The liquid Zr_(100-x)V_(x)(x=8.6,16.5,30)alloys were undercooled to the maximum undercooling of 364 K(0.18 T_(L)),405 K(0.21 T_(L)),and 375 K(0.21 T_(L)),respectively,by using electrostatic levitation technique.The Zr...The liquid Zr_(100-x)V_(x)(x=8.6,16.5,30)alloys were undercooled to the maximum undercooling of 364 K(0.18 T_(L)),405 K(0.21 T_(L)),and 375 K(0.21 T_(L)),respectively,by using electrostatic levitation technique.The Zr_(91.4)V_(8.6) and Zr_(83.5)V_(16.5) alloys present only one recalescence during liquid/solid phase transition,while the Zr_(70)V_(30) alloy presents a transformation from two recalescence to one recalescence phenomenon with a critical undercooling of approximately 300 K.According to the LKT/BCT model,the calculated results of the primary β-Zr dendrite growth velocity in undercooled liquid Zr_(91.4)V_(8.6) and Zr_(83.5)V_(16.5) alloys agree well with the experiments.The velocity inflection points at 119 K of Zr_(91.4)V_(8.6) alloy and 201 K of Zr_(83.5)V_(16.5) alloy could be explained by the competition between solutal undercooling control and thermal undercooling control modes.For Zr_(70)V_(30) alloy solidified in the P1 with twice recalescence,a critical second undercooling of 253 K and corresponding undercooling of 65 and 244 K are obtained.When the un-dercooling is in the range of 65-244 K,the second undercooling would be greater than 253 K,and the residual liquid phase would solidify into anomalous eutectic microstructure for Zr_(70)V_(30) alloy.The Vickers hardness of Zr_(100-x)V_(x)(x=8.6,16.5,30)alloys all show a quadratic relationship with undercooling.Under electrostatic levitation condition,the mechanical property of Zr-V alloys could be significantly regulated through solidifying the alloys at different undercoolings.展开更多
The electromagnetic levitation system(EMLS)serves as the most important part of any magnetic levitation system.However,its characteristics are defined by its highly nonlinear dynamics and instability.Furthermore,the u...The electromagnetic levitation system(EMLS)serves as the most important part of any magnetic levitation system.However,its characteristics are defined by its highly nonlinear dynamics and instability.Furthermore,the uncertainties in the dynamics of an electromagnetic levitation system make the controller design more difficult.Therefore,it is necessary to design a robust control law that will ensure the system’s stability in the presence of these uncertainties.In this framework,the dynamics of an electromagnetic levitation system are addressed in terms of matched and unmatched uncertainties.The robust control problem is translated into the optimal control problem,where the uncertainties of the electromagnetic levitation system are directly reflected in the cost function.The optimal control method is used to solve the robust control problem.The solution to the optimal control problem for the electromagnetic levitation system is indeed a solution to the robust control problem of the electromagnetic levitation system under matched and unmatched uncertainties.The simulation and experimental results demonstrate the performance of the designed control scheme.The performance indices such as integral absolute error(IAE),integral square error(ISE),integral time absolute error(ITAE),and integral time square error(ITSE)are compared for both uncertainties to showcase the robustness of the designed control scheme.展开更多
Alkanes are present in the atmosphere,commonly in the form of aerosols,and can thus interact with water droplets,leading to the formation of new interfaces.Yet,in the study of these interactions,traditional experiment...Alkanes are present in the atmosphere,commonly in the form of aerosols,and can thus interact with water droplets,leading to the formation of new interfaces.Yet,in the study of these interactions,traditional experimental methods often rely on the presence of sample containers,which can interfere with the observations.Acoustic levitation is a technique which allows the manipulation of samples in the microliter regime in a contact-free manner.Hence,interfacial phenomena can be studied without the presence of external surfaces,mimicking atmospheric conditions.Herein,we acoustically levitated a droplet of water in contact with a droplet of hexadecane and observed interfacial crystallization at the hexadecane/water interface that propagated to the entire droplet of hexadecane.It was found that the crystallization occurred up to 3 K above the melting temperature of hexadecane,and at a relative humidity below 30%.Moreover,the volume ratio between water and hexadecane influenced the fraction of crystallized surface area;for a hexadecane:water ratio above 1:2 full surface crystallization occurred.Combining acoustic levitation with Raman spectroscopy allowed the characterization of the phase transition in real time,demonstrating the existence of a solid crystal of alkane upon water evaporation.This study provides insights into the process of interfacial crystallization of hexadecane and demonstrates the suitability of acoustic levitation to study contact-free interfacial phenomena between two immiscible liquids.展开更多
In the machining of high-end optical components,the aerostatic spindle error of an ultra-precision machine tool has a significant impact on the surface quality of the machined surfaces.The surfaces of many high-end op...In the machining of high-end optical components,the aerostatic spindle error of an ultra-precision machine tool has a significant impact on the surface quality of the machined surfaces.The surfaces of many high-end optical components need to meet the extremely stringent requirements of the full-frequency band error,which poses significant challenge to the control of the aerostatic spindle error.In this research,we put forward an active control method for the frequency domain error of the aerostatic spindle based on acoustic levitation,in which the acousticmagnetism-fluid-solid multi-field coupling rotor dynamics modeling method of the aerostatic spindle was proposed and the corresponding multi-field coupling model was established.Through the numerical simulation and preliminary experiments,the influence law of acoustic levitation on the frequency domain error of the aerostatic spindle is obtained.The results showed that acoustic levitation can be used to control the frequency domain error of the aerostatic spindle to some extent,which verified the effectiveness of the proposed method.展开更多
