The high-efficiency conversion of biomass resources to biofuels has attracted widespread attention, and the active sites and synergistic effect of catalysts significantly impact their surface arrangement and electroni...The high-efficiency conversion of biomass resources to biofuels has attracted widespread attention, and the active sites and synergistic effect of catalysts significantly impact their surface arrangement and electronic structure. Here, a nickel-based transition metal carbide catalyst(Ni/TMC) with high Lewis acidity was prepared by self-assembly of transition metal carbide(TMC) and nickel, which exhibited excellent performance on synergistic hydrogenation and hydrogenolysis of 5-hydroxymethylfurfural(HMF) into liquid biofuel 2,5-dimethylfuran(DMF).Notably, Ni/WC with the highest Lewis acidity(4728.3 μmol g^(-1)) can achieve 100% conversion of HMF to 97.6% yield of DMF, with a turnover frequency of up to 46.5 h^(-1). The characterization results demonstrate that the rich Lewis acid sites yielded by the synergistic effect between Ni species and TMC are beneficial for the C=O hydrogenation and C–O cleavage, thereby accelerating the process of hydrodeoxygenation(HDO). Besides, a kinetic model for the HDO of HMF to DMF process has been established based on the experimental results, which elucidated a significant correlation between the measured and the predicted data(R^(2)> 0.97). Corresponding to the adsorption configuration of Ni/WC and substrate determined by in-situ FTIR characterization, this study provides a novel insight into the selective conversion of HMF process for functional biofuel and bio-chemicals.展开更多
High-capacity LiBH_(4)is a promising solid hydrogen storage material.However,the large electron cloud density between the B-H bonds in LiBH_(4)induces high dehydrogenation temperatures and sluggish dehydrogenation kin...High-capacity LiBH_(4)is a promising solid hydrogen storage material.However,the large electron cloud density between the B-H bonds in LiBH_(4)induces high dehydrogenation temperatures and sluggish dehydrogenation kinetics.To solve the above problems,it is proposed to enhance the hydrogen storage properties of LiBH_(4)through the synergistic effect of Brønsted and Lewis acid in Hβzeolite.Composite hydrogen storage systems with different mass ratios were prepared by simple ball-milling.At a LiBH_(4)-to-Hβmass ratio of 6:4,the 6LiBH_(4)-4Hβsystem released hydrogen at 190℃and achieved a hydrogen release capacity of 7.0 wt%H_(2)upon heating to 400℃.More importantly,the hydrogen release capacity of the system reached 6.02 wt%at 350℃under isothermal conditions after 100 min and 7.2 wt%at 400℃under isothermal conditions after 80 min,whereas the pristine LiBH_(4)only achieved 2.2 wt%.The improvement in hydrogen storage performance of the system was mainly attributed to two factors:(i)Lewis acid sites with acceptable electrons in the Hβweaken the electron density of B-H bonds in LiBH_(4),and(ii)the H+proton from the Brønsted acid sites and H−of LiBH_(4)undergo a H^(+)+H^(−)=H_(2)reaction.Theoretical calculations revealed that the Lewis and Brønsted acid sites in the Hβzeolite are conducive to the weakening of B-H bonds and that storage charge transfer occurs near the Lewis acid sites.The present work provides new insights into improving the hydrogen storage performance of LiBH_(4)by weakening the B-H bonds in the LiBH_(4).展开更多
This study employs density functional theory(DFT)calculations to systematically investigate the B‒H bond dissociation enthalpies(BDEs)of Lewis base‒borane complexes.A rigorous benchmark analysis identified theωB97XD/...This study employs density functional theory(DFT)calculations to systematically investigate the B‒H bond dissociation enthalpies(BDEs)of Lewis base‒borane complexes.A rigorous benchmark analysis identified theωB97XD/cc-pVTZ method as a reliable method for accurate prediction of B–H BDEs.An examination of more than 200 structurally diverse complexes across five major classes revealed that the type of Lewis base significantly influences the BDEs,with the order of amine–borane>phosphine–borane>N-heterocyclic carbene–borane>pyridine–borane.Solventstabilized boranes exhibit the broadest range of BDE values due to the diverse coordination modes of solvent molecules with borane.Further analysis revealed that the BDE values are synergistically affected by skeletal and substituent effects.Notably,a strong linear correlation(R^(2) up to 0.97)between the spin density of boryl radicals and BDEs,except for amine–boranes,provides a robust predictive model.This research enhances the fundamental understanding of B‒H bond dissociation properties in Lewis base–boranes and provides valuable insights for the development of new boron-based methodologies in organic synthesis.展开更多
