期刊文献+
共找到185篇文章
< 1 2 10 >
每页显示 20 50 100
Effect of the LEARNS Model on Self-Care Agency and Compliance in Hemodialysis Patients with Fluid Overload
1
作者 Zhenzhen Hao Yang Xu +2 位作者 Jing Li Li Guo Jiao Yao 《Journal of Clinical and Nursing Research》 2024年第12期217-222,共6页
Objective:To explore an intervention strategy for patients with fluid overload undergoing maintenance hemodialysis and to evaluate the effects of the LEARNS model on improving self-care agency and patient compliance.M... Objective:To explore an intervention strategy for patients with fluid overload undergoing maintenance hemodialysis and to evaluate the effects of the LEARNS model on improving self-care agency and patient compliance.Methods:A total of 76 patients with fluid overload undergoing maintenance hemodialysis at our hospital from March 2023 to March 2024 were selected for the study.Patients were randomly divided into two groups,with 38 in each group.The control group received conventional interventions,while the observation group was treated using the LEARNS model.Self-care agency,compliance,and quality of life outcomes in both groups were analyzed and compared.Results:Before the intervention,no statistically significant differences were observed in the self-care agency scores between the two groups(P>0.05).After the intervention,patients’self-care agency improved significantly,with the observation group showing notably higher scores than the control group(P<0.05).Patient compliance in the observation group was also significantly higher than in the control group(P<0.05).Quality of life,assessed using the SF-36 scale,showed no significant differences between the two groups prior to intervention(P>0.05).After the intervention,quality of life scores improved significantly in both groups,with the observation group exhibiting significantly higher scores than the control group(P<0.05).Conclusion:The LEARNS model is effective in improving patient compliance,enhancing self-care agency,and improving quality of life in maintenance hemodialysis patients with fluid overload,making it a promising approach for broader application. 展开更多
关键词 learns model Maintenance hemodialysis Fluid overload Self-care agency COMPLIANCE
暂未订购
Development and validation of a machine learning model for diagnosis of ischemic heart disease using single-lead electrocardiogram parameters 被引量:1
2
作者 Basheer Abdullah Marzoog Peter Chomakhidze +11 位作者 Daria Gognieva Artemiy Silantyev Alexander Suvorov Magomed Abdullaev Natalia Mozzhukhina Darya Alexandrovna Filippova Sergey Vladimirovich Kostin Maria Kolpashnikova Natalya Ershova Nikolay Ushakov Dinara Mesitskaya Philipp Kopylov 《World Journal of Cardiology》 2025年第4期76-92,共17页
BACKGROUND Ischemic heart disease(IHD)impacts the quality of life and has the highest mortality rate of cardiovascular diseases globally.AIM To compare variations in the parameters of the single-lead electrocardiogram... BACKGROUND Ischemic heart disease(IHD)impacts the quality of life and has the highest mortality rate of cardiovascular diseases globally.AIM To compare variations in the parameters of the single-lead electrocardiogram(ECG)during resting conditions and physical exertion in individuals diagnosed with IHD and those without the condition using vasodilator-induced stress computed tomography(CT)myocardial perfusion imaging as the diagnostic reference standard.METHODS This single center observational study included 80 participants.The participants were aged≥40 years and given an informed written consent to participate in the study.Both groups,G1(n=31)with and G2(n=49)without post stress induced myocardial perfusion defect,passed cardiologist consultation,anthropometric measurements,blood pressure and pulse rate measurement,echocardiography,cardio-ankle vascular index,bicycle ergometry,recording 3-min single-lead ECG(Cardio-Qvark)before and just after bicycle ergometry followed by performing CT myocardial perfusion.The LASSO regression with nested cross-validation was used to find the association between Cardio-Qvark parameters and the existence of the perfusion defect.Statistical processing was performed with the R programming language v4.2,Python v.3.10[^R],and Statistica 12 program.RESULTS Bicycle ergometry yielded an area under the receiver operating characteristic curve of 50.7%[95%confidence interval(CI):0.388-0.625],specificity of 53.1%(95%CI:0.392-0.673),and sensitivity of 48.4%(95%CI:0.306-0.657).In contrast,the Cardio-Qvark test performed notably better with an area under the receiver operating characteristic curve of 67%(95%CI:0.530-0.801),specificity of 75.5%(95%CI:0.628-0.88),and sensitivity of 51.6%(95%CI:0.333-0.695).CONCLUSION The single-lead ECG has a relatively higher diagnostic accuracy compared with bicycle ergometry by using machine learning models,but the difference was not statistically significant.However,further investigations are required to uncover the hidden capabilities of single-lead ECG in IHD diagnosis. 展开更多
关键词 Ischemic heart disease Single-lead electrocardiography Computed tomography myocardial perfusion Prevention Risk factors Stress test Machine learning model
暂未订购
Comparative analysis of empirical and deep learning models for ionospheric sporadic E layer prediction
3
作者 BingKun Yu PengHao Tian +6 位作者 XiangHui Xue Christopher JScott HaiLun Ye JianFei Wu Wen Yi TingDi Chen XianKang Dou 《Earth and Planetary Physics》 EI CAS 2025年第1期10-19,共10页