Vat photopolymerization 3D printing creates structures by projecting patterns onto a photosensitive resin within a vat.However,the presence of resin vats limits the printing of multiscale multimaterial structures.In t...Vat photopolymerization 3D printing creates structures by projecting patterns onto a photosensitive resin within a vat.However,the presence of resin vats limits the printing of multiscale multimaterial structures.In this context,a novel 3D printing process is presented in which a cured structure is produced from acoustically levitated droplets without a physical vat.This enables the printing process to achieve high flexibility in the printing orientation and material supply.In pursuit of the envisioned 3D acoustic levitation printing strategy,acoustic levitation technology was utilized to suspend a photosensitive resin.Objects with small features were successfully produced by projecting patterns onto levitated resin droplets.Transforming printing orientations allows the fabrication of multiscale structures.Levitating resin droplets on-demand enables the rapid replacement of materials,thereby realizing effortless multimaterial 3D printing.By exploiting the flexibility of printing on levitation resin droplets,the capability of 3D printing on existing objects was established.Finally,an interesting example was illustrated,in which an object integrating liquid,gas,and solid materials was fabricated using the proposed 3D printing strategy.The results show that 3D printing on levitated droplets is feasible for fabricating multiscale and multimaterial objects,which contributes to the development of new 3D printing methods and potential applications.展开更多
The modeling and self-excited vibration mechanism in the magnetic levitation-collision interface coupling system are investigated.The effects of the control and interface parameters on the system's stability are a...The modeling and self-excited vibration mechanism in the magnetic levitation-collision interface coupling system are investigated.The effects of the control and interface parameters on the system's stability are analyzed.The frequency range of self-excited vibrations is investigated from the energy point of view.The phenomenon of self-excited vibrations is elaborated with the phase trajectory.The corresponding control strategies are briefly analyzed with respect to the vibration mechanism.The results show that when the levitation objects collide with the mechanical interface,the system's vibration frequency becomes larger with the decrease in the collision gap;when the vibration frequency exceeds the critical frequency,the electromagnetic system continues to provide energy to the system,and the collision interface continuously dissipates energy so that the system enters the self-excited vibration state.展开更多
This article presents a compact magnetic levitation energy harvester(MLEH)with tunable resonant frequency.Unlike many of the reported tunable harvesters with unknown tuning results,the proposed MLEH can be tuned towar...This article presents a compact magnetic levitation energy harvester(MLEH)with tunable resonant frequency.Unlike many of the reported tunable harvesters with unknown tuning results,the proposed MLEH can be tuned toward designated resonant frequency values within its tuning range.The targeted tuning processes is realized by a nonlinear magnet repulsive force exerted on a Halbach magnet array,combined with a calibrated scaling system.At a sinusoidal acceleration of±0.15 g,the maximum frequency tuning range of the proposed MLEH is 6.3 Hz(8.1–14.4 Hz),which is 77.8%of its resonant MLEH(8.1 Hz).At a frequency of 9.7 Hz,the output power is 462.1μW and the calculated normalized power density is 496μWcm^(−3)g^(−2).展开更多
Magnetic levitation control technology plays a significant role in maglev trains.Designing a controller for the levitation system is challenging due to the strong nonlinearity,open-loop instability,and the need for fa...Magnetic levitation control technology plays a significant role in maglev trains.Designing a controller for the levitation system is challenging due to the strong nonlinearity,open-loop instability,and the need for fast response and security.In this paper,we propose a Disturbance-Observe-based Tube Model Predictive Levitation Control(DO-TMPLC)scheme combined with a feedback linearization strategy for the levitation system.The proposed strategy incorporates state constraints and control input constraints,i.e.,the air gap,the vertical velocity,and the current applied to the coil.A feedback linearization strategy is used to cancel the nonlinearity of the tracking error system.Then,a disturbance observer is implemented to actively compensate for disturbances while a TMPLC controller is employed to alleviate the remaining disturbances.Furthermore,we analyze the recursive feasibility and input-to-state stability of the closed-loop system.The simulation results indicate the efficacy of the proposed control strategy.展开更多
