To improve the poor stability of casting process of Al alloy with high Mg content, which leads to poor final product quality, the melting purification process and the influences of the refiner on the microstructure an...To improve the poor stability of casting process of Al alloy with high Mg content, which leads to poor final product quality, the melting purification process and the influences of the refiner on the microstructure and defect of 5083 alloy were studied. The results show that the optimized process for the rotary impeller degassing of 5083 alloy is as follows: a rotary speed of 250-400 r/min; a gas flow of 1.2-2.0 L/s, a refining time of 10-15 min. This optimized process can reduce the gas content in the solid alloy to 2× 10^-3 mL/g or lower. Due to the addition of grain refiner, the cast microstructure of 5083 alloy is refined. The Al-5Ti-IB wire shows the best refining effect among all the refiners. The refining effect is improved with the increase of grain refiner addition amount. And the refinement effects become stable when Ti content reaches 0.1% or higher. The surface crinkling defect of the billet can be easily found in the alloy refined with Al-5Ti-IB wire compared with the alloys refined with other refiners.展开更多
The flow and mixing characteristics of molten steel during the vacuum circulation refining, including RH(Ruhrstahl Heraeus) and RH KTB(Ruhrstahl Heraeus Kawasaki top blowing) processes, were investigated on a 1/5 ...The flow and mixing characteristics of molten steel during the vacuum circulation refining, including RH(Ruhrstahl Heraeus) and RH KTB(Ruhrstahl Heraeus Kawasaki top blowing) processes, were investigated on a 1/5 linear scale water model of a 90 t multifunction RH degasser. The circulation rate was directly and more accurately determined, using a new method by which the more reliable results can be obtained. The fluid flow pattern and flow field in the ladle were demonstrated, observed and analyzed. The mixing time of liquid in the ladle was measured using electrical conductivity method. The residence time distribution in the RH model was obtained by tracer response technique. The influence of the main technological and geometric factors, including the gas top blowing (KTB) operation, was examined. The results indicated that the circulation rate of molten steel in the RH degasser can be fairly precisely calculated by the formula: Q lp =0.0333 Q 0.26 g D 0.69 u D 0.80 d(t/min), where Q g-the lifting gas flow rate (NL/min); D u and D d-the inner diameters of the up and down snorkels (cm), respectively. The maximum value of circulation rate of molten steel in the case of the 30 cm diameters either of the up and down snorkels for the RH degasser (the “saturated” rate) is approximately 31 t/min. The corresponding gas flow rate is 900 NL/min. Blowing gas into the vacuum chamber through the top lance like KTB operation does not markedly influence the circulatory flow and mixing characteristics of the RH process under the conditions of the present work. There exist a major loop and a large number of small vortices and eddies in the ladle during the RH refining process. A liquid liquid two phase flow is formed between the descending stream from the down snorkel and the liquid around the stream. All of these flow situation and pattern will strongly influence and determine the mixing and mass transfer in the ladle during the refining. The correlation between the mixing time and the stirring energy density is τ m∝ε -0.50 for the RH degasser. The mixing time rapidly shortens with an increase in the lifting gas flowrate. At a same gas flow rate, the mixing times with the up and down snorkel diameters either of 6 and 7 cm are essentially same. The 30 cm diameters either of the up and down snorkels for the RH degasser would be reasonable. The concentration time curve showed that three circulation cycles are at least needed for complete mixing of the liquid steel in the RH degasser.展开更多
Magnesium(Mg) alloys, as the lightest metal engineering materials, have broad application prospects.However, the strength and ductility of traditional Mg alloys are still relativity low and difficult to improve simult...Magnesium(Mg) alloys, as the lightest metal engineering materials, have broad application prospects.However, the strength and ductility of traditional Mg alloys are still relativity low and difficult to improve simultaneously.Refining grain size via the deformation process based on the grain boundary strengthening and the transition of deformation mechanisms is one of the feasible strategies to prepare Mg alloys with high strength and high ductility.In this review, the effects of grain size on the strength and ductility of Mg alloys are summarized, and fine-grained Mg alloys with high strength and high ductility developed by various severe plastic deformation technologies and improved traditional deformation technologies are introduced.Although some achievements have been made, the effects of grain size on various Mg alloys are rarely discussed systematically and some key mechanisms are unclear or lack direct microscopic evidence.This review can be used as a reference for further development of high-performance fine-grained Mg alloys.展开更多
A hybrid neural network model,in which RH process(theoretical)model is combined organically with neural network(NN)and case-base reasoning(CBR),was established.The CBR method was used to select the operation mode and ...A hybrid neural network model,in which RH process(theoretical)model is combined organically with neural network(NN)and case-base reasoning(CBR),was established.The CBR method was used to select the operation mode and the RH operational guide parameters for different steel grades according to the initial conditions of molten steel,and a three-layer BP neural network was adopted to deal with nonlinear factors for improving and compensating the limitations of technological model for RH process control and end-point prediction.It was verified that the hybrid neural network is effective for improving the precision and calculation efficiency of the model.展开更多
The available studies in the literature on physical modeling of the vacuum circulation (RH, i.e. Ruhrstahl Heraeus) refining process of molten steel have briefly been reviewed. The latest advances made by the author ...The available studies in the literature on physical modeling of the vacuum circulation (RH, i.e. Ruhrstahl Heraeus) refining process of molten steel have briefly been reviewed. The latest advances made by the author with his research group have been summarized. Water modeling was employed to investigate the flow and mixing characteristics of molten steel under the RH and RH KTB (Kawasaki top blowing) conditions and the mass transfer features between molten steel and powder particles in the RH PTB (powder top blowing) refining. The geometric similarity ratio between the model and its prototype (a multifunction RH degasser of 90 t capacity) was 1:5. The effects of the related technological and structural factors were considered. These latest studies have revealed the flow and mixing characteristics of molten steel and the mass transfer features between molten steel and powder particles in these processes, and have provided a better understanding of the refining processes of molten steel.展开更多