Sporadic E(Es)layers in the ionosphere are characterized by intense plasma irregularities in the E region at altitudes of 90-130 km.Because they can significantly influence radio communications and navigation systems,... Sporadic E(Es)layers in the ionosphere are characterized by intense plasma irregularities in the E region at altitudes of 90-130 km.Because they can significantly influence radio communications and navigation systems,accurate forecasting of Es layers is crucial for ensuring the precision and dependability of navigation satellite systems.In this study,we present Es predictions made by an empirical model and by a deep learning model,and analyze their differences comprehensively by comparing the model predictions to satellite RO measurements and ground-based ionosonde observations.The deep learning model exhibited significantly better performance,as indicated by its high coefficient of correlation(r=0.87)with RO observations and predictions,than did the empirical model(r=0.53).This study highlights the importance of integrating artificial intelligence technology into ionosphere modelling generally,and into predicting Es layer occurrences and characteristics,in particular. 展开更多
关键词 ionospheric sporadic E layer radio occultation ionosondes numerical model deep learning model artificial intelligence
在线阅读 下载PDF
Performance Analysis of Various Forecasting Models for Multi-Seasonal Global Horizontal Irradiance Forecasting Using the India Region Dataset
4
作者 Manoharan Madhiarasan 《Energy Engineering》 2025年第8期2993-3011,共19页
Accurate Global Horizontal Irradiance(GHI)forecasting has become vital for successfully integrating solar energy into the electrical grid because of the expanding demand for green power and the worldwide shift favouri... Accurate Global Horizontal Irradiance(GHI)forecasting has become vital for successfully integrating solar energy into the electrical grid because of the expanding demand for green power and the worldwide shift favouring green energy resources.Particularly considering the implications of the aggressive GHG emission targets,accurate GHI forecasting has become vital for developing,designing,and operational managing solar energy systems.This research presented the core concepts of modelling and performance analysis of the application of various forecasting models such as ARIMA(Autoregressive Integrated Moving Average),Elaman NN(Elman Neural Network),RBFN(Radial Basis Function Neural Network),SVM(Support Vector Machine),LSTM(Long Short-Term Memory),Persistent,BPN(Back Propagation Neural Network),MLP(Multilayer Perceptron Neural Network),RF(Random Forest),and XGBoost(eXtreme Gradient Boosting)for assessing multi-seasonal forecasting of GHI.Used the India region data to evaluate the models’performance and forecasting ability.Research using forecasting models for seasonal Global Horizontal Irradiance(GHI)forecasting in winter,spring,summer,monsoon,and autumn.Substantiated performance effectiveness through evaluation metrics,such as Mean Absolute Error(MAE),Root Mean Squared Error(RMSE),and R-squared(R^(2)),coded using Python programming.The performance experimentation analysis inferred that the most accurate forecasts in all the seasons compared to the other forecasting models the Random Forest and eXtreme Gradient Boosting,are the superior and competing models that yield Winter season-based forecasting XGBoost is the best forecasting model with MAE:1.6325,RMSE:4.8338,and R^(2):0.9998.Spring season-based forecasting XGBoost is the best forecasting model with MAE:2.599599,RMSE:5.58539,and R^(2):0.999784.Summer season-based forecasting RF is the best forecasting model with MAE:1.03843,RMSE:2.116325,and R^(2):0.999967.Monsoon season-based forecasting RF is the best forecasting model with MAE:0.892385,RMSE:2.417587,and R^(2):0.999942.Autumn season-based forecasting RF is the best forecasting model with MAE:0.810462,RMSE:1.928215,and R^(2):0.999958.Based on seasonal variations and computing constraints,the findings enable energy system operators to make helpful recommendations for choosing the most effective forecasting models. 展开更多
关键词 Machine learning model deep learning model statistical model SEASONAL solar energy Global Hori-zontal Irradiance forecasting
在线阅读 下载PDF
Comparative analysis of machine learning and statistical models for cotton yield prediction in major growing districts of Karnataka,India
5
作者 THIMMEGOWDA M.N. MANJUNATHA M.H. +4 位作者 LINGARAJ H. SOUMYA D.V. JAYARAMAIAH R. SATHISHA G.S. NAGESHA L. 《Journal of Cotton Research》 2025年第1期40-60,共21页
Background Cotton is one of the most important commercial crops after food crops,especially in countries like India,where it’s grown extensively under rainfed conditions.Because of its usage in multiple industries,su... Background Cotton is one of the most important commercial crops after food crops,especially in countries like India,where it’s grown extensively under rainfed conditions.Because of its usage in multiple industries,such as textile,medicine,and automobile industries,it has greater commercial importance.The crop’s performance is greatly influenced by prevailing weather dynamics.As climate changes,assessing how weather changes affect crop performance is essential.Among various techniques that are available,crop models are the most effective and widely used tools for predicting yields.Results This study compares statistical and machine learning models to assess their ability to predict cotton yield across major producing districts of Karnataka,India,utilizing a long-term dataset spanning from 1990 to 2023 that includes yield and weather factors.The artificial neural networks(ANNs)performed superiorly with acceptable yield deviations ranging within±10%during both vegetative stage(F1)and mid stage(F2)for cotton.The model evaluation metrics such as root mean square error(RMSE),normalized root mean square error(nRMSE),and modelling efficiency(EF)were also within the acceptance limits in most districts.Furthermore,the tested ANN model was used to assess the importance of the dominant weather factors influencing crop yield in each district.Specifically,the use of morning relative humidity as an individual parameter and its interaction with maximum and minimum tempera-ture had a major influence on cotton yield in most of the yield predicted districts.These differences highlighted the differential interactions of weather factors in each district for cotton yield formation,highlighting individual response of each weather factor under different soils and management conditions over the major cotton growing districts of Karnataka.Conclusions Compared with statistical models,machine learning models such as ANNs proved higher efficiency in forecasting the cotton yield due to their ability to consider the interactive effects of weather factors on yield forma-tion at different growth stages.This highlights the best suitability of ANNs for yield forecasting in rainfed conditions and for the study on relative impacts of weather factors on yield.Thus,the study aims to provide valuable insights to support stakeholders in planning effective crop management strategies and formulating relevant policies. 展开更多