The dynamic characteristics of acoustic levitation were investigated for the purpose of containerless processing of materials. Experimental measurements were accomplished on the variations of sound pressure level with...The dynamic characteristics of acoustic levitation were investigated for the purpose of containerless processing of materials. Experimental measurements were accomplished on the variations of sound pressure level with both axial position z (6.5mm≤ z ≤27.5mm) and radial position r (1mm≤ r ≤16mm) in a cylindrical resonant tube(34mm×45mm) of a single axis acoustic levitator. The results showed that the minimum sound pressure levels in both axial and radial directions occur at the centres of two transverse intercepting planes with z =8.5mm and z =21.5mm, which were identified as the sound pressure nodes not only of the axial direction but also of the radial direction, and hence were expected to have good levitation stability. This was further proved by experimental observations.展开更多
The influence of the width of the middle magnet in the permanent magnet guideways (PMGs) on the levitation force and the levitation height of single-domain yttrium barium copper oxide (YBCO) bulks has been investi...The influence of the width of the middle magnet in the permanent magnet guideways (PMGs) on the levitation force and the levitation height of single-domain yttrium barium copper oxide (YBCO) bulks has been investigated at 77 K under the zero field cooled (ZFC) state. It is found that the largest levitation force can be obtained in the system with the width of the middle magnet of the PMG equal to the size of the YBCO bulk when the gap between the YBCO bulk and PMG is small. Both larger levitation force and higher levitation height can be obtained in the system with the width of the middle magnet of the PMG larger than the size of the YBCO bulk. The stiffness of the levitation force between the PMG and the YBCO bulk is higher in the system with a smaller width of the middle magnet in the PMG. These results provide an effective way to control the levitation force and the levitation height for the superconducting maglev design and applications.展开更多
Based on the power dissipating model of spherical sample in free convection gas medium and the expression of input power, the model of temperature calculation for electromagnetic levitation melting sample was establis...Based on the power dissipating model of spherical sample in free convection gas medium and the expression of input power, the model of temperature calculation for electromagnetic levitation melting sample was established. Considering the limitation of levitation force and levitation sample temperature,the principle of stability levitation zone computation was determined. A spherical sample (ThDy)Fe2 under the protection of argon gas was examined, and the effect of radius of levitation sample and perturbation on the stable levitation zone was investigated. The results show that longitudinal perturbation and transverse perturbation can shorten the length of stable levitation zone and the range of levitation sample radius. By increasing the sample radius and weakening the perturbation the electromagnetic levitation melting stability of sample can be improved.展开更多
This paper presents a new device integrating a nonlinear vibration absorber with a levitation magnetoelectric energy harvester for whole-spacecraft systems. This device effectively reduces vibration and has a stronger...This paper presents a new device integrating a nonlinear vibration absorber with a levitation magnetoelectric energy harvester for whole-spacecraft systems. This device effectively reduces vibration and has a stronger energy harvesting capability than the existing systems. It harvests energy from a wide frequency range and has a high output voltage. The harvested energy is determined by magnetic field strength, excitation frequency, and resistive load. The change in the magnetic field strength has the least impact on the output voltage. The vibration reduction effects and harvested energy of the system are analyzed with an approximate analytical method that combines the harmonic balance approach and the pseudo-arclength continuation algorithm. The results of the Runge-Kutta method are nearly consistent with those of the approximate analytical method. Moreover, the effects of the excitation frequency, resistive load, and parameters of the nonlinear energy sink on the system vibration response and energy harvesting are analyzed.展开更多
In order to explore the precise dynamic response of the maglev train and verify the validity of proposed controller,a maglev guideway-electromagnet-air spring-cabin coupled model is developed in the first step.Based o...In order to explore the precise dynamic response of the maglev train and verify the validity of proposed controller,a maglev guideway-electromagnet-air spring-cabin coupled model is developed in the first step.Based on the coupled model,the stresses of the modules are analyzed,and it is pointed out that the inherent nonlinearity,the inner coupling,misalignments between the sensors and actuators,and external disturbances are the main issues that should be considered for the maglev engineering.Furthermore,a feedback linearization controller based on the mathematical model of a maglev module is derived,in which the nonlinearity,coupling and misalignments are taken into account.Then,to attenuate the effect of external disturbances,a disturbance observer is proposed and the dynamics of the estimation error is analyzed using the input-to-state stability theory.It shows that the error is negligible under a low-frequency disturbance.However,at the high-frequency range,the error is unacceptable and the disturbances can not be compensated in time,which lead to over designed fluctuations of levitation gap,even a clash between the upper surface of electromagnet and lower surface of guideway.To solve this problem,a novel nonlinear acceleration feedback is put forward to enhancing the attenuation ability of fast varying disturbances.Finally,numerical comparisons show that the proposed controller outperforms the traditional feedback linearization controller and maintains good robustness under disturbances.展开更多
