Research-based on lignin as a bioproduct has grown due to its high availability,reactivity,physicochemical sta-bility,and abundance of different aromatic units.Lignin consists of various functional groups,which can re...Research-based on lignin as a bioproduct has grown due to its high availability,reactivity,physicochemical sta-bility,and abundance of different aromatic units.Lignin consists of various functional groups,which can react in various chemical reactions and serve as a raw material in various processes to obtain multiple products.These characteristics make lignin suitable for synthesizing products from natural raw materials,replacing fossil ones.Due to a high aromatic variety and complex structural arrangement,lignin isolation and fractionation are still challenging.The aim and novelty of this work was the modification of severity and enzymatic hydrolysis proce-dure on an industrial pre-treatment to improve by-products of birch processing as a raw material for the potential production of different products.Lignin from birch wood enzymatic hydrolysis was obtained and marked accord-ingly:HS(high severity),MS(medium severity),and LS(low severity)lignin.Samples were characterized by ash content,analytical pyrolysis,solubility,and viscosity.HS lignin was characterized by a relatively high carbohy-drate content(16%)and lower lignin content(77%).Meanwhile,LS lignin showed increased lignin content(83%)and reduced carbohydrate content(9%).It can be concluded that the delignification process greatly influ-ences the properties of the obtained lignin.HS lignin resulted in a lower polydispersity index(PDI)and more condensed structure,while LS lignin showed a higher PDI but a lower content of carbohydrates.Therefore,look-ing for a golden middle way is necessary whilefinding the conditions according to the usefield.展开更多
With the rapid development of flexible wearable electronics,the demand for stretchable energy storage devices has surged.In this work,a novel gradient-layered architecture was design based on single-pore hollow lignin...With the rapid development of flexible wearable electronics,the demand for stretchable energy storage devices has surged.In this work,a novel gradient-layered architecture was design based on single-pore hollow lignin nanospheres(HLNPs)-intercalated two-dimensional transition metal carbide(Ti_(3)C_(2)T_(x) MXene)for fabricating highly stretchable and durable supercapacitors.By depositing and inserting HLNPs in the MXene layers with a bottom-up decreasing gradient,a multilayered porous MXene structure with smooth ion channels was constructed by reducing the overstacking of MXene lamella.Moreover,the micro-chamber architecture of thin-walled lignin nanospheres effectively extended the contact area between lignin and MXene to improve ion and electron accessibility,thus better utilizing the pseudocapacitive property of lignin.All these strategies effectively enhanced the capacitive performance of the electrodes.In addition,HLNPs,which acted as a protective phase for MXene layer,enhanced mechanical properties of the wrinkled stretchable electrodes by releasing stress through slip and deformation during the stretch-release cycling and greatly improved the structural integrity and capacitive stability of the electrodes.Flexible electrodes and symmetric flexible all-solid-state supercapacitors capable of enduring 600%uniaxial tensile strain were developed with high specific capacitances of 1273 mF cm^(−2)(241 F g^(−1))and 514 mF cm^(−2)(95 F g^(−1)),respectively.Moreover,their capacitances were well preserved after 1000 times of 600%stretch-release cycling.This study showcased new possibilities of incorporating biobased lignin nanospheres in energy storage devices to fabricate stretchable devices leveraging synergies among various two-dimensional nanomaterials.展开更多
Electrochemical conversion of lignin for the production of high-value heterocyclic aromatic compounds has great potential.We demonstrate the targeted synthesis and cation modulation of NiCo_(2)O_(4)spinel nanoboxes,sy...Electrochemical conversion of lignin for the production of high-value heterocyclic aromatic compounds has great potential.We demonstrate the targeted synthesis and cation modulation of NiCo_(2)O_(4)spinel nanoboxes,synthesized via cation exchange and calcination oxidation.These catalysts exhibit excellent efficacy in the electrocatalytic conversion of lignin model compounds,specifically 2-phenoxy-1-phenylethanol,into nitrogen-containing aromatics,achieving high conversion rates and selectivities.These catalysts were synthesized via a cation exchange and calcination oxidation process,using Prussian blue nanocubes as precursors.The porous architecture and polymetallic composition of the NiCo_(2)O_(4)spinel demonstrated superior performance in electrocatalytic oxidative coupling,achieving a 99.2 wt%conversion rate of the 2-phenoxy-1-phenylethanol with selectivities of 37.5 wt%for quinoline derivatives and 31.5 wt%for phenol.Key innovations include the development of a sustainable one-pot synthesis method for quinoline derivatives,the elucidation of a multistage reaction pathway involving CAO bond cleavage,hydroxyaldol condensation,and CAN bond formation,and a deeper mechanistic understanding derived from DFT simulations.This work establishes a new strategy for lignin valorization,offering a sustainable route to produce high-value nitrogen-containing aromatics from renewable biomass under mild conditions,without the need for additional reagents.展开更多
Developing favorable bio-based polymers that replace petroleum-based plastics is an essential environmental demand.Lignin is a by-product of the chemical pulping industry.It is a natural UV protection ingredient in br...Developing favorable bio-based polymers that replace petroleum-based plastics is an essential environmental demand.Lignin is a by-product of the chemical pulping industry.It is a natural UV protection ingredient in broad-spectrum(UVA and UVB)sunscreens.It could be partially and selectively acetylated in a simple,fast,and more reliable process.In this work,a composite film was prepared with UV-resistant properties through a casting method.Bio-based cellulose acetate(CA)was employed as a major matrix while nano-acetylated kraft lignin(AL-NPs)was used as filler during synthesizing UV-shielding films loaded with various amounts(1–5 wt.%)of AL-NPs.Kraft lignin was acetylated through a simple and fast microwave-assisted process using acetic acid as a solvent and acetylating agent.The physicochemical and morphological characteristics of the prepared films were evaluated using different methods,including scanning electron microscopy(SEM),Fourier Transform Infrared Spectroscopy(FTIR),X-ray diffraction analysis(XRD),mechanical testing and contact angle measurement.The UV-Vis spectroscopy optical investigation of the prepared films revealed that AL-NPs in the CA matrix showed strong UV absorption.This feature demonstrated the effectiveness of our research in developing UV-resistant bio-based polymer films.Hence,the prepared films can be considered as successful candidates to be applied in packaging applications.展开更多
Pear(Pyrus bretschneideri)fruit stone cells are primarily composed of lignin and have strongly lignified cell walls.The presence of stone cells has a negative influence on fruit texture and taste,and thus the reductio...Pear(Pyrus bretschneideri)fruit stone cells are primarily composed of lignin and have strongly lignified cell walls.The presence of stone cells has a negative influence on fruit texture and taste,and thus the reduction of stone cell content in pear fruit is a key goal of breeding efforts.However,research into the key transcription factors and regulatory networks associated with pear fruit stone cell formation have been limited.We here used a combination of co-expression network and expression quantitative trait locus(eQTL)analyses in 206 pear cultivars with different stone cell contents to identify relevant genes;these analyses uncovered the gene PbrMYB4,a R2R3 MYB transcription factor gene.There was a strong positive correlation between relative PbrMYB4 expression levels in the fruit flesh and stone cell/lignin contents.Overexpression of PbrMYB4 significantly increased the lignin contents,whereas silencing of PbrMYB4 had the opposite effect,decreasing the contents of lignin.PbrMYB4 overexpression in pear calli significantly promoted lignin biosynthesis.In Arabidopsis thaliana,PbrMYB4 overexpression resulted in increasing lignin deposition,cell wall thickness of vessels and xylary fiber,and accelerating expression level of lignin biosynthetic genes.PbrMYB4 was found to activate 4-Coumarate:Coenzyme A Ligase(Pbr4CL1)by binding to AC-I elements in the promoter regions,as demonstrated with dual-luciferase reporter assays and a yeast one-hybrid assay.These results demonstrated that PbrMYB4 positively regulated lignin biosynthesis in pear fruit stone cells by activating lignin biosynthesis genes.This study improves our understanding of the gene regulatory networks associated with stone cell formation in pear fruit,providing guidance for molecular breeding of pear varieties with low stone cell content.展开更多