The Fe reduction,microstructure evolution and corrosion susceptibility of Mg−Mn alloys made from magnesium scrap refining with Mn addition were investigated.The results show that significant Fe content change occurs d...The Fe reduction,microstructure evolution and corrosion susceptibility of Mg−Mn alloys made from magnesium scrap refining with Mn addition were investigated.The results show that significant Fe content change occurs during near-solid-melt treatment(NSMT)process even in the absence of Mn,because of the high saturation of Fe in the melt.Furthermore,in the NSMT process,even a small amount of Mn addition can lead to a sharp deposition of Mn atoms.The NSMT process can increase the growth rate of the Fe-rich particles,and then accelerate their sinking movement.Nevertheless,the addition of Mn hinders the coarsening process of Fe-rich particles.Besides,the corrosion susceptibility of the alloys is mainly affected by the solubility of Fe,which can be significantly reduced by Mn addition.Moreover,the presence of more Fe-rich particles does not necessarily increase the corrosion susceptibility of the alloy.Consequently,in the refining process of Mg−Mn alloys made from magnesium scrap,on the basis of NSMT process and adding an appropriate Mn content(about 0.5 wt.%),the purity of the melt can be improved,thereby obtaining an alloy with excellent corrosion resistance.展开更多
The present paper reports a new fluoride-free and energy-saving lead electrolytic refining process in order to solve the serious problems of the existing Betts lead electrorefining process, such as low production effi...The present paper reports a new fluoride-free and energy-saving lead electrolytic refining process in order to solve the serious problems of the existing Betts lead electrorefining process, such as low production efficiency,high energy consumption and fluorine pollution. In the process, a mixed solution of perchloric acid and lead perchlorate(HClO4-Pb(ClO4)2) with the additives of gelatin and sodium lignin sulfonate is employed as the new electrolyte. The cathodic polarization curves show that HClO4 is very stable, and there is no any reduction reaction of HClO4 during the electrolytic process. The redox reactions of lead ions in HClO4 solution are very reversible with an ultrahigh capacity efficiency, so the HClO4 acts as a stable support electrolyte with higher ionic conductivity than the traditional H2SiF6 electrolyte. The results of the scale-up experiments show that under the optimal conditions of 2.8 mol·L-1 HClO4, 0.4 mol·L-1 Pb(ClO4)2 and electrolysis temperature of 45 ℃, the energy consumption is as low as 24.5 kW·h·(t Pb)-1 , only about 20% of that by Betts method at the same current density of 20 mA·cm-2, and the purity of the refined lead is up to 99.9992%, much higher than that specified by Chinese national standard(99.994%, GB/T 469-2013) and European standard(99.99%, EN 12659–1999).展开更多
The effect of different refining processes on inclusions and mechanical properties of cast Al-2Li-2Cu-0.2Zr alloy was investigated, including two-stage hexachloroethane (C2Cl6) refining process, two-stage rotating gas...The effect of different refining processes on inclusions and mechanical properties of cast Al-2Li-2Cu-0.2Zr alloy was investigated, including two-stage hexachloroethane (C2Cl6) refining process, two-stage rotating gas bubbling refining process and two-stage composite refining process. It was found that the two-stage composite refining process, which combined C2Cl6 and rotating gas bubbling, can significantly improve the melt purity and mechanical properties of cast Al-2Li-2Cu-0.2Zr alloy. Compared to the unrefined alloy, the volume fraction of gas porosity defects and slag inclusions decreased from 1.47% to 0.12%, and the yield strength, ultimate tensile strength and elongation of as-quenched alloy increased from 113 MPa,179 MPa and 3.9% to 142 MPa, 293 MPa and 18.1%, respectively. C2Cl6 was first utilized to degas and remove large size slag inclusions before lithium addition, and then the rotating gas bubbling was utilized to do the further degassing and remove the suspended fine inclusions after lithium addition. The two-stage composite refining process can take advantage of two methods and get the remarkable refining effect.展开更多
Since the current slagging of argon blowing refining process is relatively fixed,which cannot adapt to the fluctuation of converter smelting process,it poses the problems of poor metallurgical property of refining sla...Since the current slagging of argon blowing refining process is relatively fixed,which cannot adapt to the fluctuation of converter smelting process,it poses the problems of poor metallurgical property of refining slag and a large amount of molten heel.An optimization system coupled with multiple models was proposed to dynamic control the ladle slagging in the argon blowing refining process.It can compile the optimal dynamic slagging scheme in real time under the guarantee of deoxidation performance and reasonable fluidity.The argon blowing refining slag composition range of CaO/Al_(2)O_(3)=1.3-1.7,CaO/SiO_(2)=6-12,w(MgO)=2%-6% was determined based on FeO activity and liquidus temperature by equilibrium thermodynamic calculation.In addition,it demonstrated better performance in the viscosity prediction task of the presented Visual Geometry Group 16-like one-dimensional convolutional neural network deep learning algorithm versus the Random Forest ensemble learning algorithm,as the adjusted coefficients of determination were 0.9712 and 0.9637,respectively.After the system was applied in operation,the argon blowing refining process was stable,and the steel yield was enhanced,which promoted the intelligent steelmaking level while achieving the cost reduction and efficiency improvement.展开更多
The available studies in the literature on mathematical modeling of the vacuum circulation (RH) refining process of molten steel have briefly been reviewed. The latest advances obtained by the author with his research...The available studies in the literature on mathematical modeling of the vacuum circulation (RH) refining process of molten steel have briefly been reviewed. The latest advances obtained by the author with his research group have been summarized. On the basis of the mass and momentum balances in the system, a new mathematical model for decarburization and degassing during the RH and RH KTB refining processes of molten steel was proposed and developed. The refining roles of the three reaction sites, i.e. the up snorkel zone, the droplet group and steel bath in the vacuum vessel, were considered in the model. It was assumed that the mass transfer of reactive components in the molten steel is the rate control step of the refining reactions. And the friction losses and drags of flows in the snorkels and vacuum vessel were all counted. The model was applied to the refining of molten steel in a multifunction RH degasser of 90 t capacity. The decarburization and degassing processes in