Heterogeneous solid frustrated-Lewis-pair(FLP)catalyst is of great promise in practical hydrogenation applications.It has been found that all-solid FLPs can be created on ceria via surface oxygen vacancy regulation.Co...Heterogeneous solid frustrated-Lewis-pair(FLP)catalyst is of great promise in practical hydrogenation applications.It has been found that all-solid FLPs can be created on ceria via surface oxygen vacancy regulation.Consequently,it is desired to investigate the mechanisms of the FLP-catalyzed hydrogenation of C=C and C=O and provide insight into the modification of CeO_(2)catalysts for the selective hydrogenation.In this work,the reaction mechanism of the hydrogenation of CH_(2)=CH_(2)and CH_(3)CH=O at the FLP sites constructed on CeO_(2)(110)surface was investigated by density functional theory(DFT),with the classical Lewis acid-base pairs(CLP)site as the reference.The results illustrate that at the CLP site,the dissociated hydride(H^(δ−))forms a stable H−O bond with the surface O atom,while at the FLP site,H^(δ−)is stabilized by Ce,displaying higher activity on the one hand.On the other hand,the electron cloud density of the Ce atom at the FLP site is higher,which can transfer more electrons to the adsorbed C_(C=C)and O_(C=O)atoms,leading to a higher degree of activation for C=C and C=O bonds,as indicated by the Bader charge analysis.Therefore,compared to the CLP site,the FLP site exhibits higher hydrogenation activity for CH_(2)=CH_(2)and CH_(3)CH=O.Furthermore,at the FLP sites,it demonstrates high efficiency in catalyzing the hydrogenation of CH_(2)=CH_(2)with the rate-determining barrier of 1.04 eV,but it shows limited activity for the hydrogenation of CH_(3)CH=O with the rate-determining barrier of 1.94 eV.It means that the selective hydrogenation of C=C can be effectively achieved at the FLP sites concerning selective hydrogenation catalysis.The insights shown in this work help to clarify the reaction mechanism of the hydrogenation of C=C and C=O at FLP site on CeO_(2)(110)and reveal the relationship between the catalytic performance and the nature of the active site,which is of great benefit to development of rational design of heterogeneous FLP catalysts.展开更多
The development of solid frustrated Lewis pairs(FLPs)catalysts with porous structures is a promising strategy for advancing green hydrogenation technologies and has garnered significant attention.Leveraging the divers...The development of solid frustrated Lewis pairs(FLPs)catalysts with porous structures is a promising strategy for advancing green hydrogenation technologies and has garnered significant attention.Leveraging the diverse oxidation states and structural tunability of cerium-based metal-organic frameworks(Ce-MOFs),this study employed a competitive coordination strategy utilizing a single carboxylate functional group ligand to construct a series of MOF-808-X(X=-NH_(2),-OH,-Br,and-NO_(2))featuring rich solid-state FLPs for hydrogenation of unsaturated olefins.The-X functional group serves as a microenvironment,enhancing hydrogenation activity by modulating the electronic properties and acid-base characteristics of the FLP sites.The unique redox properties of elemental cerium facilitate the exposure of unsaturated Ce sites(Ce-CUS,Lewis acid(LA))and adjacent Ce-OH(Lewis base(LB))sites within the MOFs,generating abundant solid-state FLP(Ce-CUS/Ce-OH)sites.Experimental results demonstrate that Ce-CUS and Ce-OH interact with theσandσ^(*)orbitals of H-H,and this"push-pull"synergy promotes heterolytic cleavage of the H-H bond.The lone pair electrons of the electron-donating functional group are transmitted through the molecular backbone to the LB site,thereby increasing its strength and reducing the activation energy required for H_(2)heterolytic cleavage.Notably,at 100℃and 2 MPa H_(2),MOF-808-NH_(2)achieves complete conversion of styrene and dicyclopentadiene,significantly outperforming MOF-808.Based on in-situ analysis and density functional theory calculations,a plausible reaction mechanism is proposed.This research enriches the theoretical framework for unsaturated olefin hydrogenation catalysts and contributes to the development of efficient catalytic systems.展开更多
基金Fundamental Research Foundation of CAF (CAFYBB2022QB001)National Nature Science Foundation of China for Excellent Young Scientists Fund (32222058)。
文摘The high-efficiency conversion of biomass resources to biofuels has attracted widespread attention, and the active sites and synergistic effect of catalysts significantly impact their surface arrangement and electronic structure. Here, a nickel-based transition metal carbide catalyst(Ni/TMC) with high Lewis acidity was prepared by self-assembly of transition metal carbide(TMC) and nickel, which exhibited excellent performance on synergistic hydrogenation and hydrogenolysis of 5-hydroxymethylfurfural(HMF) into liquid biofuel 2,5-dimethylfuran(DMF).Notably, Ni/WC with the highest Lewis acidity(4728.3 μmol g^(-1)) can achieve 100% conversion of HMF to 97.6% yield of DMF, with a turnover frequency of up to 46.5 h^(-1). The characterization results demonstrate that the rich Lewis acid sites yielded by the synergistic effect between Ni species and TMC are beneficial for the C=O hydrogenation and C–O cleavage, thereby accelerating the process of hydrodeoxygenation(HDO). Besides, a kinetic model for the HDO of HMF to DMF process has been established based on the experimental results, which elucidated a significant correlation between the measured and the predicted data(R^(2)> 0.97). Corresponding to the adsorption configuration of Ni/WC and substrate determined by in-situ FTIR characterization, this study provides a novel insight into the selective conversion of HMF process for functional biofuel and bio-chemicals.
