High-pressure electrides,characterized by the presence of interstitial quasi-atoms(ISQs),possess unique electronic structures and physical properties,such as diverse dimensions of electride states exhibiting different...High-pressure electrides,characterized by the presence of interstitial quasi-atoms(ISQs),possess unique electronic structures and physical properties,such as diverse dimensions of electride states exhibiting different superconductivity,which has attracted significant attention.Here,we report a new electron-deficient type of electride Li_(4)Al and identify its phase transition progress with pressurization,where the internal driving force behind phase transitions,bonding characteristics,and superconducting behaviors have been revealed based on first-principles density functional theory.Through analysis of the bonding properties of electride Li_(4)Al,we demonstrate that the ISQs exhibiting increasingly covalent characteristics between Al ions play a critical role in driving the phase transition.Our electron–phonon coupling calculations indicate that all phases exhibit superconducting behaviors.Importantly,we prove that the ISQs behave as free electrons and demonstrate that the factor governing T_(c) is primarily derived from Li-p-hybridized electronic states with ISQ compositions.These electronic states are scattered by low-frequency phonons arising from mixed vibrations of Li and Al affected by ISQs to enhance electron–phonon coupling.Our study largely expands the research scope of electrides,provides new insight for understanding phase transitions,and elucidates the effects of ISQs on superconducting behavior.展开更多
Born in Penglai,Shandong Province in 1942,Jiang Baolin is currently working as a doctoral supervisor at the Chinese National Academy of Arts.He’s also a committee member and researcher at the China National Academy o...Born in Penglai,Shandong Province in 1942,Jiang Baolin is currently working as a doctoral supervisor at the Chinese National Academy of Arts.He’s also a committee member and researcher at the China National Academy of Painting.He graduated from Zhejiang Academy of Fine Arts(now China Academy of Art),studying under such masters as Lu Yanshao and Gu Kunbo,and later pursued his master’s degree at the Central Academy of Fine Arts,sitting at the feet of masters like Li Keran.展开更多
Sulfide-based all-solid-state lithium metal batteries(ASSLMBs)have garnered significant attention due to their potential for high energy density and enhanced safety.However,their practical application is hindered by c...Sulfide-based all-solid-state lithium metal batteries(ASSLMBs)have garnered significant attention due to their potential for high energy density and enhanced safety.However,their practical application is hindered by challenges such as uneven lithium(Li)deposition and the growth of Li dendrites.In this contribution,we propose an amorphous fluorinated interphase(AFI),composed of amorphous LiF and lithiated graphite,to regulate the interfacial Li-ion transport kinetics through in-situ interface chemistry.Amorphous LiF,which exhibits a significantly enhanced Li-ion diffusion compared to its crystalline counterpart,works synergistically with lithiated graphite to promote both short-range and long-range Li-ion transport kinetics at the Li/electrolyte interface.As a result,the Li anode with AFI demonstrates a remarkably enhanced critical current density of 1.6 mA cm^(−2)and an extended cycle life exceeding 1100 h.The Li||LiNi_(0.6)Co_(0.2)Mn_(0.2)O_(2)full cell also achieves a high discharge capacity of 125.7 mA h g^(−1)and retains 71.2%of its initial capacity after 200 cycles.This work provides valuable insights into the rational design of artificial anodic interphase to regulate interfacial Li-ion transport kinetics in ASSLMBs.展开更多
All-solid-state Li batteries(ASSLBs)using solid electrolytes(SEs)have gained significant attention in recent years considering the safety issue and their high energy density.Despite these advantages,the commercializat...All-solid-state Li batteries(ASSLBs)using solid electrolytes(SEs)have gained significant attention in recent years considering the safety issue and their high energy density.Despite these advantages,the commercialization of ASSLBs still faces challenges regarding the electrolyte/electrodes interfaces and growth of Li dendrites.Elemental doping is an effective and direct method to enhance the performance of SEs.Here,we report an Al-F co-doping strategy to improve the overall properties including ion conductivity,high voltage stability,and cathode and anode compatibility.Particularly,the Al-F co-doping enables the formation of a thin Li-Al alloy layer and fluoride interphases,thereby constructing a relatively stable interface and promoting uniform Li deposition.The similar merits of Al-F co-doping are also revealed in the Li-argyrodite series.ASSLBs assembled with these optimized electrolytes gain good electrochemical performance,demonstrating the universality of Al-F co-doping towards advanced SEs.展开更多
The water-quenched(WQ)2195 Al−Li alloy was subjected to stretching at different temperatures,from room temperature(RT)to−196℃(CT),to investigate the effect of cryogenic deformation on the aging precipitation behavior...The water-quenched(WQ)2195 Al−Li alloy was subjected to stretching at different temperatures,from room temperature(RT)to−196℃(CT),to investigate the effect of cryogenic deformation on the aging precipitation behaviors and mechanical properties.The precipitation kinetics of the T1 phase and the microstructures in peak aging state were investigated through the differential scanning calorimetric(DSC)tests and electron microscopy observation.The results show that−196℃deformation produces a high dislocation density,which promotes the precipitation of the T1 phase and refines its sizes significantly.In addition,the grain boundary precipitates(GBPs)of−196℃-stretched samples are suppressed considerably due to the high dislocation density in the grain interiors,which increases the ductility.In comparison,the strength remains nearly constant.Thus,it is indicated that cryogenic forming has the potential to provide the shape and property control for the manufacture of critical components of aluminum alloys.展开更多