the degasser under the RH and RH KTB operating conditions were modeled and analyzed using this model. Besides, proceeded from the two resistance mass transfer theory and the mass balance of sulphur in the system, a kinetic model for the desulphurization by powder injection and blowing in the RH refining of molten steel was developed. Modeling and predictions of the process of injecting and blowing the lime based powder flux under assumed operating modes with the different initial contents of sulphur and amounts of powder injected and blown in a RH degasser of 300 t capacity were carried out using the model. It was demonstrated that for the RH and RH KTB refining processes, and the desulphurization by powder injection and blowing in the RH refining, the results predicted by the models were all in good agreement respectively with data from industrial experiments and practice. These models may be expected to offer some useful information and a reliable basis for determining and optimizing the technologies of the RH and RH KTB refining and desulphurization by powder injection and blowing in the RH refining and for controlling the processes.展开更多
Ti-stabilized 321 stainless steel was prepared using an electric arc furnace, argon oxygen decarburization (AOD) furnace, ladle furnace (LF), and continuous casting processes. In addition, the effect of refining proce...Ti-stabilized 321 stainless steel was prepared using an electric arc furnace, argon oxygen decarburization (AOD) furnace, ladle furnace (LF), and continuous casting processes. In addition, the effect of refining process and utilization of different slags on the evolution of inclusions, titanium yield, and oxygen content was systematically investigated by experimental and thermodynamic analysis. The results reveal that the total oxygen content (TO) and inclusion density decreased during the refining process. The spherical CaO–SiO2–Al2O3–MgO inclusions existed in the 321 stainless steel after the AOD process. Moreover, prior to the Ti addition, the spherical CaO–Al2O3–MgO–SiO2 inclusions were observed during LF refining pro-cess. However, Ti addition resulted in multilayer CaO–Al2O3–MgO–TiOx inclusions. Two different samples were prepared by conventional CaO–Al2O3-based slag (Heat-1) and -TiO2-rich CaO–Al2O3-based slag (Heat-2). The statistical analysis revealed that the density of inclusions and the -TiOx content in CaO–Al2O3–MgO–TiOx inclusions found in Heat-2 sample are much lower than those in the Heat-1 sample. Furthermore, the TO content and Ti yield during the LF refining process were controlled by using -TiO2-rich calcium aluminate synthetic slag. These results were consistent with the ion–molecule coexist-ence theory and FactSage?7.2 software calculations. When -TiO2-rich CaO–Al2O3-based slag was used, the -TiO2 activity of the slag increased, and the equilibrium oxygen content significantly decreased from the AOD to LF processes. Therefore, the higher -TiO2 activity of slag and lower equilibrium oxygen content suppressed the undesirable reactions between Ti and O.展开更多
Three-dimensional thermal a nalysis simulation of a horizontal zone refining system is conducted for germanimn semiconductor materials. The considered geometry includes a g'ral)hite boat filled with germanium placed...Three-dimensional thermal a nalysis simulation of a horizontal zone refining system is conducted for germanimn semiconductor materials. The considered geometry includes a g'ral)hite boat filled with germanium placed in a cylindrical quartz tube. A flow of Ar and H2 gas mixture is purged througll the tube. A narrow section of the, boat is assmned to be exposed to a constant heat rate produced b v an rf coil located outside the quartz tube. The results of this analysis provide essential information about various parameters such as the shape of tile molten zone, required power and temperature gradient in the system.展开更多
WHILE much of Africa's oil production is exported in its crude form, Uganda is primed to build its own oil refinery. This ambition is set to be realized after the China National Offshore Oil Corp. (CNOOC) struck a ...WHILE much of Africa's oil production is exported in its crude form, Uganda is primed to build its own oil refinery. This ambition is set to be realized after the China National Offshore Oil Corp. (CNOOC) struck a $2-billion licensing deal to develop a vast petroleum field in Uganda. Signed in late September, it was the first oil production license to be issued in Uganda,展开更多
A new severe plastic deformation (SPD) method that is extrusion-shearing (ES), which includes initial forward extrusion and shearing process subsequently, was developed to fabricate the fine grained AZ31 Mg alloys...A new severe plastic deformation (SPD) method that is extrusion-shearing (ES), which includes initial forward extrusion and shearing process subsequently, was developed to fabricate the fine grained AZ31 Mg alloys. The components of ES die were manufactured and installed to gleeble1500D thermo-mechanical simulator. Microstructure observations were carried out in different positions of ES formed rods. The results show that homogeneous microstructures with mean grain size of 2 μm are obtained at lower temperature as the accumulated true strain is 2.44. Occurring of continuous dynamic recrystallization (DRX) is the main reason for grain refinement during ES process. The experimental results show that the ES process effectively refines the grains of AZ31 magnesium. The production results of ES extrusion with industrial extruder under different extrusion conditions show that the ES extrusion can be applied in large-scale industry.展开更多
The effect of the volume fraction of I-phase on the hot compressive behavior and processing maps of the extruded Mg-Zn-Y alloys was examined, and the obtained results were compared with those of the cast alloys in a p...The effect of the volume fraction of I-phase on the hot compressive behavior and processing maps of the extruded Mg-Zn-Y alloys was examined, and the obtained results were compared with those of the cast alloys in a previous work. The average grain sizes, fractions of dynamically recrystallized(DRXed) grains,and sizes of DRXed grains of the extruded alloys after compressive deformation were significantly smaller,higher and smaller, respectively, than those of the cast alloys after compressive deformation under the same experimental conditions. This was because the microstructures of the extruded alloys, having much more grain boundaries and more refined I-phase particles than the cast alloys, provided a larger number of nucleation sites for dynamic recrystallization than those of the cast alloys. The constitutive equations for high-temperature deformation of the extruded and cast alloys could be derived using the same activation energy for plastic flow, which was close to the activation energy for lattice diffusion in magnesium.Compared with the cast alloys, the onset of the power law breakdown(PLB) occurred at larger ZenerHolloman(Z) parameter values in the extruded alloys. This was because the extruded alloys had finer initial grain sizes and higher fractions of finer DRXed grains compared to the cast alloys, such that the onset of PLB caused by creation of excessive concentrations of deformation-induced vacancies was delayed to a higher strain rate and a lower temperature. The flow-stress difference between the extruded alloys and the cast alloys could be attributed to the difference in the fraction of DRXed grains. According to the processing maps, the extruded alloys exhibited higher power dissipation efficiency and flow stability than the cast alloys. This agreed with the microstructural observations.展开更多