With the development of electronics and portable devices,there is a significant drive to develop electrode materials for supercapacitors that are lightweight,economical,and provide high energy and power densities.Lign...With the development of electronics and portable devices,there is a significant drive to develop electrode materials for supercapacitors that are lightweight,economical,and provide high energy and power densities.Lignin-based porous carbons have recently been extensively studied for en-ergy storage applications because of their characteristics of large specific surface area,easy doping,and high conductivity.Significant progress in the synthesis of porous carbons derived from lignin,using different strategies for their preparation and modification with heteroatoms,metal oxides,met-al sulfides,and conductive polymers is considered and their electrochemical performances and ion storage mechanisms are discussed.Considerable fo-cus is directed towards the challenges encountered in using lignin-based por-ous carbons and the ways to optimize specific capacity and energy density for supercapacitor applications.Finally,the limitations of existing technolo-gies and research directions for improving the performance of lignin-based carbons are discussed.展开更多
Biodegradable plastics are types of plastics that can decompose into water and carbon dioxide the actions of living organisms,mostly by bacteria.Generally,biodegradable plastics are obtained from renewable raw materia...Biodegradable plastics are types of plastics that can decompose into water and carbon dioxide the actions of living organisms,mostly by bacteria.Generally,biodegradable plastics are obtained from renewable raw materials,microorganisms,petrochemicals,or a combination of all three.This study aims to develop an innovative bioplastic by combining chitosan and lignin.Bioplastic was prepared by casting method and characterized by measuring the mechanical properties like tensile strength,Young’smodulus,and elongation at break.The chemical structure,together with the interactions among chitosan and lignin and the presence of new chemical bonds,were evaluated by FTIR,while the thermal properties were assessed by thermogravimetric analysis.The water vapor permeability,tests and transparency as well as biodegradability,were also carried out.The results show a tensile strength value of 34.82 MPa,Young’s modulus of 18.54 MPa,and elongation at a break of 2.74%.Moreover,the interaction between chitosan and lignin affects the intensity of the absorption peak,leading to reduced transparency and increased thermal stability.The chitosan/lignin interactions also influence the crystalline size,making it easier to degrade andmore flexible rather than rigid.The contact angle shows the bioplastic’s ability to resist water absorption for 4minutes.In the biodegradation test,the sample began to degrade after 30 days of soil burial test observation.展开更多
Carbon fibres have been produced from hydroxypropyl-modified lignin(TcC)/bio-based polyamide 1010(PA1010)blended filaments.Two grades of PA1010,with different molecular weights and rheological properties,were used for...Carbon fibres have been produced from hydroxypropyl-modified lignin(TcC)/bio-based polyamide 1010(PA1010)blended filaments.Two grades of PA1010,with different molecular weights and rheological properties,were used for blending with TcC.An oxidative thermal stabilisation step was used prior to carbonisation in an inert atmosphere to prevent the fusion of the filaments during the latter step.Thermal stabilisation was not possible using a one-step stabilisation process reported in the literature for lignin and other lignin/synthetic polymer blends.As a consequence,a cyclic process involving an additional isothermal phase at a lower temperature than the precursor filaments’melting point,was introduced to increase the cross-linking reactions between the lignin and polyamide.Thermally stabilised filaments were characterised by DSC,TGA,TGA-FTIR,ATR,and SEM techniques.Polymer rheology and heating rate used during thermal stabilisation influenced the thermal stabilisation process and mechanical properties of the derived filaments.Thermally stabilised filaments using optimised conditions(heating in the air atmosphere at 0.25℃/min to 180℃;isothermal for 1 h,cooling back down to ambient at 5℃/min;heating to 250℃ at 0.25℃/min,isothermal for 2 h)could be successfully carbonised.Carbon fibres pro-duced had void-free morphologies and mechanical properties comparable to similarly thermally stabilised and carbonised polyacrylonitrile(PAN)filaments.展开更多
Tyrosine decarboxylase(TyDC)converts tyrosine to tyramine and plays a crucial role in secondary metabolite reactions,development,and stress responses in plants.Currently,the biological role of TyDC proteins from trees...Tyrosine decarboxylase(TyDC)converts tyrosine to tyramine and plays a crucial role in secondary metabolite reactions,development,and stress responses in plants.Currently,the biological role of TyDC proteins from trees is unknown.This study provided evidence showing that poplar PaTyDC4 functions in wood development and drought stress response.PaTyDC4 is preferentially expressed in wood-forming cells in stems.Overexpression of PaTyDC4 in poplars under the control of a xylem-specific promoter resulted in an increase in the ratio of xylem to phloem width,vessel cell area,and lignin accumulation in the stems.Biochemical assays revealed that PaTyDC4 was a component of the PaC3H17-PaMYB199 module-mediated pathway.In poplar stems,Pa TyDC4 expression was directly suppressed by PaMYB199,which was attenuated by the interaction between PaC3H17 and PaMYB199.In addition,Pa TyDC4 overexpression lines showed stronger drought tolerance than the wild-type lines,with higher photosynthetic capacity and lower levels of H_(2)O_(2).These results indicate that PaTyDC4 promotes xylem differentiation and lignin deposition during secondary growth and confers drought tolerance.Our findings may be useful for the genetic modification of biomass and drought resistance in trees.展开更多
Directed degradation of abundant renewable lignin into small aromatic compounds is crucial for lignin valorization but challenging.The degradation of lignin in natural environments typically involves multienzyme syner...Directed degradation of abundant renewable lignin into small aromatic compounds is crucial for lignin valorization but challenging.The degradation of lignin in natural environments typically involves multienzyme synergy.However,the proteinaceous characteristics of lignin-degrading enzymes restrict their accessibility to certain regions of intricate lignin,resulting in the multienzyme systems being unable to fully demonstrate their effectiveness.Herein,a de novo biomimetic enzyme-nanozyme hybrid system was constructed by combiningλ-MnO_(2) nanozyme with laccase CotA from Bacillus subtilis,aimed at facilitating lignin degradation under mild conditions.The lignin degradation rate of the CotA+λ-MnO_(2) hybrid system was determined to be 25.15%,which was much higher than those of the lignin degradation systems with only laccase CotA(15.32%)orλ-MnO_(2) nanozyme(14.90%).Notably,the proportion of aromatic chemicals in the products derived from the hybrid system reached as much as 48%,which was 41.2%and 118.2%higher than those of the CotA-andλ-MnO_(2)-catalyzed systems,respectively.Analysis of products mapping and lignin structure changes suggested that the higher proportion of aromatic compounds in the CotA+λ-MnO_(2)hybrid system was more likely to benefit from the laccase-mediated methoxylation.Moreover,electron paramagnetic resonance analysis indicated that the intensity and kind of free radicals such as·OH and·O_(2)^(-)are closely linked to the degradation rate and reaction type.This work is the inaugural application of an enzyme-nanozyme hybrid system for lignin degradation,demonstrating the potential of the synergistic interaction between enzyme and nanozyme in the directed degradation of lignin.展开更多