The vip-host chemistry in polymer electrolytes plays a crucial role for all-solid-state Li metal batteries,where the stable operation of such batteries heavily relies on high ion conductivity,strong mechanical prope...The vip-host chemistry in polymer electrolytes plays a crucial role for all-solid-state Li metal batteries,where the stable operation of such batteries heavily relies on high ion conductivity,strong mechanical properties,and stable interfaces of the electrolyte.While traditional ceramic fillers can boost ion conductivity,they fail to improve interfacial stability.In this study,we introduce intermolecular hydrogen bonding into a polyethylene oxide(PEO)-based polymer electrolyte through the incorporation of metal organic framework(MOF)and lithium nitrate additives.The hydrogen on the PEO chain is found to be tightly interacted with the oxygen nodes of UiO-66 MOF and nitrate anions,creating a cross-linked framework that reduces the crystallinity of the PEO and enhances the integrity of composite.This interaction induces a beneficial Li3N and LiF-rich solid electrolyte interphase,ensuring 2000 h of stable lithium metal operation without short-circuits.The strong polysulfide adsorption enables compatibility with high-capacity sulfur cathodes,resulting in solidstate Li-S batteries that can achieve a high capacity of 913.8 mAh·g^(-1)and exhibit stable cycling performance.This work demonstrates the deep understanding of vip-host chemistry in polymer electrolytes and their potential in developing energy-dense solid-state Li metal batteries.展开更多
Biliary atresia(BA), a chronic progressive cholestatic disease of infants, is the leading cause for liver transplant in children, especially in patients under two years of age. BA can be successfully treated with the ...Biliary atresia(BA), a chronic progressive cholestatic disease of infants, is the leading cause for liver transplant in children, especially in patients under two years of age. BA can be successfully treated with the Kasai portoenterostomy; however most patients still require a liver transplant, with up to one half of BA children needing a transplant by age two. In the current pediatric end-stage liver disease system, children with BA face the risk of not receiving a liver in a safe and timely manner. In this review, we discuss a number of possible solutions to help these children. We focus on two general approaches:(1) preventing/delaying need for transplantation, by optimizing the success of the Kasai operation; and(2) expediting transplantation when needed, by performing techniques other than the standard deceased-donor, whole, ABO-matched organ transplant.展开更多
Atmospheric turbulence is an important parameter affecting laser atmospheric transmission.This paper reports on a self-developed atmospheric turbulence detection Li DAR system(scanning differential image motion Li DAR...Atmospheric turbulence is an important parameter affecting laser atmospheric transmission.This paper reports on a self-developed atmospheric turbulence detection Li DAR system(scanning differential image motion Li DAR(DIM-Li DAR)system).By designing and simulating the optical system of atmospheric turbulence detection Li DAR,the basic optical imaging accuracy has been determined.展开更多
Lithium metal is considered as the most promising anode material for the next generation of secondary batteries due to its high theoretical specific capacity and low potential.However,undesirable parasitic reactions,p...Lithium metal is considered as the most promising anode material for the next generation of secondary batteries due to its high theoretical specific capacity and low potential.However,undesirable parasitic reactions,poor cycling stability and safety concerns could be caused by uncontrolled dendrite and high reactivity of Li metal,which hinder the practical application of Li-metal anode in high-energy rechargeable Li metal batteries(LMBs).Here,a facile way is reported to stabilize Li metal anode by building high lithiophilic Mg-Li-Cu alloy.Due to the delocalization of electrons on the deposited lithium enhanced by Cu self-diffusion into Mg-Li alloy,the growth of lithium dendrites could be inhibited by Mg-Li-Cu alloy.Moreover,the parasitic reactions with electrolyte could be avoided by the Mg-Li-Cu alloy anode.It is noteworthy that the symmetric battery life of Mg-Li-Cu alloy electrodes exceeds 9000 h at 1 m A cm^(-2)and 1 m Ah cm^(-2).The full cell(LiFePO_(4)|Mg-Li-Cu)exhibits a specific capacity of 148.2 m Ah g^(-1),with a capacity retention of 96.4%,at 1 C after 500 cycles.This work not only pave the way for application of flexible alloy anode in highly stable LMBs,but also provides novel strategies for preparation and optimization of Mg alloy.展开更多
Solid polymer electrolytes(SPEs)are considered one of the most promising materials for all-solid-state lithium metal batteries(ASSLMBs)due to their facile processability.However,developing SPEs with both high ionic co...Solid polymer electrolytes(SPEs)are considered one of the most promising materials for all-solid-state lithium metal batteries(ASSLMBs)due to their facile processability.However,developing SPEs with both high ionic conductivity and interfacial stability remains a challenge.Here,a donor-acceptor(D-A)like solid plasticizer,tris(pentafluorophenyl)borane(TPFPB),containing electron-rich F atoms and electrondeficient B sites,was introduced to regulate the ion transport behavior and interfacial chemistry of polyethylene oxide(PEO)-based SPEs.Owing to the multiple ion-dipole interactions(F Li^(+)TFSI^(-)and B TFSI^(-)Li^(+))between the TPFPB molecule and Li salts,a multimodal electrolyte environment featuring more free Li^(+)and trapped TFSI^(-)anions was generated,which cooperates with the reduced crystallinity of PEO,significantly facilitating the rapid migration of Li^(+).More importantly,TPFPB tends to be preferentially reduced to form a stable inorganic-rich solid electrolyte interphase on the Li-metal anode,ensuring uniform Li plating/stripping behavior.Thus,the TPFPB-modulated SPEs system achieves a high Li^(+)conductivity of 0.74 m S cm^(-1)and effectively suppresses dendrite growth,which enables a long-cycle dendrite-free Li/Li symmetric cell for over 5000 h,and remarkable electrochemical performance has been further validated in operational ASSLMBs.The findings in this work would inspire efforts to develop highperformance SPEs for all-solid-state alkali-metal batteries.展开更多