The application of a single pass of friction stir processing(FSP) to Mg-Nd-Zn alloy resulted in grain refinement, texture evolution and redistribution of second phases, which improved corrosion resistance.In this work...The application of a single pass of friction stir processing(FSP) to Mg-Nd-Zn alloy resulted in grain refinement, texture evolution and redistribution of second phases, which improved corrosion resistance.In this work, an as-rolled Mg-Nd-Zn alloy was subjected to FSP. The microstructure in the processed zone of the FS-400 rpm alloy exhibited refined grains, a more homogenous grain size distribution, less second phases, and stronger basal plane texture. The corrosion behavior assessed using immersion tests and electrochemical tests in Hank’s solution indicated that the FS-400 rpm alloy had a lower corrosion rate, which was attributed to the increase of basal plane intensity and grain refinement. The hardness was lowered slightly and the elongation was increased, which might be attributed to the redistribution of the crushed second phases.展开更多
The packet size of bainitic steel can be refined by a specialrelaxation-precipitation-control phase transformation (RFC) technology. When processed by RPCprocess, the low carbon bainitic steel composes of two kinds of...The packet size of bainitic steel can be refined by a specialrelaxation-precipitation-control phase transformation (RFC) technology. When processed by RPCprocess, the low carbon bainitic steel composes of two kinds of main intermediate transformationphases. One is ultra-fine lath-like bainitic ferrite and the lath is less than 1μm in width andabout 6 μm in length; the alignment of laths forms a refined packet, and the size of packets isabout 5-7 μm in length and about 3-4μm in width. The other is acicular structure. The morphologyand distribution of these acicular structures are influenced by relaxation process, the thin andshort acicular structures cut the prior austenite grain and refine the bainitic packet size. For theoptimum relaxation time, the packet size can be refined to the finest. The mechanical propertiesare influenced by relaxation time and the 800 MPa grade low carbon bainitic steel with excellenttoughness can be obtained by RPC process.展开更多
This paper presents the effects of different process parameters in producing Al-STi-1B grain refiner,i.e.various sequences and reaction time,on grain refinement efficiency of aluminum castings.It was found that differ...This paper presents the effects of different process parameters in producing Al-STi-1B grain refiner,i.e.various sequences and reaction time,on grain refinement efficiency of aluminum castings.It was found that different process parameters resulted in different morphology and size distribution of TiAl-3 and TiB-2 in grain refiner. The experiment was carried out by adding KBF-4 and K-2TiF-6 to molten aluminum.The melting temperature was controlled at 800℃in an electric resistance furnace.Three different sequences of KBF-4 and K-2TiF-6 additions were applied,i.e.,adding KBF-4 before K-2TiF-6,adding K-2TiF-4 before KBF-4 and mixing both KBF-4 and K-2TiF-6 before adding to molten aluminum.Three different holding time at 1 min,30 min and 60 min were applied.The results showed that no significant difference of morphology and size distribution was found by varying three different sequences.Whereas,the different holding time provided major differences in both morphology and size distribution,which are technically expectable from diffusion and agglomeration between particles resulting in larger particle size and wider range of size distribution of TiAI3 and TiB2.If the reaction time was longer than 30 rain,morphology of both TiAl-3 and TiB-2 became too large.If the reaction time was too short,less reaction between TiAl-3 and TiB2 to form would be obtained.For grain refinement efficiency, it was found that mixing KBF-4 and K-2TiF-6 before adding to molten aluminum with a holding time of 30 min resulted in best grain refinement efficiency.展开更多
In this study, a serpentine channel pouring process was used to prepare the semi-solid A1-20%Si alloy slurry and refine primary Si grains in the alloy. The effects of the pouring temperature, number of curves in the s...In this study, a serpentine channel pouring process was used to prepare the semi-solid A1-20%Si alloy slurry and refine primary Si grains in the alloy. The effects of the pouring temperature, number of curves in the serpentine channel, and material of the serpentine channel on the size of primary Si grains in the semi-solid A1-20%Si alloy slurry were investigated. The results showed that the pouting temperature, number of the curves, and material of the channel strongly affected the size and distribution of the primary Si grains. The pouring tempera- ture exerted the strongest effect, followed by the number of the curves and then the material of the channel. Under experimental conditions of a four-curve copper channel and a pouring temperature of 701℃, primary Si grains in the semi-solid A1-20%Si alloy slurry were refined to the greatest extent, and the lath-like grains were changed into granular grains. Moreover, the equivalent grain diameter and the average shape coefficient of primary Si grains in the satisfactory semi-solid A1-20%Si alloy slurry were 24.4 μm and 0.89, respectively. Finally, the re- finement mechanism and distribution rule of primary Si grains in the slurry prepared through the serpentine channel pouring process were analyzed and discussed.展开更多
基金Project(12511075)supported by the Foundation of Heilongjiang Education Committee,China
文摘To improve the poor stability of casting process of Al alloy with high Mg content, which leads to poor final product quality, the melting purification process and the influences of the refiner on the microstructure and defect of 5083 alloy were studied. The results show that the optimized process for the rotary impeller degassing of 5083 alloy is as follows: a rotary speed of 250-400 r/min; a gas flow of 1.2-2.0 L/s, a refining time of 10-15 min. This optimized process can reduce the gas content in the solid alloy to 2× 10^-3 mL/g or lower. Due to the addition of grain refiner, the cast microstructure of 5083 alloy is refined. The Al-5Ti-IB wire shows the best refining effect among all the refiners. The refining effect is improved with the increase of grain refiner addition amount. And the refinement effects become stable when Ti content reaches 0.1% or higher. The surface crinkling defect of the billet can be easily found in the alloy refined with Al-5Ti-IB wire compared with the alloys refined with other refiners.