A novel eco-friendly charring agent(L-OH)was successfully synthesized by combining pentaerythritol(PER)with lignin through a simple two-step reaction.The structure of L-OH was characterized using Fourier transform inf...A novel eco-friendly charring agent(L-OH)was successfully synthesized by combining pentaerythritol(PER)with lignin through a simple two-step reaction.The structure of L-OH was characterized using Fourier transform infrared(FTIR),X-ray diffraction(XRD),scanning electron microscopy(SEM)and EDS.In addition,L-OH was introduced into polypropylene(PP)together with melamine(MEL)and ammonium polyphosphate(APP)as an intumescent flame retardant(IFRR).The flame retardancy of PP/IFRR composites were investigated using limited oxygen index(LOI),UL-94,thermogravimetric analysis(TGA)and cone calorimeter(CC)test.The experimental results indicate that the PP/IFRR composites pass the V-0 grade of the UL-94 test when the addition amount of IFRR is no less than 20%,and the LOI value of the composite reaches 32.2%at 30%IFRR addition.The peak heat release rate(PHRR)and peak smoke production rate(PSPR)of the composite decrease by 72.8%and 70.4%compared with pure PP,respectively.The flame retardancy mechanism was investigated by TGA,TG-FTIR and residual carbon analysis.These analyses indicate that L-OH can form a more continuous and dense carbon layer during the combustion process,which is the main factor contributing to the improved flame retardancy of PP.展开更多
Ni-based catalysts are widely applied in the hydrodeoxygenation of lignin derivatives via C-O cleavage for the production of cycloalkanes.However,they often have difficulty in achieving high activity under mild condit...Ni-based catalysts are widely applied in the hydrodeoxygenation of lignin derivatives via C-O cleavage for the production of cycloalkanes.However,they often have difficulty in achieving high activity under mild conditions and exhibit relatively poor stability,and rare studies focus on the cleavage of the stubborn interunit C-C linkages.To address this issue,we developed a Ni@AlPO_(4)/Al_(2)O_(3)catalyst in which the surface of Ni nanoparticles was decorated by AlPO_(4)species,demonstrating excellent catalytic activity and stability in the C-C and C-O cleavages.In the hydrodeoxygenation of guaiacol,this catalyst afforded99.1%conversion and 92.9%yield of cyclohexane under 1 MPa H_(2)at 230℃ for 2 h.More important,this catalyst maintained unchanged performance even after 6 runs with the conversion controlled at about50%,Mecha nistic investigations revealed that the moderate surface coverage of AlPO_(4)on Ni with the formation of Ni^(δ+)-AlPO_(4)interface significantly facilitated the conversion of methoxycyclohexanol and cyclohexanol to cyclohexane,whereas,excess coverage would also block the access to Ni site.Moreover,Ni@AlPO_(4)/Al_(2)O_(3)demonstrated broad applicability in the C-O cleavage of various typical lignin monomers and dimers into cycloalkanes.To our delight,this catalyst also displayed pretty good activity even in the simultaneous cleavage of C-C linkages and C-O bonds for the lignin-derived C-C dimers,achieving cycloalkanes as final products.As a consequence,a 27.1 wt%yield of monocycloalkanes was obtained in the depolymerization of poplar lignin with both C-C and C-O cleavages.展开更多
The emission of organic pollutants from the dye industry and medical treatment represents a significant threat to the quality of water resources and human health.The development of green,environmentally friendly and e...The emission of organic pollutants from the dye industry and medical treatment represents a significant threat to the quality of water resources and human health.The development of green,environmentally friendly and efficient photocatalysts for the removal of organic pollutants from the environment is of paramount importance in addressing these issues.Flower-like lignin-derived carbon(LC)/zinc oxide(ZnO)composites with controllable morphology were synthesized via a direct precipitation method.In this study,alkali lignin was employed as an anionic active agent to alter the molecular arrangement on the liquid surface during the synthesis reaction and to reduce the surface tension between mixtures,thereby forming a special stacked morphology,which was then used for the highly efficient removal of methylidene blue(MB)and tetracycline hydrochloride(TCH)in water under different light conditions.The formation mechanism of LC/ZnO and the degradation characteristics under different reaction conditions were investigated.The loading of LC can form composites with large specific surface area and rich porous structure.In addition,with the help of lignin,the morphology of ZnO was changed from a rod-like structure to a lamellar structure,and LC could effectively reduce the band gap of ZnO,which could improve the electron transfer rate in the photocatalytic process.The·O_(2)^(-)and·OH radicals generated under photoexcitation promoted the decomposition of pollutants.This study presents a simple,economical,and scalable method for the application of photocatalysts and explores new ways for the high-value application of industrial lignin.展开更多
Zinc metal batteries(ZnBs)are poised as the next-generation energy storage solution,complementing lithium-ion batteries,thanks to their costeffectiveness and safety advantages.These benefits originate from the abundan...Zinc metal batteries(ZnBs)are poised as the next-generation energy storage solution,complementing lithium-ion batteries,thanks to their costeffectiveness and safety advantages.These benefits originate from the abundance of zinc and its compatibility with non-flammable aqueous electrolytes.However,the inherent instability of zinc in aqueous environments,manifested through hydrogen evolution reactions(HER)and dendritic growth,has hindered commercialization due to poor cycling stability.Enter potassium polyacrylate(PAAK)-based water-in-polymer salt electrolyte(WiPSE),a novel variant of water-in-salt electrolytes(WiSE),designed to mitigate side reactions associated with water redox processes,thereby enhancing the cyclic stability of ZnBs.In this study,WiPSE was employed in ZnBs featuring lignin and carbon composites as cathode materials.Our research highlights the crucial function of acrylate groups from WiPSE in stabilizing the ionic flux on the surface of the Zn electrode.This stabilization promotes the parallel deposition of Zn along the(002)plane,resulting in a significant reduction in dendritic growth.Notably,our sustainable Zn-lignin battery showcases remarkable cyclic stability,retaining 80%of its initial capacity after 8000 cycles at a high current rate(1 A g^(-1))and maintaining over 75%capacity retention up to 2000 cycles at a low current rate(0.2 A g^(-1)).This study showcases the practical application of WiPSE for the development of low-cost,dendrite-free,and scalable ZnBs.展开更多
Many strategies have been proposed to produce arenes from lignin as liquid fuel additives.However,the development of these methods is limited by the low yield of products,low atom utilization,and inefficient lignin de...Many strategies have been proposed to produce arenes from lignin as liquid fuel additives.However,the development of these methods is limited by the low yield of products,low atom utilization,and inefficient lignin depolymerization.Herein,we develop an energy-efficient synthetic method for the production of high-carbon-number arenes from sustainable lignin with a total yield of 23.1 wt%.Particularly,high carbon number arenes are obtained by fully utilizing the formaldehyde stabilizing additive and the methoxy group in lignin.The process begins with the reductive depolymerization of formaldehyde-stabilized lignin,followed by transmethylation between lignin monomers over Au/Nb_(2)O_(5) catalyst,and the Ru/Nb2O5-catalyzed hydrodeoxygenation.This work demonstrates the potential of value-added arenes production directly from lignin.展开更多
Carbon fibers(CFs)with notable comprehensive properties,such as light weight,high specific strength,and stiffness,have garnered considerable interest in both academic and industrial fields due to their diverse and adv...Carbon fibers(CFs)with notable comprehensive properties,such as light weight,high specific strength,and stiffness,have garnered considerable interest in both academic and industrial fields due to their diverse and advanced applications.However,the commonly utilized precursors,such as polyacrylonitrile and pitch,exhibit a lack of environmental sustainability,and their costs are heavily reliant on fluctuating petroleum prices.To meet the substantial market demand for CFs,significant efforts have been made to develop cost-effective and sustainable CFs derived from biomass.Lignin,the most abundant polyphenolic compound in nature,is emerging as a promising precursor which is well-suited for the production of CFs due to its renewable nature,low cost,high carbon content,and aromatic structures.Nevertheless,the majority of lignin raw materials are currently derived from pulping and biorefining industrial by-products,which are diverse and heterogeneous in nature,restricting the industrialization of lignin-derived CFs.This review classifies fossil-derived and biomass-derived CFs,starting from the sources and chemical structures of raw lignin,and outlines the preparation methods linked to the performance of lignin-derived CFs.A comprehensive discussion is presented on the relationship between the structural characteristics of lignin,spinning preparation,and structure-morphology-property of ligninderived CFs.Additionally,the potential applications of these materials in various domains,including energy,catalysis,composites,and other advanced products,are also described with the objective of spotlighting the unique merits of lignin.Finally,the current challenges faced and future prospects for the advancement of lignin-derived CFs are proposed.展开更多