The repeated volume variation of lithium(Li)metal anode(LMA)upon Li^(+) plating/stripping,the volatile interface between Li and the electrolyte,and the incessant growth of Li dendrites on Li metal surface have severel...The repeated volume variation of lithium(Li)metal anode(LMA)upon Li^(+) plating/stripping,the volatile interface between Li and the electrolyte,and the incessant growth of Li dendrites on Li metal surface have severely hindered the practical application of Li in constructing high energy-density Li metal batteries(LMBs).Herein,a novel Li host(3D ZnO/CNTs/Cu)featuring ordered microchannels and lithiophilic ZnO species on the inner walls of the microchannels is introduced,which induces the uniform Li^(+) deposition into the microchannels and finally suppresses the formation of Li dendrites.The stable structure of the fabricated 3D Li host can adapt to volume variations upon Li^(+) plating/stripping,thereby enhancing electrochemical performances.Symmetric cells with the 3D ZnO/CNTs/Cu@Li anode exhibited long cycle stability at areal current densities of 0.5 and 2 mA cm^(-2);Full cells maintained a reversible discharge capacity of 105 mAh g^(-1) after 400 cycles at 1C with a capacity retention of 70%.Meanwhile,ex-situ SEM observations proved that the 3D ZnO/CNTs/Cu@Li anode can keep the structural integrity during charging/discharging(or plating/stripping).This work suggested that lithiophilic nanochannels in the Li host can significantly improve the electrochemical performance and safety of LMBs.展开更多
ZnO with good lithiophilicity has widely been employed to modify the lithiophobic substrates and facilitate uniform lithium(Li)deposition.The overpotential of ZnO-derived Li anode during cycling depends on the lithiop...ZnO with good lithiophilicity has widely been employed to modify the lithiophobic substrates and facilitate uniform lithium(Li)deposition.The overpotential of ZnO-derived Li anode during cycling depends on the lithiophilicity of both LiZn and Li_(2)O products upon lithiation of ZnO.However,the striking differences in the lithiophilicity between Li_(2)O and LiZn would result in a high overpotential during cycling.In this research,the Al_(2)O_(3)/nZnO(n≥1)hybrid layers were precisely fabricated by atomic layer deposition(ALD)to regulate the lithiophilicity of ZnO phase and Li_(2)O/LiZn configuration—determining the actual Li loading amount and Li plating/stripping processes.Theoretically,the Li adsorption energy(E_(a))values of LiZn and Li_(2)O in the LiZn/Li_(2)O configuration are separately predicted as-2.789 and-3.447 eV.In comparison,the E_(a) values of LiZn,LiAlO_(2),and Li_(2)O in the LiZn/LiAlO_(2)/Li_(2)O configuration upon lithiation of Al_(2)O_(3)/8ZnO layer are calculated as-2.899,-3.089,and-3.208 eV,respectively.Importantly,a novel introduction of LiAlO_(2)into the LiZn/Li_(2)O configuration could enable the hierarchical Li plating/stripping and reduce the overpotentials during cycling.Consequently,the Al_(2)O_(3)/8ZnO-derived hybrid Li-metal anode could exhibit electrochemical performances superior to these of ZnO-derived Li anode in both symmetrical and full cells paired with a LiNi_(0.6)Co_(0.2)Mn_(0.2)O_(2)(NCM622)cathode.展开更多
Ultrathin Li-rich Li-Cu binary alloy has become a competitive anode material for Li metal batteries of high energy density.However,due to the poor-lithiophilicity of the single skeleton structure of Li-Cu alloy,it has...Ultrathin Li-rich Li-Cu binary alloy has become a competitive anode material for Li metal batteries of high energy density.However,due to the poor-lithiophilicity of the single skeleton structure of Li-Cu alloy,it has limitations in inducing Li nucleation and improving electrochemical performance.Hence,we introduced Ag species to Li-Cu alloy to form a 30μm thick Li-rich Li-Cu-Ag ternary alloy(LCA)anode,with Li-Ag infinite solid solution as the active phase,and Cu-based finite solid solutions as three-dimensional(3D)skeleton.Such nano-wire networks with LiCu4 and CuxAgy finite solid solution phases were prepared through a facile melt coating technique,where Ag element can act as lithiophilic specie to enhance the lithiophilicity of built-in skeleton,and regulate the deposition behavior of Li effectively.Notably,the formation of CuxAgy solid solution can strengthen the structural stability of the skeleton,ensuring the geometrical integrity of Li anode,even at the fully delithiated state.Meanwhile,the Li-Ag infinite solid solution phase can promote the Li plating/stripping reversibility of the LCA anode with an improved coulombic efficiency(CE).The synergistic effect between infinite and finite solid solutions could render an enhanced electrochemical performance of Li metal batteries.The LCA|LCA symmetric cells showed a long lifespan of over 600 h with stable polarization voltage of 40 mV,in 1 mA·cm^(-2)/1 mAh·cm^(-2).In addition,the full cells matching our ultrathin LCA anode with 17.2 mg·cm^(-2)mass loading of LiFePO_(4) cathode,can continuously operate beyond 110 cycles at 0.5C,with a high capacity retention of 91.5%.Kindly check and confirm the edit made in the article title.展开更多
Porous organic cages(POCs)with permanent porosity and excellent host–vip property hold great potentials in regulating ion transport behavior,yet their feasibility as solid-state electrolytes has never been testifie...Porous organic cages(POCs)with permanent porosity and excellent host–vip property hold great potentials in regulating ion transport behavior,yet their feasibility as solid-state electrolytes has never been testified in a practical battery.Herein,we design and fabricate a quasi-solid-state electrolyte(QSSE)based on a POC to enable the stable operation of Li-metal batteries(LMBs).Benefiting from the ordered channels and cavity-induced anion-trapping effect of POC,the resulting POC-based QSSE exhibits a high Li+transference number of 0.67 and a high ionic conductivity of 1.25×10^(−4) S cm^(−1) with a low activation energy of 0.17 eV.These allow for homogeneous Li deposition and highly reversible Li plating/stripping for over 2000 h.As a proof of concept,the LMB assembled with POC-based QSSE demonstrates extremely stable cycling performance with 85%capacity retention after 1000 cycles.Therefore,our work demonstrates the practical applicability of POC as SSEs for LMBs and could be extended to other energy-storage systems,such as Na and K batteries.展开更多
Li/MnO_(2) primary batteries are widely used in industry for their high specific capacity and safety.However,a deep comprehension of the Li^(+)insertion mechanism and the high self-discharge rate of the batteries is s...Li/MnO_(2) primary batteries are widely used in industry for their high specific capacity and safety.However,a deep comprehension of the Li^(+)insertion mechanism and the high self-discharge rate of the batteries is still needed.Here,the storage mechanism of Li^(+)in the tunnel structure of MnO_(2) as well as the dissolution and migration of Mn-ions were investigated based on multi-scale approaches.The Li/Mn ratio(at%)is determined at about 0.82 when the discharge voltage decreases to 2 V.The limited Li-ions transport rate in the bulk MnO_(2) restrains the reduction reaction,resulting in a low practical specific capacity.Moreover,utilizing spherical aberration-corrected transmission electron microscopy(TEM)coupled with electron energy loss spectroscopy(EELS),the presence of a mixed valence state layer of Mn^(2+)/Mn^(3+)/Mn^(4+)on the surface of the original 20 nm MnO_(2) particles was identified,which could contribute to the initial dissolution of Mn-ions.The battery separator exhibited channels for Mn-ions migration and diffusion and aggregated Mn particles.We put forward the discharge and degradation route in the ways of Mn-ions trajectories,and our findings provide a deep understanding of the high self-discharge rates and the capacity decay of Li-Mn primary batteries.展开更多