文摘The flow and mixing characteristics of molten steel during the vacuum circulation refining, including RH(Ruhrstahl Heraeus) and RH KTB(Ruhrstahl Heraeus Kawasaki top blowing) processes, were investigated on a 1/5 linear scale water model of a 90 t multifunction RH degasser. The circulation rate was directly and more accurately determined, using a new method by which the more reliable results can be obtained. The fluid flow pattern and flow field in the ladle were demonstrated, observed and analyzed. The mixing time of liquid in the ladle was measured using electrical conductivity method. The residence time distribution in the RH model was obtained by tracer response technique. The influence of the main technological and geometric factors, including the gas top blowing (KTB) operation, was examined. The results indicated that the circulation rate of molten steel in the RH degasser can be fairly precisely calculated by the formula: Q lp =0.0333 Q 0.26 g D 0.69 u D 0.80 d(t/min), where Q g-the lifting gas flow rate (NL/min); D u and D d-the inner diameters of the up and down snorkels (cm), respectively. The maximum value of circulation rate of molten steel in the case of the 30 cm diameters either of the up and down snorkels for the RH degasser (the “saturated” rate) is approximately 31 t/min. The corresponding gas flow rate is 900 NL/min. Blowing gas into the vacuum chamber through the top lance like KTB operation does not markedly influence the circulatory flow and mixing characteristics of the RH process under the conditions of the present work. There exist a major loop and a large number of small vortices and eddies in the ladle during the RH refining process. A liquid liquid two phase flow is formed between the descending stream from the down snorkel and the liquid around the stream. All of these flow situation and pattern will strongly influence and determine the mixing and mass transfer in the ladle during the refining. The correlation between the mixing time and the stirring energy density is τ m∝ε -0.50 for the RH degasser. The mixing time rapidly shortens with an increase in the lifting gas flowrate. At a same gas flow rate, the mixing times with the up and down snorkel diameters either of 6 and 7 cm are essentially same. The 30 cm diameters either of the up and down snorkels for the RH degasser would be reasonable. The concentration time curve showed that three circulation cycles are at least needed for complete mixing of the liquid steel in the RH degasser.
基金supported by the National Natural Science Foundation of China (Nos.51871069 and 52071093)the Fundamental Research Funds for the Central Universities (No.3072020CF1009)+2 种基金the Science and Technology Innovation Major Project of Ningbo City, China (No.2019B10103)the Domain Foundation of Equipment Advance Research of 13th Five-year Plan (No.61409220118)the Open Funds of the State Key Laboratory of Rare Earth Resource Utilization (No.RERU2020008)。
文摘Magnesium(Mg) alloys, as the lightest metal engineering materials, have broad application prospects.However, the strength and ductility of traditional Mg alloys are still relativity low and difficult to improve simultaneously.Refining grain size via the deformation process based on the grain boundary strengthening and the transition of deformation mechanisms is one of the feasible strategies to prepare Mg alloys with high strength and high ductility.In this review, the effects of grain size on the strength and ductility of Mg alloys are summarized, and fine-grained Mg alloys with high strength and high ductility developed by various severe plastic deformation technologies and improved traditional deformation technologies are introduced.Although some achievements have been made, the effects of grain size on various Mg alloys are rarely discussed systematically and some key mechanisms are unclear or lack direct microscopic evidence.This review can be used as a reference for further development of high-performance fine-grained Mg alloys.
基金Item Sponsored by National Natural Science Foundation of China(50074026)
文摘A hybrid neural network model,in which RH process(theoretical)model is combined organically with neural network(NN)and case-base reasoning(CBR),was established.The CBR method was used to select the operation mode and the RH operational guide parameters for different steel grades according to the initial conditions of molten steel,and a three-layer BP neural network was adopted to deal with nonlinear factors for improving and compensating the limitations of technological model for RH process control and end-point prediction.It was verified that the hybrid neural network is effective for improving the precision and calculation efficiency of the model.
文摘The available studies in the literature on physical modeling of the vacuum circulation (RH, i.e. Ruhrstahl Heraeus) refining process of molten steel have briefly been reviewed. The latest advances made by the author with his research group have been summarized. Water modeling was employed to investigate the flow and mixing characteristics of molten steel under the RH and RH KTB (Kawasaki top blowing) conditions and the mass transfer features between molten steel and powder particles in the RH PTB (powder top blowing) refining. The geometric similarity ratio between the model and its prototype (a multifunction RH degasser of 90 t capacity) was 1:5. The effects of the related technological and structural factors were considered. These latest studies have revealed the flow and mixing characteristics of molten steel and the mass transfer features between molten steel and powder particles in these processes, and have provided a better understanding of the refining processes of molten steel.
