Relic gravitational waves(RGWs)from the early Universe carry crucial and fundamental cosmological information.Therefore,it is of extraordinary importance to investigate potential RGW signals in the data from observato...Relic gravitational waves(RGWs)from the early Universe carry crucial and fundamental cosmological information.Therefore,it is of extraordinary importance to investigate potential RGW signals in the data from observatories such as the LIGO-Virgo-KAGRA network.Here,focusing on typical RGWs from the inflation and the first-order phase transition(by sound waves and bubble collisions),effective and targeted deep learning neural networks are established to search for these RGW signals within the real LIGO data(O2,O3a and O3b).Through adjustment and adaptation processes,we develop suitable Convolutional Neural Networks(CNNs)to estimate the likelihood(characterized by quantitative values and distributions)that the focused RGW signals are present in the LIGO data.We find that if the constructed CNN properly estimates the parameters of the RGWs,it can determine with high accuracy(approximately 94%to 99%)whether the samples contain such RGW signals;otherwise,the likelihood provided by the CNN cannot be considered reliable.After testing a large amount of LIGO data,the findings show no evidence of RGWs from:1)inflation,2)sound waves,or 3)bubble collisions,as predicted by the focused theories.The results also provide upper limits of their GW spectral energy densities of h^(2)Ω_(gw)~10^(-5),respectively for parameter boundaries within 1)[β∈(-1.87,-1.85)×α∈(0.005,0.007)],2)[β/H_(pt)∈(0.02,0.16)×α∈(1,10)×T_(pt)∈(5*10^(9),10^(10))Gev],and 3)[β/H_(pt)∈(0.08,0.2)×α∈(1,10)×T_(pt)∈(5*10^(9),8*10^(10))Gev].In short,null results and upper limits are obtained,and the analysis suggests that our developed methods and neural networks to search for typical RGWs in the LIGO data are effective and reliable,providing a viable scheme for exploring possible RGWs from the early Universe and placing constraints on relevant cosmological theories.展开更多
It is proved strictly based on general relativity that two important factors are neglected in LIGO experiments by using Michelson interferometers so that fatal mistakes were caused. One is that the gravitational wave ...It is proved strictly based on general relativity that two important factors are neglected in LIGO experiments by using Michelson interferometers so that fatal mistakes were caused. One is that the gravitational wave changes the wavelength of light. Another is that light’s speed is not a constant when gravitational waves exist. According to general relativity, gravitational wave affects spatial distance, so it also affects the wavelength of light synchronously. By considering this fact, the phase differences of lasers were invariable when gravitational waves passed through Michelson interferometers. In addition, when gravitational waves exist, the spatial part of metric changes but the time part of metric is unchanged. In this way, light’s speed is not a constant. When the calculation method of time difference is used in LIGO experiments, the phase shift of interference fringes is still zero. So the design principle of LIGO experiment is wrong. It was impossible for LIGO to detect gravitational wave by using Michelson interferometers. Because light’s speed is not a constant, the signals of LIGO experiments become mismatching. It means that these signals are noises actually, caused by occasional reasons, no gravitational waves are detected really. In fact, in the history of physics, Michelson and Morley tried to find the absolute motion of the earth by using Michelson interferometers but failed at last. The basic principle of LIGO experiment is the same as that of Michelson-Morley experiment in which the phases of lights were invariable. Only zero result can be obtained, so LIGO experiments are destined failed to find gravitational waves.展开更多
On September 14, 2015 09:50:45 UTC, the two laser interferometers of the LIGO program simultaneously observed a first gravitational wave signal called GW150914. With the commissioning of the VIRGO interferometer in 20...On September 14, 2015 09:50:45 UTC, the two laser interferometers of the LIGO program simultaneously observed a first gravitational wave signal called GW150914. With the commissioning of the VIRGO interferometer in 2017, two other detections, GW170814 and GW170817, were observed and their positions given accurately by LIGO and VIRGO. In this article, I argue that the photons circulating in the cavities of the three interferometers of LIGO and VIRGO were sensitive to the field of attraction of the planets of our Solar System and more particularly to that of the Sun, and would not be due to a coalescence of black hole or neutron stars. The shape of the signals obtained by my interaction model (called GEAR) between the photons in the interferometer cavity and the gravitational field of the Sun is very similar to that of a compact binary coalescence, identical to those obtained by general relativity. Solving the equations of GEAR also gives the exact positions and pseudo-date of the coalescences of all the LIGO and VIRGO detections detected so far, and probably those that will come at the end of 2018 and beyond.展开更多