关键词 COTTON Machine learning models Statistical models Yield forecast Artificial neural network Weather variables
在线阅读 下载PDF
PM_(2.5) concentration prediction system combining fuzzy information granulation and multi-model ensemble learning
6
作者 Yamei Chen Jianzhou Wang +1 位作者 Runze Li Jialu Gao 《Journal of Environmental Sciences》 2025年第10期332-345,共14页
With the rapid development of economy,air pollution caused by industrial expansion has caused serious harm to human health and social development.Therefore,establishing an effective air pollution concentration predict... With the rapid development of economy,air pollution caused by industrial expansion has caused serious harm to human health and social development.Therefore,establishing an effective air pollution concentration prediction system is of great scientific and practical significance for accurate and reliable predictions.This paper proposes a combination of pointinterval prediction system for pollutant concentration prediction by leveraging neural network,meta-heuristic optimization algorithm,and fuzzy theory.Fuzzy information granulation technology is used in data preprocessing to transform numerical sequences into fuzzy particles for comprehensive feature extraction.The golden Jackal optimization algorithm is employed in the optimization stage to fine-tune model hyperparameters.In the prediction stage,an ensemble learning method combines training results frommultiplemodels to obtain final point predictions while also utilizing quantile regression and kernel density estimation methods for interval predictions on the test set.Experimental results demonstrate that the combined model achieves a high goodness of fit coefficient of determination(R^(2))at 99.3% and a maximum difference between prediction accuracy mean absolute percentage error(MAPE)and benchmark model at 12.6%.This suggests that the integrated learning system proposed in this paper can provide more accurate deterministic predictions as well as reliable uncertainty analysis compared to traditionalmodels,offering practical reference for air quality early warning. 展开更多
关键词 Air pollution prediction Fuzzy information granulation Meta-heuristic optimization algorithm Ensemble learning model Point interval prediction
原文传递
Quantification of backwater effect in Jingjiang Reach due to confluence with Dongting Lake using a machine learning model
7
作者 Hai-xin Shang Jun-qiang Xia +2 位作者 Chun-hong Hu Mei-rong Zhou Shan-shan Deng 《Water Science and Engineering》 2025年第2期187-199,共13页
The backwater effect caused by tributary inflow can significantly elevate the water level profile upstream of a confluence point.However,the influence of mainstream and confluence discharges on the backwater effect in... The backwater effect caused by tributary inflow can significantly elevate the water level profile upstream of a confluence point.However,the influence of mainstream and confluence discharges on the backwater effect in a river reach remains unclear.In this study,various hydrological data collected from the Jingjiang Reach of the Yangtze River in China were statistically analyzed to determine the backwater degree and range with three representative mainstream discharges.The results indicated that the backwater degree increased with mainstream discharge,and a positive relationship was observed between the runoff ratio and backwater degree at specific representative mainstream discharges.Following the operation of the Three Gorges Project,the backwater effect in the Jingjiang Reach diminished.For instance,mean backwater degrees for low,moderate,and high mainstream discharges were recorded as 0.83 m,1.61 m,and 2.41 m during the period from 1990 to 2002,whereas these values decreased to 0.30 m,0.95 m,and 2.08 m from 2009 to 2020.The backwater range extended upstream as mainstream discharge increased from 7000 m3/s to 30000 m3/s.Moreover,a random forest-based machine learning model was used to quantify the backwater effect with varying mainstream and confluence discharges,accounting for the impacts of mainstream discharge,confluence discharge,and channel degradation in the Jingjiang Reach.At the Jianli Hydrological Station,a decrease in mainstream discharge during flood seasons resulted in a 7%–15%increase in monthly mean backwater degree,while an increase in mainstream discharge during dry seasons led to a 1%–15%decrease in monthly mean backwater degree.Furthermore,increasing confluence discharge from Dongting Lake during June to July and September to November resulted in an 11%–42%increase in monthly mean backwater degree.Continuous channel degradation in the Jingjiang Reach contributed to a 6%–19%decrease in monthly mean backwater degree.Under the influence of these factors,the monthly mean backwater degree in 2017 varied from a decrease of 53%to an increase of 37%compared to corresponding values in 1991. 展开更多
关键词 Backwater effect Stage-discharge relationship Machine learning model Dongting Lake confluence Jingjiang reach
在线阅读 下载PDF
Machine learning model-based approach using cellular proliferation marker expression for preoperative clinical decision-making in patients with hepatocellular carcinoma
8