[Objectives]This study was conducted to investigate the effects of lignin-based fully biodegradable plastic film on the growth and quality of lettuce under open-field cultivation conditions.[Methods]In this experiment...[Objectives]This study was conducted to investigate the effects of lignin-based fully biodegradable plastic film on the growth and quality of lettuce under open-field cultivation conditions.[Methods]In this experiment,compared with bare soil,a polyethylene plastic film(PE)treatment and two lignin-based fully biodegradable plastic film treatments(LBF-0.01 and LBF-0.008)with different thicknesses were set to study the effects on the growth and quality of lettuce.[Results]During autumn cultivation in Shanghai,the thermal insulation performance and yield-increasing effect of the two degradable plastic films were consistent with those of PE film,and effectively met lettuce growth requirements,but treatment LBF-0.01was better than treatment LBF-0.008.Moreover,lignin-based fully biodegradable plastic film could significantly increase the contents of Vc,soluble sugar and carotenoids in lettuce,and treatment LBF-0.008 showed the best effect.It could be seen that under the experimental conditions,the two kinds of lignin-based biodegradable plastic films with different thicknesses could be applied to the cultivation of lettuce in the open field in Shanghai in autumn,and LBF-0.01 had the best effect of increasing temperature and increasing yield,while LBF-0.008 had the best effect of improving quality.[Conclusions]This study provides theoretical basis and technical support for the further application of lignin-based fully biodegradable plastic film.展开更多
Carbon quantum dots are a new type of fluorescent nanomaterials with broad applications in drug delivery,bioimaging,solar cells,and photocatalysis due to their unique biocompatibility,optical properties and easy funct...Carbon quantum dots are a new type of fluorescent nanomaterials with broad applications in drug delivery,bioimaging,solar cells,and photocatalysis due to their unique biocompatibility,optical properties and easy functionalization.In the meantime,because of its high carbon content,renewable nature,and environmental friendliness,lignin has drawn the attention of researchers as a desirable raw material for creating carbon quantum dots.Here we review the synthesis of carbon quantum dots from lignin,focusing on synthetic methods,properties,and applications in energy,and photocatalysis.Later,we propose some new development prospects from preparation methods,luminescence mechanism research,application,and commercial cost of lignin carbon quantum dots.Finally,based on this,the development prospects of this field are prospected and summarized.展开更多
Population size plays a crucial role in determining wheat yields.Altered carbohydrate accumulation resulting from increased competition between populations and individuals leads to poor-quality stems.The sowing date c...Population size plays a crucial role in determining wheat yields.Altered carbohydrate accumulation resulting from increased competition between populations and individuals leads to poor-quality stems.The sowing date can mitigate competition in densely planted populations.However,the underlying mechanism by which it confers resistance to wheat lodging remains elusive.In this study,Zimai 28(lodging-sensitive variety) and Shannong 28(lodging-resistant variety) were used with three sowing treatments on October 22(S1),October 28(S2),and November 3(S3).The sowing rate was adjusted to ensure adequate population size and consistency in the overwintering populations across sowing dates(300 plant m^(-2)for S1,375 plant m^(-2)for S2,and 525 plant m^(-2)for S3),The lodging resistance in winter wheat was increased by delayed sowing and increased sowing rate,which led to a reduction in tiller numbers and fostered primary stem development.A reduction in the overwinter cumulative temperature from 500 to 450℃,coupled with an elevation in sowing rates from 300 to 375 plant m^(-2)(transition from S1 to S2),corresponded with a notable increase in structural carbohydrates(lignin,cellulose,hemicellulose,and pectin) by 175.07 mg g^(-1).Additionally,there was a moderate increase in non-structural carbohydrates,including soluble sugars and starch,by 15.54 mg g^(-1).Delayed sowing and increased sowing rate elevated the precursor contents of lignin synthesis.Enhanced metabolic activity of related pathways ultimately increased dimer/trimer content.In summary,this study highlights the pivotal role of lignin metabolites and cross-linked structures in determining the stem stiffness breaking strength.展开更多
Lignin has been proved to be a promising precursor for producing carbon foam.The thermal and chemistry properties of lignin during its thermal conversion make it quite unique comparing with other precursors,and the co...Lignin has been proved to be a promising precursor for producing carbon foam.The thermal and chemistry properties of lignin during its thermal conversion make it quite unique comparing with other precursors,and the conversion parameters can clearly affect the properties of the derived products.Therefore,this study systematically investigated the effects of key carbonization parameters on the properties of the resulting carbon foam materials.The findings demonstrate that the performance of the self-shaping lignin-derived carbon foam is simultaneously influenced by the factors that carbonization temperature,heating rate,and carbonization duration.Specifically,the carbonization temperature and carbonization duration have a significant impact on the mechanical performance,where higher temperatures and long carbonization time improve compressive strength and specific strength.Moreover,the data revealed that elevated temperatures,rapid heating rates,and shortened carbonization periods collectively promoted the development of higher porosities and larger pore diameters within the carbon foam structure.Conversely,lower carbonization temperatures,slower heating rates,and extended carbonization durations facilitated the formation of microporous in the carbon foam.This study provides a scientific foundation for optimizing the production of lignin-derived carbon foam with tailored properties and performance characteristics.展开更多
文摘Research-based on lignin as a bioproduct has grown due to its high availability,reactivity,physicochemical sta-bility,and abundance of different aromatic units.Lignin consists of various functional groups,which can react in various chemical reactions and serve as a raw material in various processes to obtain multiple products.These characteristics make lignin suitable for synthesizing products from natural raw materials,replacing fossil ones.Due to a high aromatic variety and complex structural arrangement,lignin isolation and fractionation are still challenging.The aim and novelty of this work was the modification of severity and enzymatic hydrolysis proce-dure on an industrial pre-treatment to improve by-products of birch processing as a raw material for the potential production of different products.Lignin from birch wood enzymatic hydrolysis was obtained and marked accord-ingly:HS(high severity),MS(medium severity),and LS(low severity)lignin.Samples were characterized by ash content,analytical pyrolysis,solubility,and viscosity.HS lignin was characterized by a relatively high carbohy-drate content(16%)and lower lignin content(77%).Meanwhile,LS lignin showed increased lignin content(83%)and reduced carbohydrate content(9%).It can be concluded that the delignification process greatly influ-ences the properties of the obtained lignin.HS lignin resulted in a lower polydispersity index(PDI)and more condensed structure,while LS lignin showed a higher PDI but a lower content of carbohydrates.Therefore,look-ing for a golden middle way is necessary whilefinding the conditions according to the usefield.