The paper proves that due to the existence of electromagnetic interaction, the experiments of LIGO cannot detect gravitational waves. This is also the reason why Weber’s experiments of gravitational waves failed. In ...The paper proves that due to the existence of electromagnetic interaction, the experiments of LIGO cannot detect gravitational waves. This is also the reason why Weber’s experiments of gravitational waves failed. In fact, the formulas of general relativity that gravitational waves affect distances are only suitable for particles in vacuum. LIGO experiments are carried out on the earth. The laser interferometers are fixed on the steel pipes on the earth’s surface in the balanced state of electromagnetic force. Electromagnetic force is 10<sup>40</sup> times greater than gravity. Gravitational waves are too weak to overcome electromagnetic force and change the length of steel pipes. Without considering this factor, the design principle of LIGO experiment has serious problem. The experiments to detect gravitational waves should move to space to avoid the influence of electromagnetic interaction. Besides, LIGO experiments have the following problems. 1) No explosion source of gravitational waves is really founded. 2) The argument that the Einstein’s theory of gravity is verified is a vicious circle and invalid in logic. 3) The results of experiments cause sharp contradiction for the energy currents of gravitational waves. The difference reaches to 10<sup>24</sup> times and is unacceptable. 4) The method of numerical relativity causes great errors due to the existence of singularities. The errors are enlarged by the effect of butterfly due to the non-linearity of Einstein’s equation of gravity. 5) The so-called change of length 10<sup>-18</sup> m between two glasses of interferometers detected in the experiment exceeds the ability of current technique. This kind of precise has entered micro-scalar. The uncertain principle of quantum mechanics makes it impossible. The signs appeared in LIGO experiments are not caused by distance change. 6) LIGO experiments have not detected gravitational waves. What detected may be the signs of disturbances coming from the middle region between two laser interferometers.展开更多
This article presents a new type of whitening filter (allowing the “passing” of some noise sources) applied to process the data recorded in LIGO’s GW150914 and GW151226 events. This new analysis shows that in the G...This article presents a new type of whitening filter (allowing the “passing” of some noise sources) applied to process the data recorded in LIGO’s GW150914 and GW151226 events. This new analysis shows that in the GW150914 event, the signals from the collision of two black holes are very similar to the 32.5 Hz noise sources observed in both of LIGO’s detectors. It also points out that these 32.5 Hz noise sources are powered by a 30 Hz sub harmonic, coming from the 60 Hz power system. In the GW1226 event, the same analysis points out that the NR template is very similar to the 120 Hz noise source. Therefore, the signals recorded in these events were probably generated by some small changes with the 60 Hz frequency in the US power grid. This can be caused, for example, by a power variation in the DC link, which can appear in both detectors in the same 10 ms time window. As this kind of power grid occurrence did not change the voltage levels, it may have gone unnoticed by LIGO’s electrical power supply’s monitoring system.展开更多
基金supported in part by the National Natural Science Foundation of China under Grant Nos.11605015,12347101 and 12147102the Natural Scienceof Chongqing under Grant No.cstc2020jcyjmsxm X0944the Research Funds for the Central Universities under Grant No.2022CDJXY-002。
文摘Relic gravitational waves(RGWs)from the early Universe carry crucial and fundamental cosmological information.Therefore,it is of extraordinary importance to investigate potential RGW signals in the data from observatories such as the LIGO-Virgo-KAGRA network.Here,focusing on typical RGWs from the inflation and the first-order phase transition(by sound waves and bubble collisions),effective and targeted deep learning neural networks are established to search for these RGW signals within the real LIGO data(O2,O3a and O3b).Through adjustment and adaptation processes,we develop suitable Convolutional Neural Networks(CNNs)to estimate the likelihood(characterized by quantitative values and distributions)that the focused RGW signals are present in the LIGO data.We find that if the constructed CNN properly estimates the parameters of the RGWs,it can determine with high accuracy(approximately 94%to 99%)whether the samples contain such RGW signals;otherwise,the likelihood provided by the CNN cannot be considered reliable.After testing a large amount of LIGO data,the findings show no evidence of RGWs from:1)inflation,2)sound waves,or 3)bubble collisions,as predicted by the focused theories.The results also provide upper limits of their GW spectral energy densities of h^(2)Ω_(gw)~10^(-5),respectively for parameter boundaries within 1)[β∈(-1.87,-1.85)×α∈(0.005,0.007)],2)[β/H_(pt)∈(0.02,0.16)×α∈(1,10)×T_(pt)∈(5*10^(9),10^(10))Gev],and 3)[β/H_(pt)∈(0.08,0.2)×α∈(1,10)×T_(pt)∈(5*10^(9),8*10^(10))Gev].In short,null results and upper limits are obtained,and the analysis suggests that our developed methods and neural networks to search for typical RGWs in the LIGO data are effective and reliable,providing a viable scheme for exploring possible RGWs from the early Universe and placing constraints on relevant cosmological theories.