作者 Shashank Kumar Mahendra Pratap Singh Lajya Devi Goyal 《World Journal of Gastrointestinal Oncology》 2025年第10期370-373,共4页
The investigation by Zhu et al on the assessment of cellular proliferation markers to assist clinical decision-making in patients with hepatocellular carcinoma(HCC)using a machine learning model-based approach is a sc... The investigation by Zhu et al on the assessment of cellular proliferation markers to assist clinical decision-making in patients with hepatocellular carcinoma(HCC)using a machine learning model-based approach is a scientific approach.This study looked into the possibilities of using a Ki-67(a marker for cell proliferation)expression-based machine learning model to help doctors make decisions about treatment options for patients with HCC before surgery.The study used reconstructed tomography images of 164 patients with confirmed HCC from the intratumoral and peritumoral regions.The features were chosen using various statistical methods,including least absolute shrinkage and selection operator regression.Also,a nomogram was made using Radscore and clinical risk factors.It was tested for its ability to predict receiver operating characteristic curves and calibration curves,and its clinical benefits were found using decision curve analysis.The calibration curve demonstrated excellent consistency between predicted and actual probability,and the decision curve confirmed its clinical benefit.The proposed model is helpful for treating patients with HCC because the predicted and actual probabilities are very close to each other,as shown by the decision curve analysis.Further prospective studies are required,incorporating a multicenter and large sample size design,additional relevant exclusion criteria,information on tumors(size,number,and grade),and cancer stage to strengthen the clinical benefit in patients with HCC. 展开更多
关键词 Hepatocellular carcinoma Machine learning model Cellular proliferation marker Preoperative therapy decision CANCER
暂未订购
Spatial heterogeneity of groundwater depths in coastal cities and their responses to multiple factors interactions by interpretable machine learning models
9
作者 Yuming Mo Jing Xu +5 位作者 Senlin Zhu Beibei Xu Jinran Wu Guangqiu Jin You-Gan Wang Ling Li 《Geoscience Frontiers》 2025年第3期223-241,共19页
Understanding spatial heterogeneity in groundwater responses to multiple factors is critical for water resource management in coastal cities.Daily groundwater depth(GWD)data from 43 wells(2018-2022)were collected in t... Understanding spatial heterogeneity in groundwater responses to multiple factors is critical for water resource management in coastal cities.Daily groundwater depth(GWD)data from 43 wells(2018-2022)were collected in three coastal cities in Jiangsu Province,China.Seasonal and Trend decomposition using Loess(STL)together with wavelet analysis and empirical mode decomposition were applied to identify tide-influenced wells while remaining wells were grouped by hierarchical clustering analysis(HCA).Machine learning models were developed to predict GWD,then their response to natural conditions and human activities was assessed by the Shapley Additive exPlanations(SHAP)method.Results showed that eXtreme Gradient Boosting(XGB)was superior to other models in terms of prediction performance and computational efficiency(R^(2)>0.95).GWD in Yancheng and southern Lianyungang were greater than those in Nantong,exhibiting larger fluctuations.Groundwater within 5 km of the coastline was affected by tides,with more pronounced effects in agricultural areas compared to urban areas.Shallow groundwater(3-7 m depth)responded immediately(0-1 day)to rainfall,primarily influenced by farmland and topography(slope and distance from rivers).Rainfall recharge to groundwater peaked at 50%farmland coverage,but this effect was suppressed by high temperatures(>30℃)which intensified as distance from rivers increased,especially in forest and grassland.Deep groundwater(>10 m)showed delayed responses to rainfall(1-4 days)and temperature(10-15 days),with GDP as the primary influence,followed by agricultural irrigation and population density.Farmland helped to maintain stable GWD in low population density regions,while excessive farmland coverage(>90%)led to overexploitation.In the early stages of GDP development,increased industrial and agricultural water demand led to GWD decline,but as GDP levels significantly improved,groundwater consumption pressure gradually eased.This methodological framework is applicable not only to coastal cities in China but also could be extended to coastal regions worldwide. 展开更多
关键词 Groundwater depth Spatial heterogeneity Multiple influence factorsCoastal cities Machine Learning models SHAP values
在线阅读 下载PDF
Data-Enhanced Low-Cycle Fatigue Life Prediction Model Based on Nickel-Based Superalloys
10
作者 Luopeng Xu Lei Xiong +5 位作者 Rulun Zhang Jiajun Zheng Huawei Zou Zhixin Li Xiaopeng Wang Qingyuan Wang 《Acta Mechanica Solida Sinica》 2025年第4期612-623,共12页
To overcome the challenges of limited experimental data and improve the accuracy of empirical formulas,we propose a low-cycle fatigue(LCF)life prediction model for nickel-based superalloys using a data augmentation me... To overcome the challenges of limited experimental data and improve the accuracy of empirical formulas,we propose a low-cycle fatigue(LCF)life prediction model for nickel-based superalloys using a data augmentation method.This method utilizes a variational autoencoder(VAE)to generate low-cycle fatigue data and form an augmented dataset.The Pearson correlation coefficient(PCC)is employed to verify the similarity of feature distributions between the original and augmented datasets.Six machine learning models,namely random forest(RF),artificial neural network(ANN),support vector machine(SVM),gradient-boosted decision tree(GBDT),eXtreme Gradient Boosting(XGBoost),and Categorical Boosting(CatBoost),are utilized to predict the LCF life of nickel-based superalloys.Results indicate that the proposed data augmentation method based on VAE can effectively expand the dataset,and the mean absolute error(MAE),root mean square error(RMSE),and R-squared(R^(2))values achieved using the CatBoost model,with respective values of 0.0242,0.0391,and 0.9538,are superior to those of the other models.The proposed method reduces the cost and time associated with LCF experiments and accurately establishes the relationship between fatigue characteristics and LCF life of nickel-based superalloys. 展开更多