基金Project(2016YFB0301100)supported by the National Key Research and Development Program of ChinaProject(2018CDJDCD0001)supported by the Fundamental Research Funds for the Central Universities,China。
文摘The Fe reduction,microstructure evolution and corrosion susceptibility of Mg−Mn alloys made from magnesium scrap refining with Mn addition were investigated.The results show that significant Fe content change occurs during near-solid-melt treatment(NSMT)process even in the absence of Mn,because of the high saturation of Fe in the melt.Furthermore,in the NSMT process,even a small amount of Mn addition can lead to a sharp deposition of Mn atoms.The NSMT process can increase the growth rate of the Fe-rich particles,and then accelerate their sinking movement.Nevertheless,the addition of Mn hinders the coarsening process of Fe-rich particles.Besides,the corrosion susceptibility of the alloys is mainly affected by the solubility of Fe,which can be significantly reduced by Mn addition.Moreover,the presence of more Fe-rich particles does not necessarily increase the corrosion susceptibility of the alloy.Consequently,in the refining process of Mg−Mn alloys made from magnesium scrap,on the basis of NSMT process and adding an appropriate Mn content(about 0.5 wt.%),the purity of the melt can be improved,thereby obtaining an alloy with excellent corrosion resistance.
基金Supported by the National Natural Science Foundation of China(21676022)the Fundamental Research Funds for the Central Universities(BHYC170A&JD701)
文摘The present paper reports a new fluoride-free and energy-saving lead electrolytic refining process in order to solve the serious problems of the existing Betts lead electrorefining process, such as low production efficiency,high energy consumption and fluorine pollution. In the process, a mixed solution of perchloric acid and lead perchlorate(HClO4-Pb(ClO4)2) with the additives of gelatin and sodium lignin sulfonate is employed as the new electrolyte. The cathodic polarization curves show that HClO4 is very stable, and there is no any reduction reaction of HClO4 during the electrolytic process. The redox reactions of lead ions in HClO4 solution are very reversible with an ultrahigh capacity efficiency, so the HClO4 acts as a stable support electrolyte with higher ionic conductivity than the traditional H2SiF6 electrolyte. The results of the scale-up experiments show that under the optimal conditions of 2.8 mol·L-1 HClO4, 0.4 mol·L-1 Pb(ClO4)2 and electrolysis temperature of 45 ℃, the energy consumption is as low as 24.5 kW·h·(t Pb)-1 , only about 20% of that by Betts method at the same current density of 20 mA·cm-2, and the purity of the refined lead is up to 99.9992%, much higher than that specified by Chinese national standard(99.994%, GB/T 469-2013) and European standard(99.99%, EN 12659–1999).
基金Project(2016YFB0301003)supported by the National Key R&D Program of ChinaProject(51871148)supported by the National Natural Science Foundation of ChinaProject(sklmmc-kf18-02)supported by Open Research Fund of the State Key Laboratory of Metal Matrix Composites,China
文摘The effect of different refining processes on inclusions and mechanical properties of cast Al-2Li-2Cu-0.2Zr alloy was investigated, including two-stage hexachloroethane (C2Cl6) refining process, two-stage rotating gas bubbling refining process and two-stage composite refining process. It was found that the two-stage composite refining process, which combined C2Cl6 and rotating gas bubbling, can significantly improve the melt purity and mechanical properties of cast Al-2Li-2Cu-0.2Zr alloy. Compared to the unrefined alloy, the volume fraction of gas porosity defects and slag inclusions decreased from 1.47% to 0.12%, and the yield strength, ultimate tensile strength and elongation of as-quenched alloy increased from 113 MPa,179 MPa and 3.9% to 142 MPa, 293 MPa and 18.1%, respectively. C2Cl6 was first utilized to degas and remove large size slag inclusions before lithium addition, and then the rotating gas bubbling was utilized to do the further degassing and remove the suspended fine inclusions after lithium addition. The two-stage composite refining process can take advantage of two methods and get the remarkable refining effect.
基金the fund support from the Natural Science Foundation of Anhui Provincial Education Department(KJ2021A0358)the National Natural Science Foundation of China(51804004).
文摘Since the current slagging of argon blowing refining process is relatively fixed,which cannot adapt to the fluctuation of converter smelting process,it poses the problems of poor metallurgical property of refining slag and a large amount of molten heel.An optimization system coupled with multiple models was proposed to dynamic control the ladle slagging in the argon blowing refining process.It can compile the optimal dynamic slagging scheme in real time under the guarantee of deoxidation performance and reasonable fluidity.The argon blowing refining slag composition range of CaO/Al_(2)O_(3)=1.3-1.7,CaO/SiO_(2)=6-12,w(MgO)=2%-6% was determined based on FeO activity and liquidus temperature by equilibrium thermodynamic calculation.In addition,it demonstrated better performance in the viscosity prediction task of the presented Visual Geometry Group 16-like one-dimensional convolutional neural network deep learning algorithm versus the Random Forest ensemble learning algorithm,as the adjusted coefficients of determination were 0.9712 and 0.9637,respectively.After the system was applied in operation,the argon blowing refining process was stable,and the steel yield was enhanced,which promoted the intelligent steelmaking level while achieving the cost reduction and efficiency improvement.