基金supported by the National Natural Science Foundation of China(No.52201274)the Project of Education Department of Shanxi Province(No.22JK0419).
文摘High-capacity LiBH_(4)is a promising solid hydrogen storage material.However,the large electron cloud density between the B-H bonds in LiBH_(4)induces high dehydrogenation temperatures and sluggish dehydrogenation kinetics.To solve the above problems,it is proposed to enhance the hydrogen storage properties of LiBH_(4)through the synergistic effect of Brønsted and Lewis acid in Hβzeolite.Composite hydrogen storage systems with different mass ratios were prepared by simple ball-milling.At a LiBH_(4)-to-Hβmass ratio of 6:4,the 6LiBH_(4)-4Hβsystem released hydrogen at 190℃and achieved a hydrogen release capacity of 7.0 wt%H_(2)upon heating to 400℃.More importantly,the hydrogen release capacity of the system reached 6.02 wt%at 350℃under isothermal conditions after 100 min and 7.2 wt%at 400℃under isothermal conditions after 80 min,whereas the pristine LiBH_(4)only achieved 2.2 wt%.The improvement in hydrogen storage performance of the system was mainly attributed to two factors:(i)Lewis acid sites with acceptable electrons in the Hβweaken the electron density of B-H bonds in LiBH_(4),and(ii)the H+proton from the Brønsted acid sites and H−of LiBH_(4)undergo a H^(+)+H^(−)=H_(2)reaction.Theoretical calculations revealed that the Lewis and Brønsted acid sites in the Hβzeolite are conducive to the weakening of B-H bonds and that storage charge transfer occurs near the Lewis acid sites.The present work provides new insights into improving the hydrogen storage performance of LiBH_(4)by weakening the B-H bonds in the LiBH_(4).
基金supported by the USTC Research Funds of the Double First-Class Initiative(YD2060006004,YD2060002027)the National Natural Science Foundation of China(22325107,22171253,22293011).
文摘This study employs density functional theory(DFT)calculations to systematically investigate the B‒H bond dissociation enthalpies(BDEs)of Lewis base‒borane complexes.A rigorous benchmark analysis identified theωB97XD/cc-pVTZ method as a reliable method for accurate prediction of B–H BDEs.An examination of more than 200 structurally diverse complexes across five major classes revealed that the type of Lewis base significantly influences the BDEs,with the order of amine–borane>phosphine–borane>N-heterocyclic carbene–borane>pyridine–borane.Solventstabilized boranes exhibit the broadest range of BDE values due to the diverse coordination modes of solvent molecules with borane.Further analysis revealed that the BDE values are synergistically affected by skeletal and substituent effects.Notably,a strong linear correlation(R^(2) up to 0.97)between the spin density of boryl radicals and BDEs,except for amine–boranes,provides a robust predictive model.This research enhances the fundamental understanding of B‒H bond dissociation properties in Lewis base–boranes and provides valuable insights for the development of new boron-based methodologies in organic synthesis.
基金supported by the National Natural Science Foundation of China(22302115,22072079)the Fundamental Research Program of Shanxi Province(202303021221056).