关键词 Nickel-based superalloy Low-cycle fatigue(LCF) Fatigue life prediction Data augmentation method Machine learning model Variational autoencoder(VAE)
原文传递
Prediction and Comparative Analysis of Rooftop PV Solar Energy Efficiency Considering Indoor and Outdoor Parameters under Real Climate Conditions Factors with Machine Learning Model
11
作者 Gokhan Sahin Ihsan Levent +2 位作者 Gültekin Isik Wilfriedvan Sark Sabir Rustemli 《Computer Modeling in Engineering & Sciences》 2025年第4期1215-1248,共34页
This research investigates the influence of indoor and outdoor factors on photovoltaic(PV)power generation at Utrecht University to accurately predict PV system performance by identifying critical impact factors and i... This research investigates the influence of indoor and outdoor factors on photovoltaic(PV)power generation at Utrecht University to accurately predict PV system performance by identifying critical impact factors and improving renewable energy efficiency.To predict plant efficiency,nineteen variables are analyzed,consisting of nine indoor photovoltaic panel characteristics(Open Circuit Voltage(Voc),Short Circuit Current(Isc),Maximum Power(Pmpp),Maximum Voltage(Umpp),Maximum Current(Impp),Filling Factor(FF),Parallel Resistance(Rp),Series Resistance(Rs),Module Temperature)and ten environmental factors(Air Temperature,Air Humidity,Dew Point,Air Pressure,Irradiation,Irradiation Propagation,Wind Speed,Wind Speed Propagation,Wind Direction,Wind Direction Propagation).This study provides a new perspective not previously addressed in the literature.In this study,different machine learning methods such as Multilayer Perceptron(MLP),Multivariate Adaptive Regression Spline(MARS),Multiple Linear Regression(MLR),and Random Forest(RF)models are used to predict power values using data from installed PVpanels.Panel values obtained under real field conditions were used to train the models,and the results were compared.The Multilayer Perceptron(MLP)model was achieved with the highest classification accuracy of 0.990%.The machine learning models used for solar energy forecasting show high performance and produce results close to actual values.Models like Multi-Layer Perceptron(MLP)and Random Forest(RF)can be used in diverse locations based on load demand. 展开更多
关键词 Machine learning model multi-layer perceptrons(MLP) random forest(RF) solar photovoltaic panel energy efficiency indoor and outdoor parameters forecasting
在线阅读 下载PDF
How Do Deep Learning Forecasting Models Perform for Surface Variables in the South China Sea Compared to Operational Oceanography Forecasting Systems?
12
作者 Ziqing ZU Jiangjiang XIA +6 位作者 Xueming ZHU Marie DREVILLON Huier MO Xiao LOU Qian ZHOU Yunfei ZHANG Qing YANG 《Advances in Atmospheric Sciences》 2025年第1期178-189,共12页
It is fundamental and useful to investigate how deep learning forecasting models(DLMs)perform compared to operational oceanography forecast systems(OFSs).However,few studies have intercompared their performances using... It is fundamental and useful to investigate how deep learning forecasting models(DLMs)perform compared to operational oceanography forecast systems(OFSs).However,few studies have intercompared their performances using an identical reference.In this study,three physically reasonable DLMs are implemented for the forecasting of the sea surface temperature(SST),sea level anomaly(SLA),and sea surface velocity in the South China Sea.The DLMs are validated against both the testing dataset and the“OceanPredict”Class 4 dataset.Results show that the DLMs'RMSEs against the latter increase by 44%,245%,302%,and 109%for SST,SLA,current speed,and direction,respectively,compared to those against the former.Therefore,different references have significant influences on the validation,and it is necessary to use an identical and independent reference to intercompare the DLMs and OFSs.Against the Class 4 dataset,the DLMs present significantly better performance for SLA than the OFSs,and slightly better performances for other variables.The error patterns of the DLMs and OFSs show a high degree of similarity,which is reasonable from the viewpoint of predictability,facilitating further applications of the DLMs.For extreme events,the DLMs and OFSs both present large but similar forecast errors for SLA and current speed,while the DLMs are likely to give larger errors for SST and current direction.This study provides an evaluation of the forecast skills of commonly used DLMs and provides an example to objectively intercompare different DLMs. 展开更多
关键词 forecast error deep learning forecasting model operational oceanography forecasting system VALIDATION intercomparison
在线阅读 下载PDF
Neuromorphic Computing in the Era of Large Models
13
作者 Haoxuan SHAN Chiyue WEI +4 位作者 Nicolas RAMOS Xiaoxuan YANG Cong GUO Hai(Helen)LI Yiran CHEN 《Artificial Intelligence Science and Engineering》 2025年第1期17-30,共14页