This work proposes a practical nonlinear controller for the MIMO levitation system. Firstly, the mathematical model of levitation modules is developed and the advantages of the control scheme with magnetic flux feedba...This work proposes a practical nonlinear controller for the MIMO levitation system. Firstly, the mathematical model of levitation modules is developed and the advantages of the control scheme with magnetic flux feedback are analyzed when compared with the current feedback. Then, a backstepping controller with magnetic flux feedback based on the mathematical model of levitation module is developed. To obtain magnetic flux signals for full-size maglev system, a physical method with induction coils installed to winding of the electromagnet is developed. Furthermore, to avoid its hardware addition, a novel conception of virtual magnetic flux feedback is proposed. To demonstrate the feasibility of the proposed controller, the nonlinear dynamic model of full-size maglev train with quintessential details is developed. Based on the nonlinear model, the numerical comparisons and related experimental validations are carried out. Finally, results illustrating closed-loop performance are provided.展开更多
The aim of this paper is to employ fractional order proportional integral derivative(FO-PID)controller and integer order PID controller to control the position of the levitated object in a magnetic levitation system(M...The aim of this paper is to employ fractional order proportional integral derivative(FO-PID)controller and integer order PID controller to control the position of the levitated object in a magnetic levitation system(MLS),which is inherently nonlinear and unstable system.The proposal is to deploy discrete optimal pole-zero approximation method for realization of digital fractional order controller.An approach of phase shaping by slope cancellation of asymptotic phase plots for zeros and poles within given bandwidth is explored.The controller parameters are tuned using dynamic particle swarm optimization(d PSO)technique.Effectiveness of the proposed control scheme is verified by simulation and experimental results.The performance of realized digital FO-PID controller has been compared with that of the integer order PID controllers.It is observed that effort required in fractional order control is smaller as compared with its integer counterpart for obtaining the same system performance.展开更多
A novel maglev transportation system was proposed for large travel range ultra precision motion.The system consists of a levitation subsystem and a propulsion subsystem.During the propulsion subsystem driving the movi...A novel maglev transportation system was proposed for large travel range ultra precision motion.The system consists of a levitation subsystem and a propulsion subsystem.During the propulsion subsystem driving the moving platform along the guideway,the levitation subsystem uses six pairs of electromagnets to steadily suspend the moving platform over the guideway.The model of the levitation system,which is a typical nonlinear multi-input multi-output coupling system and has many inner nonlinear coupling characteristics,was deduced.For testifying the model,the levitation mechanism was firstly controlled by proportional-integral-differential(PID) control,and then a lot of input-output data were collected for model parameter identification.The least-square parameter identification method was used.The identification results prove that the model is feasible and suitable for the real system.展开更多
A novel magnetic levitation support method is proposed, which can relieve the perturbation caused by traditional support methods andprovide more accurate position control of the capsule. This method can keep the perfe...A novel magnetic levitation support method is proposed, which can relieve the perturbation caused by traditional support methods andprovide more accurate position control of the capsule. This method can keep the perfect symmetry of the octahedral spherical hohlraum and hasthe characteristics in stability, tunability and simplicity. It is also favorable that all the results, such as supporting forces acting on the super-conducting capsule, are calculated analytically, and numerical simulations are performed to verify these results. A typical realistic design isproposed and discussed in detail. The superconducting coating material is suggested, and the required superconducting properties are listed.Damped oscillation of the floating capsule in thin helium gas is discussed, and the restoring time is estimated.展开更多
In this paper, using the quasi-3D coupled current method, the influences of structure of cold crucible, the power frequency, the electricity property of melt, the coil position and current on the electromagnetic field...In this paper, using the quasi-3D coupled current method, the influences of structure of cold crucible, the power frequency, the electricity property of melt, the coil position and current on the electromagnetic field (EMF) and the levitation characteristics in the melting processes are analyzed. It is shown that in the processes of levitation melting with cold crucible, the power frequency and cold crucible structure are the decisive factors for the ability of magnetic flux penetrating into cold crucible. The magnetic flux density in cold crucible is reduced as the increasing of power frequency, and this tendency becomes stronger when the power frequency is higher than 100kHz. The segmented structure of cold crucible can reduce the induction eddy in itself effectively, and the higher the power frequency is, the better the result is. So, a cold crucible can be segmented into 16-20 sectors for high frequency electromagnetic field and/or 8-12 sectors for lower frequency one. It is also shown that the levitation force of melting charge is related to coil current as a parabolic function.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.52088101)the Space Utilization System of China Manned Space Engineering(Grant No.KJZ-YY-NCL02)+1 种基金the National Key R&D Program of China(Grant No.2021YFA0716301)the Shannxi Key Science and Technology Program(Grant Nos.2023-ZDLGY-36,2024JC-ZDXM-24).
