Observation of the low-frequency oscillation (LFO) modes in power systems is important to design the damping scheme. The state equations of the power system with the doubly-fed induction generators (DFIGs) are derived...Observation of the low-frequency oscillation (LFO) modes in power systems is important to design the damping scheme. The state equations of the power system with the doubly-fed induction generators (DFIGs) are derived to find the LFO modes related to the synchronous generator (SGs) and the DFIGs. The definition of the observability measure is improved to consider the initial output and the attenuation speed of the modes. The sensitivities of the observability measures to the control parameters are derived. The numerical results from the small and large-disturbance validate the LFO modes caused by the DFIGs, and different observability measures are compared. Adjustment of the control parameters is chosen based on the sensitivity model to improve the observability and damping ratio of the LFO mode, and the stability of the wind power system.展开更多
In the context of 1980—1992 JMA(Japan Meteorological Agency)GMS TBB gridded dataset, study is undertaken of annual cycle features of FFT-derived window power spectrum averaged over the record length,with localized sp...In the context of 1980—1992 JMA(Japan Meteorological Agency)GMS TBB gridded dataset, study is undertaken of annual cycle features of FFT-derived window power spectrum averaged over the record length,with localized space/time characteristics of low-frequency oscillation(LFO)in the tropical atmosphere investigated alongside possible causes.It turns out that the LFO takes on surprisingly noticeable annual cycle features marked by a wider variable range of the LFO periods over northern tropics than the southern counterpart and equatorial vicinity.In addition,on the whole,the signals are more intense in the Northern Hemisphere during summer/autumn and at equatorial/southern latitudes when northern winter/spring occur as well.Also,not all these features are identical for different segments at the same latitudes,displaying signatures on a local basis,and the spatial/temporal locality can be qualitatively interpreted in terms of nonlinear interaction between tropical waves,and modulation of diabatic heating on the LFO periods.展开更多
基金This work was supported by the National Natural Science Foundation of China(Grant No.51877061).
文摘Observation of the low-frequency oscillation (LFO) modes in power systems is important to design the damping scheme. The state equations of the power system with the doubly-fed induction generators (DFIGs) are derived to find the LFO modes related to the synchronous generator (SGs) and the DFIGs. The definition of the observability measure is improved to consider the initial output and the attenuation speed of the modes. The sensitivities of the observability measures to the control parameters are derived. The numerical results from the small and large-disturbance validate the LFO modes caused by the DFIGs, and different observability measures are compared. Adjustment of the control parameters is chosen based on the sensitivity model to improve the observability and damping ratio of the LFO mode, and the stability of the wind power system.
基金This work is supported by the National Natural Science Foundation of China.
文摘In the context of 1980—1992 JMA(Japan Meteorological Agency)GMS TBB gridded dataset, study is undertaken of annual cycle features of FFT-derived window power spectrum averaged over the record length,with localized space/time characteristics of low-frequency oscillation(LFO)in the tropical atmosphere investigated alongside possible causes.It turns out that the LFO takes on surprisingly noticeable annual cycle features marked by a wider variable range of the LFO periods over northern tropics than the southern counterpart and equatorial vicinity.In addition,on the whole,the signals are more intense in the Northern Hemisphere during summer/autumn and at equatorial/southern latitudes when northern winter/spring occur as well.Also,not all these features are identical for different segments at the same latitudes,displaying signatures on a local basis,and the spatial/temporal locality can be qualitatively interpreted in terms of nonlinear interaction between tropical waves,and modulation of diabatic heating on the LFO periods.