Background:Multi-purpose use of forests in a sustainable way forces a recognition of how introduction of alien woody species in forests with different land use histories affect native plants other than trees.Lingonber...Background:Multi-purpose use of forests in a sustainable way forces a recognition of how introduction of alien woody species in forests with different land use histories affect native plants other than trees.Lingonberry Vaccinium vitis-idaea is an important understory component of temperate and boreal forests and provider of valuable non-wood forest products.Here we studied effects of land use changes and introduction of Northern red oak Quercus rubra on lingonberry in mesic Scots pine forests(in central Poland).We measured lingonberry cover,height of shoots,biomass of stems and leaves,and fruit productivity.Shoots were collected within 200 research plots located in recent and ancient Scots pine forests,with and without Q.rubra.Results:We found that V.vitis-idaea reached lower cover,aboveground biomass and fruit production in recent than ancient forests and in forests with than without Q.rubra.The fruit production in recent pine forest was only 2%of that reported in ancient pine forest,and V.vitis-idaea did not reproduce generatively in forests with Q.rubra.Biomass and carbon sequestration of V.vitis-idaea in forests with alien(invasive)trees decreased by 75%compared to ancient pine forest.Effects were also clear at the individual shoot level–in less suitable conditions we found taller heights and higher biomass allocation into stems than foliage.Biomass allocation in fruiting and non-fruiting shoots in pine forests was also different–less of the dry biomass of fruiting shoots was allocated to leaves than to stems.Conclusions:In the age of high interest in ecosystem services and discussions about usage of alien tree species as alternatives in forest management,our results clearly indicate disruption of ecosystem services provided by V.vitisidaea in the presence of Q.rubra.Lingonberry benefited from the continuity of forest land use,however,regardless of land-use legacy,alien tree introduction led to decline in abundance of species crucial for ecosystem functioning.Therefore,to maintain valuable native species and for conservation of ecosystem services delivery,we suggest limiting the introduction of Q.rubra in areas with abundant V.vitis-idaea,especially in forests with continuous forest land-use history.展开更多
Background:The heartwood(HW)proportion in the trunk of mature trees is an important characteristic not only for wood quality but also for assessing the role of forests in carbon sequestration.We have for the first tim...Background:The heartwood(HW)proportion in the trunk of mature trees is an important characteristic not only for wood quality but also for assessing the role of forests in carbon sequestration.We have for the first time studied the proportion of HW in the trunk and the distribution of carbon and extractives in sapwood(SW)and HW of 70–80 year old Pinus sylvestris L.trees under different growing conditions in the pine forests of North-West Russia.Method:We have examined the influence of conditions and tree position in stand(dominant,intermediate and suppressed trees)in the ecological series:blueberry pine forest(Blu)–lingonberry pine forest(Lin)–lichen pine forest(Lic).We have analyzed the influence of climate conditions in the biogeographical series of Lin:the middle taiga subzone–the northern taiga subzone–the transition area of the northern taiga subzone and tundra.Results:We found that the carbon concentration in HW was 1.6%–3.4%higher than in SW,and the difference depended on growing conditions.Carbon concentration in HW increased with a decrease in stand productivity(Blu-Lin-Lic).In medium-productive stands,the carbon concentration in SW was higher in intermediate and supressed trees compared to dominant trees.In the series from south to north,carbon concentration in HW increased by up to 2%,while in SW,it rose by 2.7%–3.8%.Conclusions:Our results once again emphasized the need for an empirical assessment of the accurate carbon content in aboveground wood biomass,including various forest growing conditions,to better understand the role of boreal forests in carbon storage.展开更多
基金financially supported by the Faculty of Biology and Environmental Protection,University of Lodz and the Institute of Dendrology,Polish Academy of Sciences,Kórnik,Poland。
文摘Background:Multi-purpose use of forests in a sustainable way forces a recognition of how introduction of alien woody species in forests with different land use histories affect native plants other than trees.Lingonberry Vaccinium vitis-idaea is an important understory component of temperate and boreal forests and provider of valuable non-wood forest products.Here we studied effects of land use changes and introduction of Northern red oak Quercus rubra on lingonberry in mesic Scots pine forests(in central Poland).We measured lingonberry cover,height of shoots,biomass of stems and leaves,and fruit productivity.Shoots were collected within 200 research plots located in recent and ancient Scots pine forests,with and without Q.rubra.Results:We found that V.vitis-idaea reached lower cover,aboveground biomass and fruit production in recent than ancient forests and in forests with than without Q.rubra.The fruit production in recent pine forest was only 2%of that reported in ancient pine forest,and V.vitis-idaea did not reproduce generatively in forests with Q.rubra.Biomass and carbon sequestration of V.vitis-idaea in forests with alien(invasive)trees decreased by 75%compared to ancient pine forest.Effects were also clear at the individual shoot level–in less suitable conditions we found taller heights and higher biomass allocation into stems than foliage.Biomass allocation in fruiting and non-fruiting shoots in pine forests was also different–less of the dry biomass of fruiting shoots was allocated to leaves than to stems.Conclusions:In the age of high interest in ecosystem services and discussions about usage of alien tree species as alternatives in forest management,our results clearly indicate disruption of ecosystem services provided by V.vitisidaea in the presence of Q.rubra.Lingonberry benefited from the continuity of forest land use,however,regardless of land-use legacy,alien tree introduction led to decline in abundance of species crucial for ecosystem functioning.Therefore,to maintain valuable native species and for conservation of ecosystem services delivery,we suggest limiting the introduction of Q.rubra in areas with abundant V.vitis-idaea,especially in forests with continuous forest land-use history.
基金carried out within the framework of the most important innovative project of state importance“Development of a system of ground-based and remote monitoring of carbon pools and greenhouse gas fluxes on the territory of the Russian Federation,…”(No.123030300031-6)in the northern taiga subzone and on the border of tundra and taiga under the state assignment of the Forest Institute of the Karelian Research Center of the Russian Academy of Sciences(FMEN-2021-0018)with the partial financial support from RSF(grant no.21-14-00204)。
文摘Background:The heartwood(HW)proportion in the trunk of mature trees is an important characteristic not only for wood quality but also for assessing the role of forests in carbon sequestration.We have for the first time studied the proportion of HW in the trunk and the distribution of carbon and extractives in sapwood(SW)and HW of 70–80 year old Pinus sylvestris L.trees under different growing conditions in the pine forests of North-West Russia.Method:We have examined the influence of conditions and tree position in stand(dominant,intermediate and suppressed trees)in the ecological series:blueberry pine forest(Blu)–lingonberry pine forest(Lin)–lichen pine forest(Lic).We have analyzed the influence of climate conditions in the biogeographical series of Lin:the middle taiga subzone–the northern taiga subzone–the transition area of the northern taiga subzone and tundra.Results:We found that the carbon concentration in HW was 1.6%–3.4%higher than in SW,and the difference depended on growing conditions.Carbon concentration in HW increased with a decrease in stand productivity(Blu-Lin-Lic).In medium-productive stands,the carbon concentration in SW was higher in intermediate and supressed trees compared to dominant trees.In the series from south to north,carbon concentration in HW increased by up to 2%,while in SW,it rose by 2.7%–3.8%.Conclusions:Our results once again emphasized the need for an empirical assessment of the accurate carbon content in aboveground wood biomass,including various forest growing conditions,to better understand the role of boreal forests in carbon storage.