The lithium(Li)metal anode is regarded as the upcoming generation of battery anodes due to its high theoretical capacity(3860 mAh g^(-1))and low standard reduction potential(-3.04 vs SHE).Addressing challenges related...The lithium(Li)metal anode is regarded as the upcoming generation of battery anodes due to its high theoretical capacity(3860 mAh g^(-1))and low standard reduction potential(-3.04 vs SHE).Addressing challenges related to the formation of Li metal dendrites,such as short circuits and low Coulombic efficiency,is crucial for the practical implementation of Li metal anodes.Previous research on Li metal has primarily focus on the Li plating process for achieving homogeneous growth.However,our study highlights the significance of pit formation variations,which significantly influence Li growth behavior in subsequent cycles.Expanding on this understanding,we formulated electrochemical activation conditions to promote uniform pit formation,thereby doubling the cycle life in a symmetric cell,and increasing the capacity retention of NCM622||Li full-cell from 68.7%to 79.5%after 500 cycles.展开更多
The practical application of lithium(Li)metal batteries(LMBs)faces challenges due to the irreversible Li deposition/dissolution process,which promotes Li dendrite growth with severe parasitic reactions during cycling....The practical application of lithium(Li)metal batteries(LMBs)faces challenges due to the irreversible Li deposition/dissolution process,which promotes Li dendrite growth with severe parasitic reactions during cycling.To address these issues,achieving uniform Li‐ion flux and improving Li‐ion conductivity of the separator are the top priorities.Herein,a separator(PCELS)with enhanced Li‐ion conductivity,composed of polymer,ceramic,and electrically conductive carbon,is proposed to facilitate fast Li‐ion transport kinetics and increase Li deposition uniformity of the LMBs.The PCELS immobilizes PF6–anions with high adsorption energies,leading to a high Li‐ion transference number.Simultaneously,the PCELS shows excellent electrolyte wettability on both its sides,promoting rapid ion transport.Moreover,the electrically conductive carbon within the PCELS provides additional electron transport channels,enabling efficient charge transfer and uniform Li‐ion flux.With these advantages,the PCELS achieves rapid Li‐ion transport kinetics and uniform Li deposition,demonstrating excellent cycling stability over 100 cycles at a high current density of 12.0 mA cm^(-2).Furthermore,the PCELS shows stable cycling performances in Li–S cell tests and delivers an excellent capacity retention of 95.45%in the Li|LiFePO_(4) full‐cell test with a high areal capacity of over 5.5 mAh cm^(-2).展开更多
The discovery of pressure-induced superconducting electrides has sparked a intense wave of interest in novel superconductors.However,opinions vary regarding the relationship between non-nuclear attractors(NNAs)and sup...The discovery of pressure-induced superconducting electrides has sparked a intense wave of interest in novel superconductors.However,opinions vary regarding the relationship between non-nuclear attractors(NNAs)and superconductivity,with two opposing views currently represented by the materials Li_(6)P and Li_(6)C.Here,we choose the ternary Li–C–P as a model system and reveal the underlying mechanism by which NNAs contribute to superconductivity.The loosely bound NNAs in the superlithide Li_(14)CP covalently bond with Li and form unique satellite interstitial electrons(SIEs)around Li near the Fermi level,dominating the superconductivity.First-principles calculations show that the SIEs progressively increase in number and couple strongly with phonons at high pressure.Moreover,the Fermi surface nesting associated with SIEs induces phonon softening,further enhancing the electron–phonon coupling and giving the superlithide Li_(14)CP a T_(c)of 10.6 K at 300 GPa.The leading role of SIEs in superconductivity is a general one and is also relevant to the recently predicted Li_(6)P and Li_(6)C.Our work presented here reshapes the understanding of NNA-dominated superconductivity and holds promise for guiding future discoveries and designs of novel high-temperature superconductors.展开更多
基金supported by the National Key Research and Development Program of China (Grant Nos.2023YFA1406200 and 2022YFA-1405500)the National Natural Science Foundation of China (Grant Nos.12304021 and 52072188)+3 种基金Zhejiang Provincial Natural Science Foundation of China (Grant Nos.LQ23A040004 and MS26A040028)Natural Science Foundation of Ningbo (Grant Nos.2022J091 and ZX2025001430)the Program for Science and Technology Innovation Team in Zhejiang (Grant No.2021R01004)the Program for Changjiang Scholars and Innovative Research Team in University (Grant No.IRT_15R23)。
文摘High-pressure electrides,characterized by the presence of interstitial quasi-atoms(ISQs),possess unique electronic structures and physical properties,such as diverse dimensions of electride states exhibiting different superconductivity,which has attracted significant attention.Here,we report a new electron-deficient type of electride Li_(4)Al and identify its phase transition progress with pressurization,where the internal driving force behind phase transitions,bonding characteristics,and superconducting behaviors have been revealed based on first-principles density functional theory.Through analysis of the bonding properties of electride Li_(4)Al,we demonstrate that the ISQs exhibiting increasingly covalent characteristics between Al ions play a critical role in driving the phase transition.Our electron–phonon coupling calculations indicate that all phases exhibit superconducting behaviors.Importantly,we prove that the ISQs behave as free electrons and demonstrate that the factor governing T_(c) is primarily derived from Li-p-hybridized electronic states with ISQ compositions.These electronic states are scattered by low-frequency phonons arising from mixed vibrations of Li and Al affected by ISQs to enhance electron–phonon coupling.Our study largely expands the research scope of electrides,provides new insight for understanding phase transitions,and elucidates the effects of ISQs on superconducting behavior.