The rapid advancement of deep learning and the emergence of largescale neural models,such as bidirectional encoder representations from transformers(BERT),generative pre-trained transformer(GPT),and large language mod... The rapid advancement of deep learning and the emergence of largescale neural models,such as bidirectional encoder representations from transformers(BERT),generative pre-trained transformer(GPT),and large language model Meta AI(LLaMa),have brought significant computational and energy challenges.Neuromorphic computing presents a biologically inspired approach to addressing these issues,leveraging event-driven processing and in-memory computation for enhanced energy efficiency.This survey explores the intersection of neuromorphic computing and large-scale deep learning models,focusing on neuromorphic models,learning methods,and hardware.We highlight transferable techniques from deep learning to neuromorphic computing and examine the memoryrelated scalability limitations of current neuromorphic systems.Furthermore,we identify potential directions to enable neuromorphic systems to meet the growing demands of modern AI workloads. 展开更多
关键词 neuromorphic computing spiking neural networks large deep learning models
在线阅读 下载PDF
Design of a Private Cloud Platform for Distributed Logging Big Data Based on a Unified Learning Model of Physics and Data
14
作者 Cheng Xi Fu Haicheng Tursyngazy Mahabbat 《Applied Geophysics》 2025年第2期499-510,560,共13页
Well logging technology has accumulated a large amount of historical data through four generations of technological development,which forms the basis of well logging big data and digital assets.However,the value of th... Well logging technology has accumulated a large amount of historical data through four generations of technological development,which forms the basis of well logging big data and digital assets.However,the value of these data has not been well stored,managed and mined.With the development of cloud computing technology,it provides a rare development opportunity for logging big data private cloud.The traditional petrophysical evaluation and interpretation model has encountered great challenges in the face of new evaluation objects.The solution research of logging big data distributed storage,processing and learning functions integrated in logging big data private cloud has not been carried out yet.To establish a distributed logging big-data private cloud platform centered on a unifi ed learning model,which achieves the distributed storage and processing of logging big data and facilitates the learning of novel knowledge patterns via the unifi ed logging learning model integrating physical simulation and data models in a large-scale functional space,thus resolving the geo-engineering evaluation problem of geothermal fi elds.Based on the research idea of“logging big data cloud platform-unifi ed logging learning model-large function space-knowledge learning&discovery-application”,the theoretical foundation of unified learning model,cloud platform architecture,data storage and learning algorithm,arithmetic power allocation and platform monitoring,platform stability,data security,etc.have been carried on analysis.The designed logging big data cloud platform realizes parallel distributed storage and processing of data and learning algorithms.The feasibility of constructing a well logging big data cloud platform based on a unifi ed learning model of physics and data is analyzed in terms of the structure,ecology,management and security of the cloud platform.The case study shows that the logging big data cloud platform has obvious technical advantages over traditional logging evaluation methods in terms of knowledge discovery method,data software and results sharing,accuracy,speed and complexity. 展开更多
关键词 Unified logging learning model logging big data private cloud machine learning
在线阅读 下载PDF
Artificial intelligence powered radiomics model for the assessment of colorectal tumor immune microenvironment
15
作者 Shashank Kumar 《World Journal of Gastrointestinal Oncology》 2025年第11期341-345,共5页
Zhou et al’s investigation on the creation of a non-invasive deep learning(DL)method for colorectal tumor immune microenvironment evaluation using preoperative computed tomography(CT)radiomics published in the World ... Zhou et al’s investigation on the creation of a non-invasive deep learning(DL)method for colorectal tumor immune microenvironment evaluation using preoperative computed tomography(CT)radiomics published in the World Journal of Gastrointestinal Oncology is thorough and scientific.The study analyzed preoperative CT images of 315 confirmed colorectal cancer patients,using manual regions of interest to extract DL features.The study developed a DL model using CT images and histopathological images to predict immune-related indicators in colorectal cancer patients.Pathological(tumor-stroma ratio,tumor-infiltrating lymphocytes infiltration,immunohistochemistry,tumor immune microenvir-onment and immune score)parameters and radiomics(CT imaging and model construction)data were combined to generate artificial intelligence-powered models.Clinical benefit and goodness of fit of the models were assessed using receiver operating characteristic,area under curve and decision curve analysis.The developed DL-based radiomics prediction model for non-invasive evaluation of tumor markers demonstrated potential for personalized treatment planning and immunotherapy strategies in colorectal cancer patients.The study,involving a small group from a single medical center,lacks inclusion/exclusion criteria and should include clinicopathological features for valuable therapeutic practice insights in colorectal cancer patients. 展开更多
关键词 Colorectal cancer Machine learning model Immune markers Tumor mic-roenvironment Preoperative therapy decision Cancer
暂未订购
Unified deep learning model for predicting fundus fluorescein angiography image from fundus structure image 被引量:8
16
作者 Yiwei Chen Yi He +3 位作者 Hong Ye Lina Xing Xin Zhang Guohua Shi 《Journal of Innovative Optical Health Sciences》 SCIE EI CSCD 2024年第3期105-113,共9页