文摘The available studies in the literature on mathematical modeling of the vacuum circulation (RH) refining process of molten steel have briefly been reviewed. The latest advances obtained by the author with his research group have been summarized. On the basis of the mass and momentum balances in the system, a new mathematical model for decarburization and degassing during the RH and RH KTB refining processes of molten steel was proposed and developed. The refining roles of the three reaction sites, i.e. the up snorkel zone, the droplet group and steel bath in the vacuum vessel, were considered in the model. It was assumed that the mass transfer of reactive components in the molten steel is the rate control step of the refining reactions. And the friction losses and drags of flows in the snorkels and vacuum vessel were all counted. The model was applied to the refining of molten steel in a multifunction RH degasser of 90 t capacity. The decarburization and degassing processes in the degasser under the RH and RH KTB operating conditions were modeled and analyzed using this model. Besides, proceeded from the two resistance mass transfer theory and the mass balance of sulphur in the system, a kinetic model for the desulphurization by powder injection and blowing in the RH refining of molten steel was developed. Modeling and predictions of the process of injecting and blowing the lime based powder flux under assumed operating modes with the different initial contents of sulphur and amounts of powder injected and blown in a RH degasser of 300 t capacity were carried out using the model. It was demonstrated that for the RH and RH KTB refining processes, and the desulphurization by powder injection and blowing in the RH refining, the results predicted by the models were all in good agreement respectively with data from industrial experiments and practice. These models may be expected to offer some useful information and a reliable basis for determining and optimizing the technologies of the RH and RH KTB refining and desulphurization by powder injection and blowing in the RH refining and for controlling the processes.
基金The authors gratcfully acknowledge the sup-port of the National Natural Science Foundation of China(Grant No.51374020)the State Key Laboratory of Advanced Metallurgy at theUniversity of Science and Technology Beijing(USTB)the JiuquanIron and Steel Group Corporation.
文摘Ti-stabilized 321 stainless steel was prepared using an electric arc furnace, argon oxygen decarburization (AOD) furnace, ladle furnace (LF), and continuous casting processes. In addition, the effect of refining process and utilization of different slags on the evolution of inclusions, titanium yield, and oxygen content was systematically investigated by experimental and thermodynamic analysis. The results reveal that the total oxygen content (TO) and inclusion density decreased during the refining process. The spherical CaO–SiO2–Al2O3–MgO inclusions existed in the 321 stainless steel after the AOD process. Moreover, prior to the Ti addition, the spherical CaO–Al2O3–MgO–SiO2 inclusions were observed during LF refining pro-cess. However, Ti addition resulted in multilayer CaO–Al2O3–MgO–TiOx inclusions. Two different samples were prepared by conventional CaO–Al2O3-based slag (Heat-1) and -TiO2-rich CaO–Al2O3-based slag (Heat-2). The statistical analysis revealed that the density of inclusions and the -TiOx content in CaO–Al2O3–MgO–TiOx inclusions found in Heat-2 sample are much lower than those in the Heat-1 sample. Furthermore, the TO content and Ti yield during the LF refining process were controlled by using -TiO2-rich calcium aluminate synthetic slag. These results were consistent with the ion–molecule coexist-ence theory and FactSage?7.2 software calculations. When -TiO2-rich CaO–Al2O3-based slag was used, the -TiO2 activity of the slag increased, and the equilibrium oxygen content significantly decreased from the AOD to LF processes. Therefore, the higher -TiO2 activity of slag and lower equilibrium oxygen content suppressed the undesirable reactions between Ti and O.
文摘Three-dimensional thermal a nalysis simulation of a horizontal zone refining system is conducted for germanimn semiconductor materials. The considered geometry includes a g'ral)hite boat filled with germanium placed in a cylindrical quartz tube. A flow of Ar and H2 gas mixture is purged througll the tube. A narrow section of the, boat is assmned to be exposed to a constant heat rate produced b v an rf coil located outside the quartz tube. The results of this analysis provide essential information about various parameters such as the shape of tile molten zone, required power and temperature gradient in the system.
文摘WHILE much of Africa's oil production is exported in its crude form, Uganda is primed to build its own oil refinery. This ambition is set to be realized after the China National Offshore Oil Corp. (CNOOC) struck a $2-billion licensing deal to develop a vast petroleum field in Uganda. Signed in late September, it was the first oil production license to be issued in Uganda,
基金Project (2007CB613700) supported by the National Basic Research Program of ChinaProject (50725413)supported by the National Natural Science Foundation of China+2 种基金Project (CQ CSTC,2010BB4301)supported by National Science Foundation of Chongqing, ChinaProject (CSTC2009AB4008) supported by Chongqing Sci & Tech Development Program, ChinaProject (2010CSTC-HDLS)supported by Chongqing Sci & Tech Commission, China
文摘A new severe plastic deformation (SPD) method that is extrusion-shearing (ES), which includes initial forward extrusion and shearing process subsequently, was developed to fabricate the fine grained AZ31 Mg alloys. The components of ES die were manufactured and installed to gleeble1500D thermo-mechanical simulator. Microstructure observations were carried out in different positions of ES formed rods. The results show that homogeneous microstructures with mean grain size of 2 μm are obtained at lower temperature as the accumulated true strain is 2.44. Occurring of continuous dynamic recrystallization (DRX) is the main reason for grain refinement during ES process. The experimental results show that the ES process effectively refines the grains of AZ31 magnesium. The production results of ES extrusion with industrial extruder under different extrusion conditions show that the ES extrusion can be applied in large-scale industry.