文摘The liquid Zr_(100-x)V_(x)(x=8.6,16.5,30)alloys were undercooled to the maximum undercooling of 364 K(0.18 T_(L)),405 K(0.21 T_(L)),and 375 K(0.21 T_(L)),respectively,by using electrostatic levitation technique.The Zr_(91.4)V_(8.6) and Zr_(83.5)V_(16.5) alloys present only one recalescence during liquid/solid phase transition,while the Zr_(70)V_(30) alloy presents a transformation from two recalescence to one recalescence phenomenon with a critical undercooling of approximately 300 K.According to the LKT/BCT model,the calculated results of the primary β-Zr dendrite growth velocity in undercooled liquid Zr_(91.4)V_(8.6) and Zr_(83.5)V_(16.5) alloys agree well with the experiments.The velocity inflection points at 119 K of Zr_(91.4)V_(8.6) alloy and 201 K of Zr_(83.5)V_(16.5) alloy could be explained by the competition between solutal undercooling control and thermal undercooling control modes.For Zr_(70)V_(30) alloy solidified in the P1 with twice recalescence,a critical second undercooling of 253 K and corresponding undercooling of 65 and 244 K are obtained.When the un-dercooling is in the range of 65-244 K,the second undercooling would be greater than 253 K,and the residual liquid phase would solidify into anomalous eutectic microstructure for Zr_(70)V_(30) alloy.The Vickers hardness of Zr_(100-x)V_(x)(x=8.6,16.5,30)alloys all show a quadratic relationship with undercooling.Under electrostatic levitation condition,the mechanical property of Zr-V alloys could be significantly regulated through solidifying the alloys at different undercoolings.
文摘The electromagnetic levitation system(EMLS)serves as the most important part of any magnetic levitation system.However,its characteristics are defined by its highly nonlinear dynamics and instability.Furthermore,the uncertainties in the dynamics of an electromagnetic levitation system make the controller design more difficult.Therefore,it is necessary to design a robust control law that will ensure the system’s stability in the presence of these uncertainties.In this framework,the dynamics of an electromagnetic levitation system are addressed in terms of matched and unmatched uncertainties.The robust control problem is translated into the optimal control problem,where the uncertainties of the electromagnetic levitation system are directly reflected in the cost function.The optimal control method is used to solve the robust control problem.The solution to the optimal control problem for the electromagnetic levitation system is indeed a solution to the robust control problem of the electromagnetic levitation system under matched and unmatched uncertainties.The simulation and experimental results demonstrate the performance of the designed control scheme.The performance indices such as integral absolute error(IAE),integral square error(ISE),integral time absolute error(ITAE),and integral time square error(ITSE)are compared for both uncertainties to showcase the robustness of the designed control scheme.
基金the financial support from the Swedish Research Council(VR)(Public,Sweden)the Swedish Foundation for Strategic Research(SSF)(Non-Profit,Sweden)。
文摘Alkanes are present in the atmosphere,commonly in the form of aerosols,and can thus interact with water droplets,leading to the formation of new interfaces.Yet,in the study of these interactions,traditional experimental methods often rely on the presence of sample containers,which can interfere with the observations.Acoustic levitation is a technique which allows the manipulation of samples in the microliter regime in a contact-free manner.Hence,interfacial phenomena can be studied without the presence of external surfaces,mimicking atmospheric conditions.Herein,we acoustically levitated a droplet of water in contact with a droplet of hexadecane and observed interfacial crystallization at the hexadecane/water interface that propagated to the entire droplet of hexadecane.It was found that the crystallization occurred up to 3 K above the melting temperature of hexadecane,and at a relative humidity below 30%.Moreover,the volume ratio between water and hexadecane influenced the fraction of crystallized surface area;for a hexadecane:water ratio above 1:2 full surface crystallization occurred.Combining acoustic levitation with Raman spectroscopy allowed the characterization of the phase transition in real time,demonstrating the existence of a solid crystal of alkane upon water evaporation.This study provides insights into the process of interfacial crystallization of hexadecane and demonstrates the suitability of acoustic levitation to study contact-free interfacial phenomena between two immiscible liquids.