The prediction of fundus fluorescein angiography(FFA)images from fundus structural images is a cutting-edge research topic in ophthalmological image processing.Prediction comprises estimating FFA from fundus camera im... The prediction of fundus fluorescein angiography(FFA)images from fundus structural images is a cutting-edge research topic in ophthalmological image processing.Prediction comprises estimating FFA from fundus camera imaging,single-phase FFA from scanning laser ophthalmoscopy(SLO),and three-phase FFA also from SLO.Although many deep learning models are available,a single model can only perform one or two of these prediction tasks.To accomplish three prediction tasks using a unified method,we propose a unified deep learning model for predicting FFA images from fundus structure images using a supervised generative adversarial network.The three prediction tasks are processed as follows:data preparation,network training under FFA supervision,and FFA image prediction from fundus structure images on a test set.By comparing the FFA images predicted by our model,pix2pix,and CycleGAN,we demonstrate the remarkable progress achieved by our proposal.The high performance of our model is validated in terms of the peak signal-to-noise ratio,structural similarity index,and mean squared error. 展开更多
关键词 Fundus fluorescein angiography image fundus structure image image translation unified deep learning model generative adversarial networks
原文传递
Effectiveness of hybrid ensemble machine learning models for landslide susceptibility analysis:Evidence from Shimla district of North-west Indian Himalayan region 被引量:2
17
作者 SHARMA Aastha SAJJAD Haroon +2 位作者 RAHAMAN Md Hibjur SAHA Tamal Kanti BHUYAN Nirsobha 《Journal of Mountain Science》 SCIE CSCD 2024年第7期2368-2393,共26页
The Indian Himalayan region is frequently experiencing climate change-induced landslides.Thus,landslide susceptibility assessment assumes greater significance for lessening the impact of a landslide hazard.This paper ... The Indian Himalayan region is frequently experiencing climate change-induced landslides.Thus,landslide susceptibility assessment assumes greater significance for lessening the impact of a landslide hazard.This paper makes an attempt to assess landslide susceptibility in Shimla district of the northwest Indian Himalayan region.It examined the effectiveness of random forest(RF),multilayer perceptron(MLP),sequential minimal optimization regression(SMOreg)and bagging ensemble(B-RF,BSMOreg,B-MLP)models.A landslide inventory map comprising 1052 locations of past landslide occurrences was classified into training(70%)and testing(30%)datasets.The site-specific influencing factors were selected by employing a multicollinearity test.The relationship between past landslide occurrences and influencing factors was established using the frequency ratio method.The effectiveness of machine learning models was verified through performance assessors.The landslide susceptibility maps were validated by the area under the receiver operating characteristic curves(ROC-AUC),accuracy,precision,recall and F1-score.The key performance metrics and map validation demonstrated that the BRF model(correlation coefficient:0.988,mean absolute error:0.010,root mean square error:0.058,relative absolute error:2.964,ROC-AUC:0.947,accuracy:0.778,precision:0.819,recall:0.917 and F-1 score:0.865)outperformed the single classifiers and other bagging ensemble models for landslide susceptibility.The results show that the largest area was found under the very high susceptibility zone(33.87%),followed by the low(27.30%),high(20.68%)and moderate(18.16%)susceptibility zones.The factors,namely average annual rainfall,slope,lithology,soil texture and earthquake magnitude have been identified as the influencing factors for very high landslide susceptibility.Soil texture,lineament density and elevation have been attributed to high and moderate susceptibility.Thus,the study calls for devising suitable landslide mitigation measures in the study area.Structural measures,an immediate response system,community participation and coordination among stakeholders may help lessen the detrimental impact of landslides.The findings from this study could aid decision-makers in mitigating future catastrophes and devising suitable strategies in other geographical regions with similar geological characteristics. 展开更多
关键词 Landslide susceptibility Site-specific factors Machine learning models Hybrid ensemble learning Geospatial techniques Himalayan region
原文传递
Establishing and clinically validating a machine learning model for predicting unplanned reoperation risk in colorectal cancer 被引量:2
18
作者 Li-Qun Cai Da-Qing Yang +2 位作者 Rong-Jian Wang He Huang Yi-Xiong Shi 《World Journal of Gastroenterology》 SCIE CAS 2024年第23期2991-3004,共14页
BACKGROUND Colorectal cancer significantly impacts global health,with unplanned reoperations post-surgery being key determinants of patient outcomes.Existing predictive models for these reoperations lack precision in ... BACKGROUND Colorectal cancer significantly impacts global health,with unplanned reoperations post-surgery being key determinants of patient outcomes.Existing predictive models for these reoperations lack precision in integrating complex clinical data.AIM To develop and validate a machine learning model for predicting unplanned reoperation risk in colorectal cancer patients.METHODS Data of patients treated for colorectal cancer(n=2044)at the First Affiliated Hospital of Wenzhou Medical University and Wenzhou Central Hospital from March 2020 to March 2022 were retrospectively collected.Patients were divided into an experimental group(n=60)and a control group(n=1984)according to unplanned reoperation occurrence.Patients were also divided into a training group and a validation group(7:3 ratio).We used three different machine learning methods to screen characteristic variables.A nomogram was created based on multifactor logistic regression,and the model performance was assessed using receiver operating characteristic curve,calibration curve,Hosmer-Lemeshow test,and decision curve analysis.The risk scores of the two groups were calculated and compared to validate the model.RESULTS More patients in the experimental group were≥60 years old,male,and had a history of hypertension,laparotomy,and hypoproteinemia,compared to the control group.Multiple logistic regression analysis confirmed the following as independent risk factors for unplanned reoperation(P<0.05):Prognostic Nutritional Index value,history of laparotomy,hypertension,or stroke,hypoproteinemia,age,tumor-node-metastasis staging,surgical time,gender,and American Society of Anesthesiologists classification.Receiver operating characteristic curve analysis showed that the model had good discrimination and clinical utility.CONCLUSION This study used a machine learning approach to build a model that accurately predicts the risk of postoperative unplanned reoperation in patients with colorectal cancer,which can improve treatment decisions and prognosis. 展开更多