文摘Born in Penglai,Shandong Province in 1942,Jiang Baolin is currently working as a doctoral supervisor at the Chinese National Academy of Arts.He’s also a committee member and researcher at the China National Academy of Painting.He graduated from Zhejiang Academy of Fine Arts(now China Academy of Art),studying under such masters as Lu Yanshao and Gu Kunbo,and later pursued his master’s degree at the Central Academy of Fine Arts,sitting at the feet of masters like Li Keran.
基金supported by the Beijing Municipal Natural Science Foundation(L223009)the National Natural Science Foundation of China(22209014,22479012)+1 种基金the Hebei Natural Science Foundation(E2024208084)the Fundamental Research Funds for the Central Universities(2023CX01031)。
文摘Sulfide-based all-solid-state lithium metal batteries(ASSLMBs)have garnered significant attention due to their potential for high energy density and enhanced safety.However,their practical application is hindered by challenges such as uneven lithium(Li)deposition and the growth of Li dendrites.In this contribution,we propose an amorphous fluorinated interphase(AFI),composed of amorphous LiF and lithiated graphite,to regulate the interfacial Li-ion transport kinetics through in-situ interface chemistry.Amorphous LiF,which exhibits a significantly enhanced Li-ion diffusion compared to its crystalline counterpart,works synergistically with lithiated graphite to promote both short-range and long-range Li-ion transport kinetics at the Li/electrolyte interface.As a result,the Li anode with AFI demonstrates a remarkably enhanced critical current density of 1.6 mA cm^(−2)and an extended cycle life exceeding 1100 h.The Li||LiNi_(0.6)Co_(0.2)Mn_(0.2)O_(2)full cell also achieves a high discharge capacity of 125.7 mA h g^(−1)and retains 71.2%of its initial capacity after 200 cycles.This work provides valuable insights into the rational design of artificial anodic interphase to regulate interfacial Li-ion transport kinetics in ASSLMBs.
基金supported by the National Natural Science Foundation of China(Nos.52172243,52371215)。
文摘All-solid-state Li batteries(ASSLBs)using solid electrolytes(SEs)have gained significant attention in recent years considering the safety issue and their high energy density.Despite these advantages,the commercialization of ASSLBs still faces challenges regarding the electrolyte/electrodes interfaces and growth of Li dendrites.Elemental doping is an effective and direct method to enhance the performance of SEs.Here,we report an Al-F co-doping strategy to improve the overall properties including ion conductivity,high voltage stability,and cathode and anode compatibility.Particularly,the Al-F co-doping enables the formation of a thin Li-Al alloy layer and fluoride interphases,thereby constructing a relatively stable interface and promoting uniform Li deposition.The similar merits of Al-F co-doping are also revealed in the Li-argyrodite series.ASSLBs assembled with these optimized electrolytes gain good electrochemical performance,demonstrating the universality of Al-F co-doping towards advanced SEs.
基金financially supported by the National Key Research and Development Program of China (No. 2019YFA0708801)the National Natural Science Foundation of China (No. 51875125)。
文摘The water-quenched(WQ)2195 Al−Li alloy was subjected to stretching at different temperatures,from room temperature(RT)to−196℃(CT),to investigate the effect of cryogenic deformation on the aging precipitation behaviors and mechanical properties.The precipitation kinetics of the T1 phase and the microstructures in peak aging state were investigated through the differential scanning calorimetric(DSC)tests and electron microscopy observation.The results show that−196℃deformation produces a high dislocation density,which promotes the precipitation of the T1 phase and refines its sizes significantly.In addition,the grain boundary precipitates(GBPs)of−196℃-stretched samples are suppressed considerably due to the high dislocation density in the grain interiors,which increases the ductility.In comparison,the strength remains nearly constant.Thus,it is indicated that cryogenic forming has the potential to provide the shape and property control for the manufacture of critical components of aluminum alloys.
基金financially supported by the National Natural Science Foundation of China(Nos.22272080(M.Y.)and 52272218(H.X.))the Fundamental Research Funds for the Central Universities(No.2242024k30047).