基金the financial support from the Mid-Career Researcher Program through the National Research Foundation of Korea(2016) funded by the Ministry of Education,Science and Technology(No.2016R1A2B4015481)
文摘The effect of the volume fraction of I-phase on the hot compressive behavior and processing maps of the extruded Mg-Zn-Y alloys was examined, and the obtained results were compared with those of the cast alloys in a previous work. The average grain sizes, fractions of dynamically recrystallized(DRXed) grains,and sizes of DRXed grains of the extruded alloys after compressive deformation were significantly smaller,higher and smaller, respectively, than those of the cast alloys after compressive deformation under the same experimental conditions. This was because the microstructures of the extruded alloys, having much more grain boundaries and more refined I-phase particles than the cast alloys, provided a larger number of nucleation sites for dynamic recrystallization than those of the cast alloys. The constitutive equations for high-temperature deformation of the extruded and cast alloys could be derived using the same activation energy for plastic flow, which was close to the activation energy for lattice diffusion in magnesium.Compared with the cast alloys, the onset of the power law breakdown(PLB) occurred at larger ZenerHolloman(Z) parameter values in the extruded alloys. This was because the extruded alloys had finer initial grain sizes and higher fractions of finer DRXed grains compared to the cast alloys, such that the onset of PLB caused by creation of excessive concentrations of deformation-induced vacancies was delayed to a higher strain rate and a lower temperature. The flow-stress difference between the extruded alloys and the cast alloys could be attributed to the difference in the fraction of DRXed grains. According to the processing maps, the extruded alloys exhibited higher power dissipation efficiency and flow stability than the cast alloys. This agreed with the microstructural observations.
基金finnacially supported by the Chinese Natural Science Foundation (No. 51874368)the Key Program of China on Biomedical Materials Research and Tissue and Organ Replacement (Nos. 2016YFC1101804 and 2016YFC1100604)Institute of Metal Research, Chinese Academy of Sciences (No. 2015-ZD01)
文摘The application of a single pass of friction stir processing(FSP) to Mg-Nd-Zn alloy resulted in grain refinement, texture evolution and redistribution of second phases, which improved corrosion resistance.In this work, an as-rolled Mg-Nd-Zn alloy was subjected to FSP. The microstructure in the processed zone of the FS-400 rpm alloy exhibited refined grains, a more homogenous grain size distribution, less second phases, and stronger basal plane texture. The corrosion behavior assessed using immersion tests and electrochemical tests in Hank’s solution indicated that the FS-400 rpm alloy had a lower corrosion rate, which was attributed to the increase of basal plane intensity and grain refinement. The hardness was lowered slightly and the elongation was increased, which might be attributed to the redistribution of the crushed second phases.
基金This work was financially supported by National Key Basic Research and Development Program of China (No.G1998061507) and Niobium Steel Development Project of CITIC-CBMM (No.2002RMJS-KY001)
文摘The packet size of bainitic steel can be refined by a specialrelaxation-precipitation-control phase transformation (RFC) technology. When processed by RPCprocess, the low carbon bainitic steel composes of two kinds of main intermediate transformationphases. One is ultra-fine lath-like bainitic ferrite and the lath is less than 1μm in width andabout 6 μm in length; the alignment of laths forms a refined packet, and the size of packets isabout 5-7 μm in length and about 3-4μm in width. The other is acicular structure. The morphologyand distribution of these acicular structures are influenced by relaxation process, the thin andshort acicular structures cut the prior austenite grain and refine the bainitic packet size. For theoptimum relaxation time, the packet size can be refined to the finest. The mechanical propertiesare influenced by relaxation time and the 800 MPa grade low carbon bainitic steel with excellenttoughness can be obtained by RPC process.
文摘This paper presents the effects of different process parameters in producing Al-STi-1B grain refiner,i.e.various sequences and reaction time,on grain refinement efficiency of aluminum castings.It was found that different process parameters resulted in different morphology and size distribution of TiAl-3 and TiB-2 in grain refiner. The experiment was carried out by adding KBF-4 and K-2TiF-6 to molten aluminum.The melting temperature was controlled at 800℃in an electric resistance furnace.Three different sequences of KBF-4 and K-2TiF-6 additions were applied,i.e.,adding KBF-4 before K-2TiF-6,adding K-2TiF-4 before KBF-4 and mixing both KBF-4 and K-2TiF-6 before adding to molten aluminum.Three different holding time at 1 min,30 min and 60 min were applied.The results showed that no significant difference of morphology and size distribution was found by varying three different sequences.Whereas,the different holding time provided major differences in both morphology and size distribution,which are technically expectable from diffusion and agglomeration between particles resulting in larger particle size and wider range of size distribution of TiAI3 and TiB2.If the reaction time was longer than 30 rain,morphology of both TiAl-3 and TiB-2 became too large.If the reaction time was too short,less reaction between TiAl-3 and TiB2 to form would be obtained.For grain refinement efficiency, it was found that mixing KBF-4 and K-2TiF-6 before adding to molten aluminum with a holding time of 30 min resulted in best grain refinement efficiency.
基金financially supported by the National Basic Research Program of China (No. 2011CB606300)the National Natural Science Foundation of China (No. 5077400)
文摘In this study, a serpentine channel pouring process was used to prepare the semi-solid A1-20%Si alloy slurry and refine primary Si grains in the alloy. The effects of the pouring temperature, number of curves in the serpentine channel, and material of the serpentine channel on the size of primary Si grains in the semi-solid A1-20%Si alloy slurry were investigated. The results showed that the pouting temperature, number of the curves, and material of the channel strongly affected the size and distribution of the primary Si grains. The pouring tempera- ture exerted the strongest effect, followed by the number of the curves and then the material of the channel. Under experimental conditions of a four-curve copper channel and a pouring temperature of 701℃, primary Si grains in the semi-solid A1-20%Si alloy slurry were refined to the greatest extent, and the lath-like grains were changed into granular grains. Moreover, the equivalent grain diameter and the average shape coefficient of primary Si grains in the satisfactory semi-solid A1-20%Si alloy slurry were 24.4 μm and 0.89, respectively. Finally, the re- finement mechanism and distribution rule of primary Si grains in the slurry prepared through the serpentine channel pouring process were analyzed and discussed.