In this article,the viscoelastic damped was equation in three-dimensional cylindrical domain were studied by using a second-order differential inequality.We proved a Phragm´en-Lindelof alternative results,i.e.,th...In this article,the viscoelastic damped was equation in three-dimensional cylindrical domain were studied by using a second-order differential inequality.We proved a Phragm´en-Lindelof alternative results,i.e.,the smooth solutions either grow or decay exponentially as the distance from the entry section tends to infinity.Our results can be seen as a version of the Saint-Venant principle.展开更多
The present paper investigates the asymptotic behavior of solutions for a class of second order inhomogeneous quasilinear equations on a three dimensional semiinfinite cylinder. A Phragmen-Lindelof type alternative is...The present paper investigates the asymptotic behavior of solutions for a class of second order inhomogeneous quasilinear equations on a three dimensional semiinfinite cylinder. A Phragmen-Lindelof type alternative is obtained, i.e., it is shown that in appropriate norms solutions of the equations either grow or decay as some spatial variable tends to infinity.展开更多
基金Supported by the Guangdong Natural Science foundation(2023A1515012044)Special Project of Guangdong Province in Key Fields of Ordinary Colleges and Universities(2023ZDZX4069)+1 种基金the Research Team of Guangzhou Huashang College(2021HSKT01)Guangzhou Huashang College’s Characteristic Research Projects(2024HSTS09)。
文摘In this article,the viscoelastic damped was equation in three-dimensional cylindrical domain were studied by using a second-order differential inequality.We proved a Phragm´en-Lindelof alternative results,i.e.,the smooth solutions either grow or decay exponentially as the distance from the entry section tends to infinity.Our results can be seen as a version of the Saint-Venant principle.
文摘The present paper investigates the asymptotic behavior of solutions for a class of second order inhomogeneous quasilinear equations on a three dimensional semiinfinite cylinder. A Phragmen-Lindelof type alternative is obtained, i.e., it is shown that in appropriate norms solutions of the equations either grow or decay as some spatial variable tends to infinity.