基金supported by Natural Science and Engineering Research Council of Canada(RGPIN-2017-06737)Canada Research Chairs program,the National Key Research and Development Program of China(2017YFD0601005,2022YFD0904201)+1 种基金the National Natural Science Foundation of China(51203075)the China Scholarship Council(Grant No.CSC202208320361).
文摘With the rapid development of flexible wearable electronics,the demand for stretchable energy storage devices has surged.In this work,a novel gradient-layered architecture was design based on single-pore hollow lignin nanospheres(HLNPs)-intercalated two-dimensional transition metal carbide(Ti_(3)C_(2)T_(x) MXene)for fabricating highly stretchable and durable supercapacitors.By depositing and inserting HLNPs in the MXene layers with a bottom-up decreasing gradient,a multilayered porous MXene structure with smooth ion channels was constructed by reducing the overstacking of MXene lamella.Moreover,the micro-chamber architecture of thin-walled lignin nanospheres effectively extended the contact area between lignin and MXene to improve ion and electron accessibility,thus better utilizing the pseudocapacitive property of lignin.All these strategies effectively enhanced the capacitive performance of the electrodes.In addition,HLNPs,which acted as a protective phase for MXene layer,enhanced mechanical properties of the wrinkled stretchable electrodes by releasing stress through slip and deformation during the stretch-release cycling and greatly improved the structural integrity and capacitive stability of the electrodes.Flexible electrodes and symmetric flexible all-solid-state supercapacitors capable of enduring 600%uniaxial tensile strain were developed with high specific capacitances of 1273 mF cm^(−2)(241 F g^(−1))and 514 mF cm^(−2)(95 F g^(−1)),respectively.Moreover,their capacitances were well preserved after 1000 times of 600%stretch-release cycling.This study showcased new possibilities of incorporating biobased lignin nanospheres in energy storage devices to fabricate stretchable devices leveraging synergies among various two-dimensional nanomaterials.
基金National Natural Science Foundation of China (U23A6005 and 22078069)Project funded by China Postdoctoral Science Foundation (GZB20230172 and 2023M740748)。
文摘Electrochemical conversion of lignin for the production of high-value heterocyclic aromatic compounds has great potential.We demonstrate the targeted synthesis and cation modulation of NiCo_(2)O_(4)spinel nanoboxes,synthesized via cation exchange and calcination oxidation.These catalysts exhibit excellent efficacy in the electrocatalytic conversion of lignin model compounds,specifically 2-phenoxy-1-phenylethanol,into nitrogen-containing aromatics,achieving high conversion rates and selectivities.These catalysts were synthesized via a cation exchange and calcination oxidation process,using Prussian blue nanocubes as precursors.The porous architecture and polymetallic composition of the NiCo_(2)O_(4)spinel demonstrated superior performance in electrocatalytic oxidative coupling,achieving a 99.2 wt%conversion rate of the 2-phenoxy-1-phenylethanol with selectivities of 37.5 wt%for quinoline derivatives and 31.5 wt%for phenol.Key innovations include the development of a sustainable one-pot synthesis method for quinoline derivatives,the elucidation of a multistage reaction pathway involving CAO bond cleavage,hydroxyaldol condensation,and CAN bond formation,and a deeper mechanistic understanding derived from DFT simulations.This work establishes a new strategy for lignin valorization,offering a sustainable route to produce high-value nitrogen-containing aromatics from renewable biomass under mild conditions,without the need for additional reagents.
文摘Developing favorable bio-based polymers that replace petroleum-based plastics is an essential environmental demand.Lignin is a by-product of the chemical pulping industry.It is a natural UV protection ingredient in broad-spectrum(UVA and UVB)sunscreens.It could be partially and selectively acetylated in a simple,fast,and more reliable process.In this work,a composite film was prepared with UV-resistant properties through a casting method.Bio-based cellulose acetate(CA)was employed as a major matrix while nano-acetylated kraft lignin(AL-NPs)was used as filler during synthesizing UV-shielding films loaded with various amounts(1–5 wt.%)of AL-NPs.Kraft lignin was acetylated through a simple and fast microwave-assisted process using acetic acid as a solvent and acetylating agent.The physicochemical and morphological characteristics of the prepared films were evaluated using different methods,including scanning electron microscopy(SEM),Fourier Transform Infrared Spectroscopy(FTIR),X-ray diffraction analysis(XRD),mechanical testing and contact angle measurement.The UV-Vis spectroscopy optical investigation of the prepared films revealed that AL-NPs in the CA matrix showed strong UV absorption.This feature demonstrated the effectiveness of our research in developing UV-resistant bio-based polymer films.Hence,the prepared films can be considered as successful candidates to be applied in packaging applications.
基金funded by the Science Foundation of China(Grant No.32230097)Earmarked Fund for China Agriculture Research System(Grant No.CARS-28)+2 种基金the Earmarked Fund for Jiangsu Agricultural Industry Technology System(Grant No.JATS[2023]412)Natural Science Foundation of Jiangsu Province for Young Scholar(Grant No.BK20221010)supported by the high-performance computing platform of Bioinformatics Center,Nanjing Agricultural University。
文摘Pear(Pyrus bretschneideri)fruit stone cells are primarily composed of lignin and have strongly lignified cell walls.The presence of stone cells has a negative influence on fruit texture and taste,and thus the reduction of stone cell content in pear fruit is a key goal of breeding efforts.However,research into the key transcription factors and regulatory networks associated with pear fruit stone cell formation have been limited.We here used a combination of co-expression network and expression quantitative trait locus(eQTL)analyses in 206 pear cultivars with different stone cell contents to identify relevant genes;these analyses uncovered the gene PbrMYB4,a R2R3 MYB transcription factor gene.There was a strong positive correlation between relative PbrMYB4 expression levels in the fruit flesh and stone cell/lignin contents.Overexpression of PbrMYB4 significantly increased the lignin contents,whereas silencing of PbrMYB4 had the opposite effect,decreasing the contents of lignin.PbrMYB4 overexpression in pear calli significantly promoted lignin biosynthesis.In Arabidopsis thaliana,PbrMYB4 overexpression resulted in increasing lignin deposition,cell wall thickness of vessels and xylary fiber,and accelerating expression level of lignin biosynthetic genes.PbrMYB4 was found to activate 4-Coumarate:Coenzyme A Ligase(Pbr4CL1)by binding to AC-I elements in the promoter regions,as demonstrated with dual-luciferase reporter assays and a yeast one-hybrid assay.These results demonstrated that PbrMYB4 positively regulated lignin biosynthesis in pear fruit stone cells by activating lignin biosynthesis genes.This study improves our understanding of the gene regulatory networks associated with stone cell formation in pear fruit,providing guidance for molecular breeding of pear varieties with low stone cell content.