文摘The vip-host chemistry in polymer electrolytes plays a crucial role for all-solid-state Li metal batteries,where the stable operation of such batteries heavily relies on high ion conductivity,strong mechanical properties,and stable interfaces of the electrolyte.While traditional ceramic fillers can boost ion conductivity,they fail to improve interfacial stability.In this study,we introduce intermolecular hydrogen bonding into a polyethylene oxide(PEO)-based polymer electrolyte through the incorporation of metal organic framework(MOF)and lithium nitrate additives.The hydrogen on the PEO chain is found to be tightly interacted with the oxygen nodes of UiO-66 MOF and nitrate anions,creating a cross-linked framework that reduces the crystallinity of the PEO and enhances the integrity of composite.This interaction induces a beneficial Li3N and LiF-rich solid electrolyte interphase,ensuring 2000 h of stable lithium metal operation without short-circuits.The strong polysulfide adsorption enables compatibility with high-capacity sulfur cathodes,resulting in solidstate Li-S batteries that can achieve a high capacity of 913.8 mAh·g^(-1)and exhibit stable cycling performance.This work demonstrates the deep understanding of vip-host chemistry in polymer electrolytes and their potential in developing energy-dense solid-state Li metal batteries.
文摘Biliary atresia(BA), a chronic progressive cholestatic disease of infants, is the leading cause for liver transplant in children, especially in patients under two years of age. BA can be successfully treated with the Kasai portoenterostomy; however most patients still require a liver transplant, with up to one half of BA children needing a transplant by age two. In the current pediatric end-stage liver disease system, children with BA face the risk of not receiving a liver in a safe and timely manner. In this review, we discuss a number of possible solutions to help these children. We focus on two general approaches:(1) preventing/delaying need for transplantation, by optimizing the success of the Kasai operation; and(2) expediting transplantation when needed, by performing techniques other than the standard deceased-donor, whole, ABO-matched organ transplant.
基金jointly funded by the National Science Foundation of China(No.42405069)the University Natural Sciences Research Project of Anhui Province(Nos.2023AH052201 and 2023AH052184)+1 种基金the 2023 Talent Research Fund Project of Hefei University(No.23RC01)the Technical Development Project of Hefei University(Nos.902/22050124128,902/22050124148 and 902/22050124250)。
文摘Atmospheric turbulence is an important parameter affecting laser atmospheric transmission.This paper reports on a self-developed atmospheric turbulence detection Li DAR system(scanning differential image motion Li DAR(DIM-Li DAR)system).By designing and simulating the optical system of atmospheric turbulence detection Li DAR,the basic optical imaging accuracy has been determined.
基金supported by Shandong Provincial Natural Science Foundation,China(ZR2022QE014)Basic Scientific Research Fund for Central Universities(202112018)Key Laboratory of Advanced Energy Materials Chemistry(Ministry of Education)。
文摘Lithium metal is considered as the most promising anode material for the next generation of secondary batteries due to its high theoretical specific capacity and low potential.However,undesirable parasitic reactions,poor cycling stability and safety concerns could be caused by uncontrolled dendrite and high reactivity of Li metal,which hinder the practical application of Li-metal anode in high-energy rechargeable Li metal batteries(LMBs).Here,a facile way is reported to stabilize Li metal anode by building high lithiophilic Mg-Li-Cu alloy.Due to the delocalization of electrons on the deposited lithium enhanced by Cu self-diffusion into Mg-Li alloy,the growth of lithium dendrites could be inhibited by Mg-Li-Cu alloy.Moreover,the parasitic reactions with electrolyte could be avoided by the Mg-Li-Cu alloy anode.It is noteworthy that the symmetric battery life of Mg-Li-Cu alloy electrodes exceeds 9000 h at 1 m A cm^(-2)and 1 m Ah cm^(-2).The full cell(LiFePO_(4)|Mg-Li-Cu)exhibits a specific capacity of 148.2 m Ah g^(-1),with a capacity retention of 96.4%,at 1 C after 500 cycles.This work not only pave the way for application of flexible alloy anode in highly stable LMBs,but also provides novel strategies for preparation and optimization of Mg alloy.
基金supported by the National Natural Science Foundation of China(No.52203261,No.52473213)。
文摘Solid polymer electrolytes(SPEs)are considered one of the most promising materials for all-solid-state lithium metal batteries(ASSLMBs)due to their facile processability.However,developing SPEs with both high ionic conductivity and interfacial stability remains a challenge.Here,a donor-acceptor(D-A)like solid plasticizer,tris(pentafluorophenyl)borane(TPFPB),containing electron-rich F atoms and electrondeficient B sites,was introduced to regulate the ion transport behavior and interfacial chemistry of polyethylene oxide(PEO)-based SPEs.Owing to the multiple ion-dipole interactions(F Li^(+)TFSI^(-)and B TFSI^(-)Li^(+))between the TPFPB molecule and Li salts,a multimodal electrolyte environment featuring more free Li^(+)and trapped TFSI^(-)anions was generated,which cooperates with the reduced crystallinity of PEO,significantly facilitating the rapid migration of Li^(+).More importantly,TPFPB tends to be preferentially reduced to form a stable inorganic-rich solid electrolyte interphase on the Li-metal anode,ensuring uniform Li plating/stripping behavior.Thus,the TPFPB-modulated SPEs system achieves a high Li^(+)conductivity of 0.74 m S cm^(-1)and effectively suppresses dendrite growth,which enables a long-cycle dendrite-free Li/Li symmetric cell for over 5000 h,and remarkable electrochemical performance has been further validated in operational ASSLMBs.The findings in this work would inspire efforts to develop highperformance SPEs for all-solid-state alkali-metal batteries.