文摘Heterogeneous solid frustrated-Lewis-pair(FLP)catalyst is of great promise in practical hydrogenation applications.It has been found that all-solid FLPs can be created on ceria via surface oxygen vacancy regulation.Consequently,it is desired to investigate the mechanisms of the FLP-catalyzed hydrogenation of C=C and C=O and provide insight into the modification of CeO_(2)catalysts for the selective hydrogenation.In this work,the reaction mechanism of the hydrogenation of CH_(2)=CH_(2)and CH_(3)CH=O at the FLP sites constructed on CeO_(2)(110)surface was investigated by density functional theory(DFT),with the classical Lewis acid-base pairs(CLP)site as the reference.The results illustrate that at the CLP site,the dissociated hydride(H^(δ−))forms a stable H−O bond with the surface O atom,while at the FLP site,H^(δ−)is stabilized by Ce,displaying higher activity on the one hand.On the other hand,the electron cloud density of the Ce atom at the FLP site is higher,which can transfer more electrons to the adsorbed C_(C=C)and O_(C=O)atoms,leading to a higher degree of activation for C=C and C=O bonds,as indicated by the Bader charge analysis.Therefore,compared to the CLP site,the FLP site exhibits higher hydrogenation activity for CH_(2)=CH_(2)and CH_(3)CH=O.Furthermore,at the FLP sites,it demonstrates high efficiency in catalyzing the hydrogenation of CH_(2)=CH_(2)with the rate-determining barrier of 1.04 eV,but it shows limited activity for the hydrogenation of CH_(3)CH=O with the rate-determining barrier of 1.94 eV.It means that the selective hydrogenation of C=C can be effectively achieved at the FLP sites concerning selective hydrogenation catalysis.The insights shown in this work help to clarify the reaction mechanism of the hydrogenation of C=C and C=O at FLP site on CeO_(2)(110)and reveal the relationship between the catalytic performance and the nature of the active site,which is of great benefit to development of rational design of heterogeneous FLP catalysts.
文摘目的:探讨Lewis y单克隆抗体(mAb)对α1,2岩藻糖转移酶基因转染后高表达Lewis y抗原的卵巢癌细胞系RMG-I-H的体外增殖能力、黏附力以及侵袭力的抑制作用。方法:通过体外细胞增殖实验、细胞黏附实验、细胞体外侵袭实验,以羊抗人IgG抗体处理组或无抗体处理组为对照,检测Lewis y mAb处理前后RMG-I-H细胞增殖能力、黏附力及侵袭力的变化。结果:细胞增殖力与黏附力测定结果表明,实验组与对照组之间有统计学意义(P<0.05),且与对照组相比,第2~7天的生长抑制率分别为5.62%、19.75%、34.96%、46.51%、49.78%和33.33%。不同培养时间(15、30、60min)的黏附抑制率分别为47.59%、58.64%和13.85%。体外细胞侵袭实验显示不同浓度Lewisy抗体处理组与对照组比较均无统计学意义(P>0.05)。结论:抗Lewis y mAb能明显抑制体外RMG-I-H细胞的生长及增殖能力、降低体外培养的RMG-I-H细胞的黏附性,Lewis y抗原与卵巢癌细胞增殖、黏附的生物学行为有关,Lewis y抗体在肿瘤的治疗中显示出潜在的应用价值。
文摘The development of solid frustrated Lewis pairs(FLPs)catalysts with porous structures is a promising strategy for advancing green hydrogenation technologies and has garnered significant attention.Leveraging the diverse oxidation states and structural tunability of cerium-based metal-organic frameworks(Ce-MOFs),this study employed a competitive coordination strategy utilizing a single carboxylate functional group ligand to construct a series of MOF-808-X(X=-NH_(2),-OH,-Br,and-NO_(2))featuring rich solid-state FLPs for hydrogenation of unsaturated olefins.The-X functional group serves as a microenvironment,enhancing hydrogenation activity by modulating the electronic properties and acid-base characteristics of the FLP sites.The unique redox properties of elemental cerium facilitate the exposure of unsaturated Ce sites(Ce-CUS,Lewis acid(LA))and adjacent Ce-OH(Lewis base(LB))sites within the MOFs,generating abundant solid-state FLP(Ce-CUS/Ce-OH)sites.Experimental results demonstrate that Ce-CUS and Ce-OH interact with theσandσ^(*)orbitals of H-H,and this"push-pull"synergy promotes heterolytic cleavage of the H-H bond.The lone pair electrons of the electron-donating functional group are transmitted through the molecular backbone to the LB site,thereby increasing its strength and reducing the activation energy required for H_(2)heterolytic cleavage.Notably,at 100℃and 2 MPa H_(2),MOF-808-NH_(2)achieves complete conversion of styrene and dicyclopentadiene,significantly outperforming MOF-808.Based on in-situ analysis and density functional theory calculations,a plausible reaction mechanism is proposed.This research enriches the theoretical framework for unsaturated olefin hydrogenation catalysts and contributes to the development of efficient catalytic systems.