基金National Natural Science Foundation of China(22262034)。
文摘With the development of electronics and portable devices,there is a significant drive to develop electrode materials for supercapacitors that are lightweight,economical,and provide high energy and power densities.Lignin-based porous carbons have recently been extensively studied for en-ergy storage applications because of their characteristics of large specific surface area,easy doping,and high conductivity.Significant progress in the synthesis of porous carbons derived from lignin,using different strategies for their preparation and modification with heteroatoms,metal oxides,met-al sulfides,and conductive polymers is considered and their electrochemical performances and ion storage mechanisms are discussed.Considerable fo-cus is directed towards the challenges encountered in using lignin-based por-ous carbons and the ways to optimize specific capacity and energy density for supercapacitor applications.Finally,the limitations of existing technolo-gies and research directions for improving the performance of lignin-based carbons are discussed.
基金funded by the joint research collaboration of the Research Organization of Agriculture and Food National Research and Innovation Agency(BRIN)FY 2024(Grant number:6/III.11/HK/2024),with Widya Fatriasari as the Principal Investigator.
文摘Biodegradable plastics are types of plastics that can decompose into water and carbon dioxide the actions of living organisms,mostly by bacteria.Generally,biodegradable plastics are obtained from renewable raw materials,microorganisms,petrochemicals,or a combination of all three.This study aims to develop an innovative bioplastic by combining chitosan and lignin.Bioplastic was prepared by casting method and characterized by measuring the mechanical properties like tensile strength,Young’smodulus,and elongation at break.The chemical structure,together with the interactions among chitosan and lignin and the presence of new chemical bonds,were evaluated by FTIR,while the thermal properties were assessed by thermogravimetric analysis.The water vapor permeability,tests and transparency as well as biodegradability,were also carried out.The results show a tensile strength value of 34.82 MPa,Young’s modulus of 18.54 MPa,and elongation at a break of 2.74%.Moreover,the interaction between chitosan and lignin affects the intensity of the absorption peak,leading to reduced transparency and increased thermal stability.The chitosan/lignin interactions also influence the crystalline size,making it easier to degrade andmore flexible rather than rigid.The contact angle shows the bioplastic’s ability to resist water absorption for 4minutes.In the biodegradation test,the sample began to degrade after 30 days of soil burial test observation.
文摘Carbon fibres have been produced from hydroxypropyl-modified lignin(TcC)/bio-based polyamide 1010(PA1010)blended filaments.Two grades of PA1010,with different molecular weights and rheological properties,were used for blending with TcC.An oxidative thermal stabilisation step was used prior to carbonisation in an inert atmosphere to prevent the fusion of the filaments during the latter step.Thermal stabilisation was not possible using a one-step stabilisation process reported in the literature for lignin and other lignin/synthetic polymer blends.As a consequence,a cyclic process involving an additional isothermal phase at a lower temperature than the precursor filaments’melting point,was introduced to increase the cross-linking reactions between the lignin and polyamide.Thermally stabilised filaments were characterised by DSC,TGA,TGA-FTIR,ATR,and SEM techniques.Polymer rheology and heating rate used during thermal stabilisation influenced the thermal stabilisation process and mechanical properties of the derived filaments.Thermally stabilised filaments using optimised conditions(heating in the air atmosphere at 0.25℃/min to 180℃;isothermal for 1 h,cooling back down to ambient at 5℃/min;heating to 250℃ at 0.25℃/min,isothermal for 2 h)could be successfully carbonised.Carbon fibres pro-duced had void-free morphologies and mechanical properties comparable to similarly thermally stabilised and carbonised polyacrylonitrile(PAN)filaments.
基金Financial support was obtained from National Natural Science Foundation of China(Grant Nos.32101549 and 32201585)Natural Science Foundation of Shandong Province,China(Grant No.ZR202112010288)+2 种基金Science&Technology Specific Projects in Agricultural High-tech Industrial Demonstration Area of the Yellow River Delta(Grant No.2022SZX39)Technical Innovation and Application Development Special Project of Chongqing(Grant No.CSTB2022TIAD-LDX0013)the Taishan Scholar Program of Shandong(Grant No.tsqn202103092)。
文摘Tyrosine decarboxylase(TyDC)converts tyrosine to tyramine and plays a crucial role in secondary metabolite reactions,development,and stress responses in plants.Currently,the biological role of TyDC proteins from trees is unknown.This study provided evidence showing that poplar PaTyDC4 functions in wood development and drought stress response.PaTyDC4 is preferentially expressed in wood-forming cells in stems.Overexpression of PaTyDC4 in poplars under the control of a xylem-specific promoter resulted in an increase in the ratio of xylem to phloem width,vessel cell area,and lignin accumulation in the stems.Biochemical assays revealed that PaTyDC4 was a component of the PaC3H17-PaMYB199 module-mediated pathway.In poplar stems,Pa TyDC4 expression was directly suppressed by PaMYB199,which was attenuated by the interaction between PaC3H17 and PaMYB199.In addition,Pa TyDC4 overexpression lines showed stronger drought tolerance than the wild-type lines,with higher photosynthetic capacity and lower levels of H_(2)O_(2).These results indicate that PaTyDC4 promotes xylem differentiation and lignin deposition during secondary growth and confers drought tolerance.Our findings may be useful for the genetic modification of biomass and drought resistance in trees.
文摘Directed degradation of abundant renewable lignin into small aromatic compounds is crucial for lignin valorization but challenging.The degradation of lignin in natural environments typically involves multienzyme synergy.However,the proteinaceous characteristics of lignin-degrading enzymes restrict their accessibility to certain regions of intricate lignin,resulting in the multienzyme systems being unable to fully demonstrate their effectiveness.Herein,a de novo biomimetic enzyme-nanozyme hybrid system was constructed by combiningλ-MnO_(2) nanozyme with laccase CotA from Bacillus subtilis,aimed at facilitating lignin degradation under mild conditions.The lignin degradation rate of the CotA+λ-MnO_(2) hybrid system was determined to be 25.15%,which was much higher than those of the lignin degradation systems with only laccase CotA(15.32%)orλ-MnO_(2) nanozyme(14.90%).Notably,the proportion of aromatic chemicals in the products derived from the hybrid system reached as much as 48%,which was 41.2%and 118.2%higher than those of the CotA-andλ-MnO_(2)-catalyzed systems,respectively.Analysis of products mapping and lignin structure changes suggested that the higher proportion of aromatic compounds in the CotA+λ-MnO_(2)hybrid system was more likely to benefit from the laccase-mediated methoxylation.Moreover,electron paramagnetic resonance analysis indicated that the intensity and kind of free radicals such as·OH and·O_(2)^(-)are closely linked to the degradation rate and reaction type.This work is the inaugural application of an enzyme-nanozyme hybrid system for lignin degradation,demonstrating the potential of the synergistic interaction between enzyme and nanozyme in the directed degradation of lignin.