基金supported by the Science Foundation of Zhejiang Sci-Tech University(18062299-Y)。
文摘The repeated volume variation of lithium(Li)metal anode(LMA)upon Li^(+) plating/stripping,the volatile interface between Li and the electrolyte,and the incessant growth of Li dendrites on Li metal surface have severely hindered the practical application of Li in constructing high energy-density Li metal batteries(LMBs).Herein,a novel Li host(3D ZnO/CNTs/Cu)featuring ordered microchannels and lithiophilic ZnO species on the inner walls of the microchannels is introduced,which induces the uniform Li^(+) deposition into the microchannels and finally suppresses the formation of Li dendrites.The stable structure of the fabricated 3D Li host can adapt to volume variations upon Li^(+) plating/stripping,thereby enhancing electrochemical performances.Symmetric cells with the 3D ZnO/CNTs/Cu@Li anode exhibited long cycle stability at areal current densities of 0.5 and 2 mA cm^(-2);Full cells maintained a reversible discharge capacity of 105 mAh g^(-1) after 400 cycles at 1C with a capacity retention of 70%.Meanwhile,ex-situ SEM observations proved that the 3D ZnO/CNTs/Cu@Li anode can keep the structural integrity during charging/discharging(or plating/stripping).This work suggested that lithiophilic nanochannels in the Li host can significantly improve the electrochemical performance and safety of LMBs.
基金supported by the National Key Research and Development Program of China(2021YFB2400202)the National Natural Science Foundation of China(52104313)+1 种基金the Key Research and Development Plan of Shaanxi(2024GH-YBXM-11)the Foshan Science and Technology Innovation Team Project(1920001004098).
文摘ZnO with good lithiophilicity has widely been employed to modify the lithiophobic substrates and facilitate uniform lithium(Li)deposition.The overpotential of ZnO-derived Li anode during cycling depends on the lithiophilicity of both LiZn and Li_(2)O products upon lithiation of ZnO.However,the striking differences in the lithiophilicity between Li_(2)O and LiZn would result in a high overpotential during cycling.In this research,the Al_(2)O_(3)/nZnO(n≥1)hybrid layers were precisely fabricated by atomic layer deposition(ALD)to regulate the lithiophilicity of ZnO phase and Li_(2)O/LiZn configuration—determining the actual Li loading amount and Li plating/stripping processes.Theoretically,the Li adsorption energy(E_(a))values of LiZn and Li_(2)O in the LiZn/Li_(2)O configuration are separately predicted as-2.789 and-3.447 eV.In comparison,the E_(a) values of LiZn,LiAlO_(2),and Li_(2)O in the LiZn/LiAlO_(2)/Li_(2)O configuration upon lithiation of Al_(2)O_(3)/8ZnO layer are calculated as-2.899,-3.089,and-3.208 eV,respectively.Importantly,a novel introduction of LiAlO_(2)into the LiZn/Li_(2)O configuration could enable the hierarchical Li plating/stripping and reduce the overpotentials during cycling.Consequently,the Al_(2)O_(3)/8ZnO-derived hybrid Li-metal anode could exhibit electrochemical performances superior to these of ZnO-derived Li anode in both symmetrical and full cells paired with a LiNi_(0.6)Co_(0.2)Mn_(0.2)O_(2)(NCM622)cathode.
基金supported by the National Natural Science Foundation of China(Nos.22379019,52172184)Sichuan Science and Technology Program(No.2024YFHZ0313)S&T Special Program of Huzhou(No.2023GZ03)。
文摘Ultrathin Li-rich Li-Cu binary alloy has become a competitive anode material for Li metal batteries of high energy density.However,due to the poor-lithiophilicity of the single skeleton structure of Li-Cu alloy,it has limitations in inducing Li nucleation and improving electrochemical performance.Hence,we introduced Ag species to Li-Cu alloy to form a 30μm thick Li-rich Li-Cu-Ag ternary alloy(LCA)anode,with Li-Ag infinite solid solution as the active phase,and Cu-based finite solid solutions as three-dimensional(3D)skeleton.Such nano-wire networks with LiCu4 and CuxAgy finite solid solution phases were prepared through a facile melt coating technique,where Ag element can act as lithiophilic specie to enhance the lithiophilicity of built-in skeleton,and regulate the deposition behavior of Li effectively.Notably,the formation of CuxAgy solid solution can strengthen the structural stability of the skeleton,ensuring the geometrical integrity of Li anode,even at the fully delithiated state.Meanwhile,the Li-Ag infinite solid solution phase can promote the Li plating/stripping reversibility of the LCA anode with an improved coulombic efficiency(CE).The synergistic effect between infinite and finite solid solutions could render an enhanced electrochemical performance of Li metal batteries.The LCA|LCA symmetric cells showed a long lifespan of over 600 h with stable polarization voltage of 40 mV,in 1 mA·cm^(-2)/1 mAh·cm^(-2).In addition,the full cells matching our ultrathin LCA anode with 17.2 mg·cm^(-2)mass loading of LiFePO_(4) cathode,can continuously operate beyond 110 cycles at 0.5C,with a high capacity retention of 91.5%.Kindly check and confirm the edit made in the article title.
基金supported by the National Natural Science Foundation of China(No.92372123)Guangdong Basic and Applied Basic Research Foundation(No.2022A1515012057,2022B1515020005,2023B1515130004)Guangzhou Basic and Applied Basic Research Foundation(No.202201011342).
文摘Porous organic cages(POCs)with permanent porosity and excellent host–vip property hold great potentials in regulating ion transport behavior,yet their feasibility as solid-state electrolytes has never been testified in a practical battery.Herein,we design and fabricate a quasi-solid-state electrolyte(QSSE)based on a POC to enable the stable operation of Li-metal batteries(LMBs).Benefiting from the ordered channels and cavity-induced anion-trapping effect of POC,the resulting POC-based QSSE exhibits a high Li+transference number of 0.67 and a high ionic conductivity of 1.25×10^(−4) S cm^(−1) with a low activation energy of 0.17 eV.These allow for homogeneous Li deposition and highly reversible Li plating/stripping for over 2000 h.As a proof of concept,the LMB assembled with POC-based QSSE demonstrates extremely stable cycling performance with 85%capacity retention after 1000 cycles.Therefore,our work demonstrates the practical applicability of POC as SSEs for LMBs and could be extended to other energy-storage systems,such as Na and K batteries.