基金Supported by National Natural Science Foundation of China(Grant No.52475494)Zhejiang Provincial Natural Science Foundation of China(Grant No.LY22E050003)Fundamental Research Funds for the Provincial Universities of Zhejiang(Grant No.RF-A2020005).
文摘In the machining of high-end optical components,the aerostatic spindle error of an ultra-precision machine tool has a significant impact on the surface quality of the machined surfaces.The surfaces of many high-end optical components need to meet the extremely stringent requirements of the full-frequency band error,which poses significant challenge to the control of the aerostatic spindle error.In this research,we put forward an active control method for the frequency domain error of the aerostatic spindle based on acoustic levitation,in which the acousticmagnetism-fluid-solid multi-field coupling rotor dynamics modeling method of the aerostatic spindle was proposed and the corresponding multi-field coupling model was established.Through the numerical simulation and preliminary experiments,the influence law of acoustic levitation on the frequency domain error of the aerostatic spindle is obtained.The results showed that acoustic levitation can be used to control the frequency domain error of the aerostatic spindle to some extent,which verified the effectiveness of the proposed method.
基金supported by National Natural Science Foundation of China(Grant No.52305398)Chengdu University of Information Technology Project(Grant No.KYTZ202145).
文摘Vat photopolymerization 3D printing creates structures by projecting patterns onto a photosensitive resin within a vat.However,the presence of resin vats limits the printing of multiscale multimaterial structures.In this context,a novel 3D printing process is presented in which a cured structure is produced from acoustically levitated droplets without a physical vat.This enables the printing process to achieve high flexibility in the printing orientation and material supply.In pursuit of the envisioned 3D acoustic levitation printing strategy,acoustic levitation technology was utilized to suspend a photosensitive resin.Objects with small features were successfully produced by projecting patterns onto levitated resin droplets.Transforming printing orientations allows the fabrication of multiscale structures.Levitating resin droplets on-demand enables the rapid replacement of materials,thereby realizing effortless multimaterial 3D printing.By exploiting the flexibility of printing on levitation resin droplets,the capability of 3D printing on existing objects was established.Finally,an interesting example was illustrated,in which an object integrating liquid,gas,and solid materials was fabricated using the proposed 3D printing strategy.The results show that 3D printing on levitated droplets is feasible for fabricating multiscale and multimaterial objects,which contributes to the development of new 3D printing methods and potential applications.
基金Project supported by the National Natural Science Foundation of China(No.12372005)。
文摘The modeling and self-excited vibration mechanism in the magnetic levitation-collision interface coupling system are investigated.The effects of the control and interface parameters on the system's stability are analyzed.The frequency range of self-excited vibrations is investigated from the energy point of view.The phenomenon of self-excited vibrations is elaborated with the phase trajectory.The corresponding control strategies are briefly analyzed with respect to the vibration mechanism.The results show that when the levitation objects collide with the mechanical interface,the system's vibration frequency becomes larger with the decrease in the collision gap;when the vibration frequency exceeds the critical frequency,the electromagnetic system continues to provide energy to the system,and the collision interface continuously dissipates energy so that the system enters the self-excited vibration state.
基金supported by the Key Research and Development Program of Shaanxi(Program Nos.2022GXLH-01-20 and 2024GXYBXM-193).
文摘This article presents a compact magnetic levitation energy harvester(MLEH)with tunable resonant frequency.Unlike many of the reported tunable harvesters with unknown tuning results,the proposed MLEH can be tuned toward designated resonant frequency values within its tuning range.The targeted tuning processes is realized by a nonlinear magnet repulsive force exerted on a Halbach magnet array,combined with a calibrated scaling system.At a sinusoidal acceleration of±0.15 g,the maximum frequency tuning range of the proposed MLEH is 6.3 Hz(8.1–14.4 Hz),which is 77.8%of its resonant MLEH(8.1 Hz).At a frequency of 9.7 Hz,the output power is 462.1μW and the calculated normalized power density is 496μWcm^(−3)g^(−2).
基金supported by the National Natural Science Foundationof China(62273029).
文摘Magnetic levitation control technology plays a significant role in maglev trains.Designing a controller for the levitation system is challenging due to the strong nonlinearity,open-loop instability,and the need for fast response and security.In this paper,we propose a Disturbance-Observe-based Tube Model Predictive Levitation Control(DO-TMPLC)scheme combined with a feedback linearization strategy for the levitation system.The proposed strategy incorporates state constraints and control input constraints,i.e.,the air gap,the vertical velocity,and the current applied to the coil.A feedback linearization strategy is used to cancel the nonlinearity of the tracking error system.Then,a disturbance observer is implemented to actively compensate for disturbances while a TMPLC controller is employed to alleviate the remaining disturbances.Furthermore,we analyze the recursive feasibility and input-to-state stability of the closed-loop system.The simulation results indicate the efficacy of the proposed control strategy.