基金the equipment support of Sharing Platform of Scientific Equipments,Ministry of Education's Research Center for Comprehensive Utilization and Clean Process Engineering of Phosphrous Resources,Sichuan University。
文摘A novel eco-friendly charring agent(L-OH)was successfully synthesized by combining pentaerythritol(PER)with lignin through a simple two-step reaction.The structure of L-OH was characterized using Fourier transform infrared(FTIR),X-ray diffraction(XRD),scanning electron microscopy(SEM)and EDS.In addition,L-OH was introduced into polypropylene(PP)together with melamine(MEL)and ammonium polyphosphate(APP)as an intumescent flame retardant(IFRR).The flame retardancy of PP/IFRR composites were investigated using limited oxygen index(LOI),UL-94,thermogravimetric analysis(TGA)and cone calorimeter(CC)test.The experimental results indicate that the PP/IFRR composites pass the V-0 grade of the UL-94 test when the addition amount of IFRR is no less than 20%,and the LOI value of the composite reaches 32.2%at 30%IFRR addition.The peak heat release rate(PHRR)and peak smoke production rate(PSPR)of the composite decrease by 72.8%and 70.4%compared with pure PP,respectively.The flame retardancy mechanism was investigated by TGA,TG-FTIR and residual carbon analysis.These analyses indicate that L-OH can form a more continuous and dense carbon layer during the combustion process,which is the main factor contributing to the improved flame retardancy of PP.
基金supported by National Natural Science Foundation of China(22178258,22308254)China Postdoctoral Science Foundation(2023M742593,2024T170642)+1 种基金Independent Innova-tion Fund of Tianjin University(2024XQM-0021)the Open Fund of the Key Laboratory of Functional Molecular Solids(FMS2023006)。
文摘Ni-based catalysts are widely applied in the hydrodeoxygenation of lignin derivatives via C-O cleavage for the production of cycloalkanes.However,they often have difficulty in achieving high activity under mild conditions and exhibit relatively poor stability,and rare studies focus on the cleavage of the stubborn interunit C-C linkages.To address this issue,we developed a Ni@AlPO_(4)/Al_(2)O_(3)catalyst in which the surface of Ni nanoparticles was decorated by AlPO_(4)species,demonstrating excellent catalytic activity and stability in the C-C and C-O cleavages.In the hydrodeoxygenation of guaiacol,this catalyst afforded99.1%conversion and 92.9%yield of cyclohexane under 1 MPa H_(2)at 230℃ for 2 h.More important,this catalyst maintained unchanged performance even after 6 runs with the conversion controlled at about50%,Mecha nistic investigations revealed that the moderate surface coverage of AlPO_(4)on Ni with the formation of Ni^(δ+)-AlPO_(4)interface significantly facilitated the conversion of methoxycyclohexanol and cyclohexanol to cyclohexane,whereas,excess coverage would also block the access to Ni site.Moreover,Ni@AlPO_(4)/Al_(2)O_(3)demonstrated broad applicability in the C-O cleavage of various typical lignin monomers and dimers into cycloalkanes.To our delight,this catalyst also displayed pretty good activity even in the simultaneous cleavage of C-C linkages and C-O bonds for the lignin-derived C-C dimers,achieving cycloalkanes as final products.As a consequence,a 27.1 wt%yield of monocycloalkanes was obtained in the depolymerization of poplar lignin with both C-C and C-O cleavages.
基金financial support of the National Natural Science Foundation of China(U23A6005,22038004 and 22178069).
文摘The emission of organic pollutants from the dye industry and medical treatment represents a significant threat to the quality of water resources and human health.The development of green,environmentally friendly and efficient photocatalysts for the removal of organic pollutants from the environment is of paramount importance in addressing these issues.Flower-like lignin-derived carbon(LC)/zinc oxide(ZnO)composites with controllable morphology were synthesized via a direct precipitation method.In this study,alkali lignin was employed as an anionic active agent to alter the molecular arrangement on the liquid surface during the synthesis reaction and to reduce the surface tension between mixtures,thereby forming a special stacked morphology,which was then used for the highly efficient removal of methylidene blue(MB)and tetracycline hydrochloride(TCH)in water under different light conditions.The formation mechanism of LC/ZnO and the degradation characteristics under different reaction conditions were investigated.The loading of LC can form composites with large specific surface area and rich porous structure.In addition,with the help of lignin,the morphology of ZnO was changed from a rod-like structure to a lamellar structure,and LC could effectively reduce the band gap of ZnO,which could improve the electron transfer rate in the photocatalytic process.The·O_(2)^(-)and·OH radicals generated under photoexcitation promoted the decomposition of pollutants.This study presents a simple,economical,and scalable method for the application of photocatalysts and explores new ways for the high-value application of industrial lignin.
基金primarily supported by the Proof-of-Concept project “high-voltage aqueous electrolytes (KAW 2020.0174)”the “Wood Wal enberg Science Center” funded by Knut and Alice Wal enberg (KAW) foundation+6 种基金supported by the Swedish Research Council (2016-05990)the Swedish Government Strategic Research Area in Materials Science on Functional Materials at Linkoping University (Faculty Grant SFO-Mat-Li U No. 2009-00971)the competence center Fun Mat-II funded by the Swedish Agency for Innovation Systems (Vinnova, grant no 2016-05156)Aforsk foundation for the project “anode free Zn-ion battery (21-130)” and “Zn-lignin battery (22-134)”Swedish Electricity Storage and Balancing Centre (SESBC) funded by Energyimyndigghetenthe Swedish Research Council VR International Postdoc Grant 2022-00213“STand UP for energy col aboration and Swedish Research Council (2020-05223)”
文摘Zinc metal batteries(ZnBs)are poised as the next-generation energy storage solution,complementing lithium-ion batteries,thanks to their costeffectiveness and safety advantages.These benefits originate from the abundance of zinc and its compatibility with non-flammable aqueous electrolytes.However,the inherent instability of zinc in aqueous environments,manifested through hydrogen evolution reactions(HER)and dendritic growth,has hindered commercialization due to poor cycling stability.Enter potassium polyacrylate(PAAK)-based water-in-polymer salt electrolyte(WiPSE),a novel variant of water-in-salt electrolytes(WiSE),designed to mitigate side reactions associated with water redox processes,thereby enhancing the cyclic stability of ZnBs.In this study,WiPSE was employed in ZnBs featuring lignin and carbon composites as cathode materials.Our research highlights the crucial function of acrylate groups from WiPSE in stabilizing the ionic flux on the surface of the Zn electrode.This stabilization promotes the parallel deposition of Zn along the(002)plane,resulting in a significant reduction in dendritic growth.Notably,our sustainable Zn-lignin battery showcases remarkable cyclic stability,retaining 80%of its initial capacity after 8000 cycles at a high current rate(1 A g^(-1))and maintaining over 75%capacity retention up to 2000 cycles at a low current rate(0.2 A g^(-1)).This study showcases the practical application of WiPSE for the development of low-cost,dendrite-free,and scalable ZnBs.
文摘Many strategies have been proposed to produce arenes from lignin as liquid fuel additives.However,the development of these methods is limited by the low yield of products,low atom utilization,and inefficient lignin depolymerization.Herein,we develop an energy-efficient synthetic method for the production of high-carbon-number arenes from sustainable lignin with a total yield of 23.1 wt%.Particularly,high carbon number arenes are obtained by fully utilizing the formaldehyde stabilizing additive and the methoxy group in lignin.The process begins with the reductive depolymerization of formaldehyde-stabilized lignin,followed by transmethylation between lignin monomers over Au/Nb_(2)O_(5) catalyst,and the Ru/Nb2O5-catalyzed hydrodeoxygenation.This work demonstrates the potential of value-added arenes production directly from lignin.