基金supported by the National Natural Science Foundation of China(Nos.U2030206,12104022,52271014 and 22075003)the Presidential Foundation of CAEP(No.YZJJZL2023173)Sichuan Science and Technology Program(No.2021YFH0092).
文摘Li/MnO_(2) primary batteries are widely used in industry for their high specific capacity and safety.However,a deep comprehension of the Li^(+)insertion mechanism and the high self-discharge rate of the batteries is still needed.Here,the storage mechanism of Li^(+)in the tunnel structure of MnO_(2) as well as the dissolution and migration of Mn-ions were investigated based on multi-scale approaches.The Li/Mn ratio(at%)is determined at about 0.82 when the discharge voltage decreases to 2 V.The limited Li-ions transport rate in the bulk MnO_(2) restrains the reduction reaction,resulting in a low practical specific capacity.Moreover,utilizing spherical aberration-corrected transmission electron microscopy(TEM)coupled with electron energy loss spectroscopy(EELS),the presence of a mixed valence state layer of Mn^(2+)/Mn^(3+)/Mn^(4+)on the surface of the original 20 nm MnO_(2) particles was identified,which could contribute to the initial dissolution of Mn-ions.The battery separator exhibited channels for Mn-ions migration and diffusion and aggregated Mn particles.We put forward the discharge and degradation route in the ways of Mn-ions trajectories,and our findings provide a deep understanding of the high self-discharge rates and the capacity decay of Li-Mn primary batteries.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korea Government(MSIT)(RS-202400422387)the National Research Foundation of Korea(NRF)grant funded by the Korea Government(MSIT)(RS-2024-00404414)support by The Ministry of Science and ICT in Korea via KBSI(Grant No.C524100).
文摘The lithium(Li)metal anode is regarded as the upcoming generation of battery anodes due to its high theoretical capacity(3860 mAh g^(-1))and low standard reduction potential(-3.04 vs SHE).Addressing challenges related to the formation of Li metal dendrites,such as short circuits and low Coulombic efficiency,is crucial for the practical implementation of Li metal anodes.Previous research on Li metal has primarily focus on the Li plating process for achieving homogeneous growth.However,our study highlights the significance of pit formation variations,which significantly influence Li growth behavior in subsequent cycles.Expanding on this understanding,we formulated electrochemical activation conditions to promote uniform pit formation,thereby doubling the cycle life in a symmetric cell,and increasing the capacity retention of NCM622||Li full-cell from 68.7%to 79.5%after 500 cycles.
基金supported by Ministry of Science and ICT,South Korea(RS‐2024‐00407282)National Research Foundation of Korea(RS‐2024‐00408156).
文摘The practical application of lithium(Li)metal batteries(LMBs)faces challenges due to the irreversible Li deposition/dissolution process,which promotes Li dendrite growth with severe parasitic reactions during cycling.To address these issues,achieving uniform Li‐ion flux and improving Li‐ion conductivity of the separator are the top priorities.Herein,a separator(PCELS)with enhanced Li‐ion conductivity,composed of polymer,ceramic,and electrically conductive carbon,is proposed to facilitate fast Li‐ion transport kinetics and increase Li deposition uniformity of the LMBs.The PCELS immobilizes PF6–anions with high adsorption energies,leading to a high Li‐ion transference number.Simultaneously,the PCELS shows excellent electrolyte wettability on both its sides,promoting rapid ion transport.Moreover,the electrically conductive carbon within the PCELS provides additional electron transport channels,enabling efficient charge transfer and uniform Li‐ion flux.With these advantages,the PCELS achieves rapid Li‐ion transport kinetics and uniform Li deposition,demonstrating excellent cycling stability over 100 cycles at a high current density of 12.0 mA cm^(-2).Furthermore,the PCELS shows stable cycling performances in Li–S cell tests and delivers an excellent capacity retention of 95.45%in the Li|LiFePO_(4) full‐cell test with a high areal capacity of over 5.5 mAh cm^(-2).
基金supported by the National Key R&D Program of China(Grant No.2023YFA1406200)the National Natural Science Foundation of China(Grant Nos.12374004 and 12174141)the High Performance Computing Center of Jilin University,China。
文摘The discovery of pressure-induced superconducting electrides has sparked a intense wave of interest in novel superconductors.However,opinions vary regarding the relationship between non-nuclear attractors(NNAs)and superconductivity,with two opposing views currently represented by the materials Li_(6)P and Li_(6)C.Here,we choose the ternary Li–C–P as a model system and reveal the underlying mechanism by which NNAs contribute to superconductivity.The loosely bound NNAs in the superlithide Li_(14)CP covalently bond with Li and form unique satellite interstitial electrons(SIEs)around Li near the Fermi level,dominating the superconductivity.First-principles calculations show that the SIEs progressively increase in number and couple strongly with phonons at high pressure.Moreover,the Fermi surface nesting associated with SIEs induces phonon softening,further enhancing the electron–phonon coupling and giving the superlithide Li_(14)CP a T_(c)of 10.6 K at 300 GPa.The leading role of SIEs in superconductivity is a general one and is also relevant to the recently predicted Li_(6)P and Li_(6)C.Our work presented here reshapes the understanding of NNA-dominated superconductivity and holds promise for guiding future discoveries and designs of novel high-temperature superconductors.