文摘It is proved strictly based on general relativity that two important factors are neglected in LIGO experiments by using Michelson interferometers so that fatal mistakes were caused. One is that the gravitational wave changes the wavelength of light. Another is that light’s speed is not a constant when gravitational waves exist. According to general relativity, gravitational wave affects spatial distance, so it also affects the wavelength of light synchronously. By considering this fact, the phase differences of lasers were invariable when gravitational waves passed through Michelson interferometers. In addition, when gravitational waves exist, the spatial part of metric changes but the time part of metric is unchanged. In this way, light’s speed is not a constant. When the calculation method of time difference is used in LIGO experiments, the phase shift of interference fringes is still zero. So the design principle of LIGO experiment is wrong. It was impossible for LIGO to detect gravitational wave by using Michelson interferometers. Because light’s speed is not a constant, the signals of LIGO experiments become mismatching. It means that these signals are noises actually, caused by occasional reasons, no gravitational waves are detected really. In fact, in the history of physics, Michelson and Morley tried to find the absolute motion of the earth by using Michelson interferometers but failed at last. The basic principle of LIGO experiment is the same as that of Michelson-Morley experiment in which the phases of lights were invariable. Only zero result can be obtained, so LIGO experiments are destined failed to find gravitational waves.
文摘On September 14, 2015 09:50:45 UTC, the two laser interferometers of the LIGO program simultaneously observed a first gravitational wave signal called GW150914. With the commissioning of the VIRGO interferometer in 2017, two other detections, GW170814 and GW170817, were observed and their positions given accurately by LIGO and VIRGO. In this article, I argue that the photons circulating in the cavities of the three interferometers of LIGO and VIRGO were sensitive to the field of attraction of the planets of our Solar System and more particularly to that of the Sun, and would not be due to a coalescence of black hole or neutron stars. The shape of the signals obtained by my interaction model (called GEAR) between the photons in the interferometer cavity and the gravitational field of the Sun is very similar to that of a compact binary coalescence, identical to those obtained by general relativity. Solving the equations of GEAR also gives the exact positions and pseudo-date of the coalescences of all the LIGO and VIRGO detections detected so far, and probably those that will come at the end of 2018 and beyond.
文摘The paper proves that due to the existence of electromagnetic interaction, the experiments of LIGO cannot detect gravitational waves. This is also the reason why Weber’s experiments of gravitational waves failed. In fact, the formulas of general relativity that gravitational waves affect distances are only suitable for particles in vacuum. LIGO experiments are carried out on the earth. The laser interferometers are fixed on the steel pipes on the earth’s surface in the balanced state of electromagnetic force. Electromagnetic force is 10<sup>40</sup> times greater than gravity. Gravitational waves are too weak to overcome electromagnetic force and change the length of steel pipes. Without considering this factor, the design principle of LIGO experiment has serious problem. The experiments to detect gravitational waves should move to space to avoid the influence of electromagnetic interaction. Besides, LIGO experiments have the following problems. 1) No explosion source of gravitational waves is really founded. 2) The argument that the Einstein’s theory of gravity is verified is a vicious circle and invalid in logic. 3) The results of experiments cause sharp contradiction for the energy currents of gravitational waves. The difference reaches to 10<sup>24</sup> times and is unacceptable. 4) The method of numerical relativity causes great errors due to the existence of singularities. The errors are enlarged by the effect of butterfly due to the non-linearity of Einstein’s equation of gravity. 5) The so-called change of length 10<sup>-18</sup> m between two glasses of interferometers detected in the experiment exceeds the ability of current technique. This kind of precise has entered micro-scalar. The uncertain principle of quantum mechanics makes it impossible. The signs appeared in LIGO experiments are not caused by distance change. 6) LIGO experiments have not detected gravitational waves. What detected may be the signs of disturbances coming from the middle region between two laser interferometers.
文摘This article presents a new type of whitening filter (allowing the “passing” of some noise sources) applied to process the data recorded in LIGO’s GW150914 and GW151226 events. This new analysis shows that in the GW150914 event, the signals from the collision of two black holes are very similar to the 32.5 Hz noise sources observed in both of LIGO’s detectors. It also points out that these 32.5 Hz noise sources are powered by a 30 Hz sub harmonic, coming from the 60 Hz power system. In the GW1226 event, the same analysis points out that the NR template is very similar to the 120 Hz noise source. Therefore, the signals recorded in these events were probably generated by some small changes with the 60 Hz frequency in the US power grid. This can be caused, for example, by a power variation in the DC link, which can appear in both detectors in the same 10 ms time window. As this kind of power grid occurrence did not change the voltage levels, it may have gone unnoticed by LIGO’s electrical power supply’s monitoring system.