文摘The dynamic characteristics of acoustic levitation were investigated for the purpose of containerless processing of materials. Experimental measurements were accomplished on the variations of sound pressure level with both axial position z (6.5mm≤ z ≤27.5mm) and radial position r (1mm≤ r ≤16mm) in a cylindrical resonant tube(34mm×45mm) of a single axis acoustic levitator. The results showed that the minimum sound pressure levels in both axial and radial directions occur at the centres of two transverse intercepting planes with z =8.5mm and z =21.5mm, which were identified as the sound pressure nodes not only of the axial direction but also of the radial direction, and hence were expected to have good levitation stability. This was further proved by experimental observations.
基金supported by the National Natural Science Foundation of China(Grant Nos.51342001 and 50872079)the Key-grant Project of Chinese Ministry of Education(Grant No.311033)+3 种基金the Research Fund for the Doctoral Program of Higher Education of China(Grant No.20120202110003)the Innovation Team in Shaanxi Province,China(Grant No.2014KTC-18)the Fundamental Research Funds for the Central Universities,China(Grant Nos.GK201101001 and GK201305014)the Outstanding Doctoral Thesis Foundation Project of Shaanxi Normal University,China(Grant Nos.X2011YB08 and X2012YB05)
文摘The influence of the width of the middle magnet in the permanent magnet guideways (PMGs) on the levitation force and the levitation height of single-domain yttrium barium copper oxide (YBCO) bulks has been investigated at 77 K under the zero field cooled (ZFC) state. It is found that the largest levitation force can be obtained in the system with the width of the middle magnet of the PMG equal to the size of the YBCO bulk when the gap between the YBCO bulk and PMG is small. Both larger levitation force and higher levitation height can be obtained in the system with the width of the middle magnet of the PMG larger than the size of the YBCO bulk. The stiffness of the levitation force between the PMG and the YBCO bulk is higher in the system with a smaller width of the middle magnet in the PMG. These results provide an effective way to control the levitation force and the levitation height for the superconducting maglev design and applications.
文摘Based on the power dissipating model of spherical sample in free convection gas medium and the expression of input power, the model of temperature calculation for electromagnetic levitation melting sample was established. Considering the limitation of levitation force and levitation sample temperature,the principle of stability levitation zone computation was determined. A spherical sample (ThDy)Fe2 under the protection of argon gas was examined, and the effect of radius of levitation sample and perturbation on the stable levitation zone was investigated. The results show that longitudinal perturbation and transverse perturbation can shorten the length of stable levitation zone and the range of levitation sample radius. By increasing the sample radius and weakening the perturbation the electromagnetic levitation melting stability of sample can be improved.
基金the National Natural Science Foundation of China (Project No. 11772205)the Training Project of Liaoning Provincial Higher Education Institutions in Domestic and Overseas (Project No. 2018LNGXGJWPY-YB008)the Scientific Research Fund of Liaoning Provincial Education Department (Project No. L201703).
文摘This paper presents a new device integrating a nonlinear vibration absorber with a levitation magnetoelectric energy harvester for whole-spacecraft systems. This device effectively reduces vibration and has a stronger energy harvesting capability than the existing systems. It harvests energy from a wide frequency range and has a high output voltage. The harvested energy is determined by magnetic field strength, excitation frequency, and resistive load. The change in the magnetic field strength has the least impact on the output voltage. The vibration reduction effects and harvested energy of the system are analyzed with an approximate analytical method that combines the harmonic balance approach and the pseudo-arclength continuation algorithm. The results of the Runge-Kutta method are nearly consistent with those of the approximate analytical method. Moreover, the effects of the excitation frequency, resistive load, and parameters of the nonlinear energy sink on the system vibration response and energy harvesting are analyzed.