基金National Natural Science Foundation of China,Grant/Award Numbers:32171717,32271814Natural Science Foundation of Tianjin Municipality,Grant/Award Numbers:24JCJQJC00030,22JCYBJC01560,23JCZDJC00630China Postdoctoral Science Foundation,Grant/Award Number:2023M740562。
文摘Carbon fibers(CFs)with notable comprehensive properties,such as light weight,high specific strength,and stiffness,have garnered considerable interest in both academic and industrial fields due to their diverse and advanced applications.However,the commonly utilized precursors,such as polyacrylonitrile and pitch,exhibit a lack of environmental sustainability,and their costs are heavily reliant on fluctuating petroleum prices.To meet the substantial market demand for CFs,significant efforts have been made to develop cost-effective and sustainable CFs derived from biomass.Lignin,the most abundant polyphenolic compound in nature,is emerging as a promising precursor which is well-suited for the production of CFs due to its renewable nature,low cost,high carbon content,and aromatic structures.Nevertheless,the majority of lignin raw materials are currently derived from pulping and biorefining industrial by-products,which are diverse and heterogeneous in nature,restricting the industrialization of lignin-derived CFs.This review classifies fossil-derived and biomass-derived CFs,starting from the sources and chemical structures of raw lignin,and outlines the preparation methods linked to the performance of lignin-derived CFs.A comprehensive discussion is presented on the relationship between the structural characteristics of lignin,spinning preparation,and structure-morphology-property of ligninderived CFs.Additionally,the potential applications of these materials in various domains,including energy,catalysis,composites,and other advanced products,are also described with the objective of spotlighting the unique merits of lignin.Finally,the current challenges faced and future prospects for the advancement of lignin-derived CFs are proposed.
基金Supported by Shanghai Science and Technology Innovation Action Plan,China(22N51900900).
文摘[Objectives]This study was conducted to investigate the effects of lignin-based fully biodegradable plastic film on the growth and quality of lettuce under open-field cultivation conditions.[Methods]In this experiment,compared with bare soil,a polyethylene plastic film(PE)treatment and two lignin-based fully biodegradable plastic film treatments(LBF-0.01 and LBF-0.008)with different thicknesses were set to study the effects on the growth and quality of lettuce.[Results]During autumn cultivation in Shanghai,the thermal insulation performance and yield-increasing effect of the two degradable plastic films were consistent with those of PE film,and effectively met lettuce growth requirements,but treatment LBF-0.01was better than treatment LBF-0.008.Moreover,lignin-based fully biodegradable plastic film could significantly increase the contents of Vc,soluble sugar and carotenoids in lettuce,and treatment LBF-0.008 showed the best effect.It could be seen that under the experimental conditions,the two kinds of lignin-based biodegradable plastic films with different thicknesses could be applied to the cultivation of lettuce in the open field in Shanghai in autumn,and LBF-0.01 had the best effect of increasing temperature and increasing yield,while LBF-0.008 had the best effect of improving quality.[Conclusions]This study provides theoretical basis and technical support for the further application of lignin-based fully biodegradable plastic film.
基金Sponsorship Program by CAST(2023QNRC001)University-Industry Collaborative Education Program(220901115200913,220901115201954)+2 种基金Hunan Provincial Natural Science Foundation of China(2022JJ40007)Jiangsu Agricultural Science and Technology Innovation Fund(CX(22)3047)the National Natural Science Foundation of China(32201491)。
文摘Carbon quantum dots are a new type of fluorescent nanomaterials with broad applications in drug delivery,bioimaging,solar cells,and photocatalysis due to their unique biocompatibility,optical properties and easy functionalization.In the meantime,because of its high carbon content,renewable nature,and environmental friendliness,lignin has drawn the attention of researchers as a desirable raw material for creating carbon quantum dots.Here we review the synthesis of carbon quantum dots from lignin,focusing on synthetic methods,properties,and applications in energy,and photocatalysis.Later,we propose some new development prospects from preparation methods,luminescence mechanism research,application,and commercial cost of lignin carbon quantum dots.Finally,based on this,the development prospects of this field are prospected and summarized.
基金supported by the National Natural Science Foundation of China(32172117,32101834)the Shandong Province Agricultural Major Technology Collaborative Promotion Plan Project(SDNYXTTG-2023-33)+1 种基金Postdoctoral Science Foundation of China(2022M711968)the Natural Science Foundation of Shandong Province(ZR2020QC106).
文摘Population size plays a crucial role in determining wheat yields.Altered carbohydrate accumulation resulting from increased competition between populations and individuals leads to poor-quality stems.The sowing date can mitigate competition in densely planted populations.However,the underlying mechanism by which it confers resistance to wheat lodging remains elusive.In this study,Zimai 28(lodging-sensitive variety) and Shannong 28(lodging-resistant variety) were used with three sowing treatments on October 22(S1),October 28(S2),and November 3(S3).The sowing rate was adjusted to ensure adequate population size and consistency in the overwintering populations across sowing dates(300 plant m^(-2)for S1,375 plant m^(-2)for S2,and 525 plant m^(-2)for S3),The lodging resistance in winter wheat was increased by delayed sowing and increased sowing rate,which led to a reduction in tiller numbers and fostered primary stem development.A reduction in the overwinter cumulative temperature from 500 to 450℃,coupled with an elevation in sowing rates from 300 to 375 plant m^(-2)(transition from S1 to S2),corresponded with a notable increase in structural carbohydrates(lignin,cellulose,hemicellulose,and pectin) by 175.07 mg g^(-1).Additionally,there was a moderate increase in non-structural carbohydrates,including soluble sugars and starch,by 15.54 mg g^(-1).Delayed sowing and increased sowing rate elevated the precursor contents of lignin synthesis.Enhanced metabolic activity of related pathways ultimately increased dimer/trimer content.In summary,this study highlights the pivotal role of lignin metabolites and cross-linked structures in determining the stem stiffness breaking strength.
基金funding support from Taishan Scholars Program of Shandong Province(tsqn201909132)National Natural Science Foundation of China(22208183)+1 种基金Startup Foundation from Qingdao Agricultural University(663-1120040,665-1119020)Technology development project from Jinan Shengquan Company(20233702031771)。
文摘Lignin has been proved to be a promising precursor for producing carbon foam.The thermal and chemistry properties of lignin during its thermal conversion make it quite unique comparing with other precursors,and the conversion parameters can clearly affect the properties of the derived products.Therefore,this study systematically investigated the effects of key carbonization parameters on the properties of the resulting carbon foam materials.The findings demonstrate that the performance of the self-shaping lignin-derived carbon foam is simultaneously influenced by the factors that carbonization temperature,heating rate,and carbonization duration.Specifically,the carbonization temperature and carbonization duration have a significant impact on the mechanical performance,where higher temperatures and long carbonization time improve compressive strength and specific strength.Moreover,the data revealed that elevated temperatures,rapid heating rates,and shortened carbonization periods collectively promoted the development of higher porosities and larger pore diameters within the carbon foam structure.Conversely,lower carbonization temperatures,slower heating rates,and extended carbonization durations facilitated the formation of microporous in the carbon foam.This study provides a scientific foundation for optimizing the production of lignin-derived carbon foam with tailored properties and performance characteristics.