was the first case reported in Asia and subsequently another P207L heterozygote was found in the proband's family, all of which suggested that P207L was one of the causes of familial combined hyperlipidemia, but was not so prevalent as that in French Canadian. Int3/3'-ass/C(-6)→T was found in both groups in the present study although it was regarded as a pathogenic variant to HTG earlier on. Moreover about the beneficial polymorphism S447X, there was also some supportive evidence that the levels of triglycerides (TG) in S447X carriers were significantly lower than noncarders in the subjects without HTG. Conclusions: The association between the LPL variants and HTG is quite complicated and versatile, genotyping of LPL in a larger-scale screening should be necessary and justifiable.
基金supported by the Major Program of the Hebei Province Commission of Science and Technology during the 11 th Five-Year-Plan period,China(06220106D)
文摘Strain of Pseudomonas Lip35 producing lipase was isolated in a refrigerator. Lipase production and characterization of this strain were investigated under different conditions. The Pseudomonas was cultivated in shaking flasks in a fermentation medium in various nutritional and physical environments. Lipase production has been influenced by the presence of yeast-extract, soybean powder, NaCI, and Tween-80. Maximum lipase productivity was obtained when the physical environment of the fermentation medium was optimal for 67 h. The production of lipase reached 58.9 U·mL^-1. The lipase of Pseudomonas Lip35 can be considered to be inducible, but the inducer had little influence on the production of lipase. The lipase was characterized and showed high lipolytic activity from pH 7.5-8.0. The optimum temperature was observed at 20℃ and the thermal inactivation of lipase was obvious at 60℃. The lipase activity was inhibited by K+, stimulated by Ca^2+, and thermostability decreased in the presence of Ca^2+, therefore the lipase was Ca^2+ -dependent cold-adapted enzyme.
文摘Gullo's syndrome is a newly identified condition characterized by a chronic elevation of pancreatic amylase and/or lipase in the absence of pancreatic disease. Until now, only one case of benign isolated hyperlipasemia in children has been recorded. We describe two children with benign and not familial increase of serum lipase. Case 1: a six year old girl presented with occasional discovery of serum lipase elevation. Medical history was silent for pancreatic hyperenzymemia. The screening for possible causes for elevated lipase(genetic, autoimmune and infectious diseases) was normal. The serum lipase increased three fold over the upper limit(193 U/L; reference range 0-60 U/L), with daily fluctuation of values. Both ultrasound scan and magnetic resonance imaging were normal. The genetic mutation associated with chronic pancreatitis was negative. We followed up this patient for two years with blood tests every six months and she did not show any signs or symptoms of pancreatic disease, except for the high level of lipase serum. Case 2: an eight year old girl complained of nausea, vomiting and severe abdominal pain in theepigastric region after eating for the last two weeks. Full blood count, electrolytes, C-reactive protein, liver and renal function were normal. Serum lipase was 96 U/L(reference range 0-60 U/L). The screening for the possible causes of pancreatic disease was negative. Endoscopy of the upper gastrointestinal tract, ultrasound, computed tomography scan and magnetic resonance imaging were normal. One year after the presentation of the symptoms, the patient became asymptomatic although the level of serum lipase continued to be high.
文摘Wastewaters from slaughterhouses are characterized by a high concentration of oils and greases that can cause problems in conventional treatments. The degradation of difficult pollutants in more easily degradable products can be mediated by enzymes. Enzymatic hydrolysis facilitates the biodegradation because it makes the organic material is made available as compounds of lower molecular weight, the lipids being made available in the form of free fatty acids. The application of enzymes as processing aids in wastewater treatment has some advantages, such as the specificity that allows control of the products, which leads to increased income generation for the non-toxic byproducts and moderate conditions of operation. The objective of this work was optimizing the conditions for lipids enzymatic hydrolysis present in swine slaughterhouse wastewaters using lipolytic enzymes and subsequent biological treatment study. Temperature, pH and enzyme concentration were the variables tested. The enzymes showed good activity and could therefore be used for the hydrolysis process proposed here. The optimized conditions to maximize the release of fatty acids were: temperature of 36 ℃, pH 8.5 and enzyme concentration of 1.1%, yielding fatty acids in the order of 31.50μmol/mL for lipase and 31.13 μmol/mL for phospholipase. All variables influenced the release of fatty acids. The maximum yield of biogas was 89.65 mL in the reactor added the sludge, raw wastewater and phospholipase in the conditions optimized the hydrolysis step, obtaining a chemical oxygen demand (COD) reduction of 90.01% in relation to the value of the COD of the raw wastewater.