基金Project(60404003)supported by the National Natural Science Foundation of China
文摘In order to explore the precise dynamic response of the maglev train and verify the validity of proposed controller,a maglev guideway-electromagnet-air spring-cabin coupled model is developed in the first step.Based on the coupled model,the stresses of the modules are analyzed,and it is pointed out that the inherent nonlinearity,the inner coupling,misalignments between the sensors and actuators,and external disturbances are the main issues that should be considered for the maglev engineering.Furthermore,a feedback linearization controller based on the mathematical model of a maglev module is derived,in which the nonlinearity,coupling and misalignments are taken into account.Then,to attenuate the effect of external disturbances,a disturbance observer is proposed and the dynamics of the estimation error is analyzed using the input-to-state stability theory.It shows that the error is negligible under a low-frequency disturbance.However,at the high-frequency range,the error is unacceptable and the disturbances can not be compensated in time,which lead to over designed fluctuations of levitation gap,even a clash between the upper surface of electromagnet and lower surface of guideway.To solve this problem,a novel nonlinear acceleration feedback is put forward to enhancing the attenuation ability of fast varying disturbances.Finally,numerical comparisons show that the proposed controller outperforms the traditional feedback linearization controller and maintains good robustness under disturbances.
基金Projects(11302252,11202230)supported by the National Natural Science Foundation of China
文摘This work proposes a practical nonlinear controller for the MIMO levitation system. Firstly, the mathematical model of levitation modules is developed and the advantages of the control scheme with magnetic flux feedback are analyzed when compared with the current feedback. Then, a backstepping controller with magnetic flux feedback based on the mathematical model of levitation module is developed. To obtain magnetic flux signals for full-size maglev system, a physical method with induction coils installed to winding of the electromagnet is developed. Furthermore, to avoid its hardware addition, a novel conception of virtual magnetic flux feedback is proposed. To demonstrate the feasibility of the proposed controller, the nonlinear dynamic model of full-size maglev train with quintessential details is developed. Based on the nonlinear model, the numerical comparisons and related experimental validations are carried out. Finally, results illustrating closed-loop performance are provided.
基金supported by the Board of Research in Nuclear Sciences of the Department of Atomic Energy,India(2012/36/69-BRNS/2012)
文摘The aim of this paper is to employ fractional order proportional integral derivative(FO-PID)controller and integer order PID controller to control the position of the levitated object in a magnetic levitation system(MLS),which is inherently nonlinear and unstable system.The proposal is to deploy discrete optimal pole-zero approximation method for realization of digital fractional order controller.An approach of phase shaping by slope cancellation of asymptotic phase plots for zeros and poles within given bandwidth is explored.The controller parameters are tuned using dynamic particle swarm optimization(d PSO)technique.Effectiveness of the proposed control scheme is verified by simulation and experimental results.The performance of realized digital FO-PID controller has been compared with that of the integer order PID controllers.It is observed that effort required in fractional order control is smaller as compared with its integer counterpart for obtaining the same system performance.
基金Projects(50735007,51005253) supported by the National Natural Science Foundation of ChinaProject(2007AA04Z344) supported by the National High-Tech Research and Development Program of China
文摘A novel maglev transportation system was proposed for large travel range ultra precision motion.The system consists of a levitation subsystem and a propulsion subsystem.During the propulsion subsystem driving the moving platform along the guideway,the levitation subsystem uses six pairs of electromagnets to steadily suspend the moving platform over the guideway.The model of the levitation system,which is a typical nonlinear multi-input multi-output coupling system and has many inner nonlinear coupling characteristics,was deduced.For testifying the model,the levitation mechanism was firstly controlled by proportional-integral-differential(PID) control,and then a lot of input-output data were collected for model parameter identification.The least-square parameter identification method was used.The identification results prove that the model is feasible and suitable for the real system.
文摘A novel magnetic levitation support method is proposed, which can relieve the perturbation caused by traditional support methods andprovide more accurate position control of the capsule. This method can keep the perfect symmetry of the octahedral spherical hohlraum and hasthe characteristics in stability, tunability and simplicity. It is also favorable that all the results, such as supporting forces acting on the super-conducting capsule, are calculated analytically, and numerical simulations are performed to verify these results. A typical realistic design isproposed and discussed in detail. The superconducting coating material is suggested, and the required superconducting properties are listed.Damped oscillation of the floating capsule in thin helium gas is discussed, and the restoring time is estimated.
文摘In this paper, using the quasi-3D coupled current method, the influences of structure of cold crucible, the power frequency, the electricity property of melt, the coil position and current on the electromagnetic field (EMF) and the levitation characteristics in the melting processes are analyzed. It is shown that in the processes of levitation melting with cold crucible, the power frequency and cold crucible structure are the decisive factors for the ability of magnetic flux penetrating into cold crucible. The magnetic flux density in cold crucible is reduced as the increasing of power frequency, and this tendency becomes stronger when the power frequency is higher than 100kHz. The segmented structure of cold crucible can reduce the induction eddy in itself effectively, and the higher the power frequency is, the better the result is. So, a cold crucible can be segmented into 16-20 sectors for high frequency electromagnetic field and/or 8-12 sectors for lower frequency one. It is also shown that the levitation force of melting charge is related to coil current as a parabolic function.