关键词 Colorectal cancer Postoperative unplanned reoperation Unplanned reoperation Clinical validation NOMOGRAM Machine learning models
暂未订购
Use of machine learning models for the prognostication of liver transplantation: A systematic review 被引量:3
19
作者 Gidion Chongo Jonathan Soldera 《World Journal of Transplantation》 2024年第1期164-188,共25页
BACKGROUND Liver transplantation(LT)is a life-saving intervention for patients with end-stage liver disease.However,the equitable allocation of scarce donor organs remains a formidable challenge.Prognostic tools are p... BACKGROUND Liver transplantation(LT)is a life-saving intervention for patients with end-stage liver disease.However,the equitable allocation of scarce donor organs remains a formidable challenge.Prognostic tools are pivotal in identifying the most suitable transplant candidates.Traditionally,scoring systems like the model for end-stage liver disease have been instrumental in this process.Nevertheless,the landscape of prognostication is undergoing a transformation with the integration of machine learning(ML)and artificial intelligence models.AIM To assess the utility of ML models in prognostication for LT,comparing their performance and reliability to established traditional scoring systems.METHODS Following the Preferred Reporting Items for Systematic Reviews and Meta-Analysis guidelines,we conducted a thorough and standardized literature search using the PubMed/MEDLINE database.Our search imposed no restrictions on publication year,age,or gender.Exclusion criteria encompassed non-English studies,review articles,case reports,conference papers,studies with missing data,or those exhibiting evident methodological flaws.RESULTS Our search yielded a total of 64 articles,with 23 meeting the inclusion criteria.Among the selected studies,60.8%originated from the United States and China combined.Only one pediatric study met the criteria.Notably,91%of the studies were published within the past five years.ML models consistently demonstrated satisfactory to excellent area under the receiver operating characteristic curve values(ranging from 0.6 to 1)across all studies,surpassing the performance of traditional scoring systems.Random forest exhibited superior predictive capabilities for 90-d mortality following LT,sepsis,and acute kidney injury(AKI).In contrast,gradient boosting excelled in predicting the risk of graft-versus-host disease,pneumonia,and AKI.CONCLUSION This study underscores the potential of ML models in guiding decisions related to allograft allocation and LT,marking a significant evolution in the field of prognostication. 展开更多
关键词 Liver transplantation Machine learning models PROGNOSTICATION Allograft allocation Artificial intelligence
暂未订购
Model Agnostic Meta-Learning(MAML)-Based Ensemble Model for Accurate Detection of Wheat Diseases Using Vision Transformer and Graph Neural Networks 被引量:1
20
作者 Yasir Maqsood Syed Muhammad Usman +3 位作者 Musaed Alhussein Khursheed Aurangzeb Shehzad Khalid Muhammad Zubair 《Computers, Materials & Continua》 SCIE EI 2024年第5期2795-2811,共17页
Wheat is a critical crop,extensively consumed worldwide,and its production enhancement is essential to meet escalating demand.The presence of diseases like stem rust,leaf rust,yellow rust,and tan spot significantly di... Wheat is a critical crop,extensively consumed worldwide,and its production enhancement is essential to meet escalating demand.The presence of diseases like stem rust,leaf rust,yellow rust,and tan spot significantly diminishes wheat yield,making the early and precise identification of these diseases vital for effective disease management.With advancements in deep learning algorithms,researchers have proposed many methods for the automated detection of disease pathogens;however,accurately detectingmultiple disease pathogens simultaneously remains a challenge.This challenge arises due to the scarcity of RGB images for multiple diseases,class imbalance in existing public datasets,and the difficulty in extracting features that discriminate between multiple classes of disease pathogens.In this research,a novel method is proposed based on Transfer Generative Adversarial Networks for augmenting existing data,thereby overcoming the problems of class imbalance and data scarcity.This study proposes a customized architecture of Vision Transformers(ViT),where the feature vector is obtained by concatenating features extracted from the custom ViT and Graph Neural Networks.This paper also proposes a Model AgnosticMeta Learning(MAML)based ensemble classifier for accurate classification.The proposedmodel,validated on public datasets for wheat disease pathogen classification,achieved a test accuracy of 99.20%and an F1-score of 97.95%.Compared with existing state-of-the-art methods,this proposed model outperforms in terms of accuracy,F1-score,and the number of disease pathogens detection.In future,more diseases can be included for detection along with some other modalities like pests and weed. 展开更多
关键词 Wheat disease detection deep learning vision transformer graph neural network model agnostic meta learning
在线阅读 下载PDF
上一页 1 2 10 下一页 到第
使用帮助 返回顶部