期刊文献+
共找到2,861篇文章
< 1 2 144 >
每页显示 20 50 100
Film thickness effect on 2D lead-free hybrid double perovskite properties: Band gap, photocurrent and stability
1
作者 Mohamed Saber Lassoued Faizan Ahmad Yanzhen Zheng 《Chinese Chemical Letters》 2025年第4期449-454,共6页
Lead-free hybrid double perovskites(LFHDPs) have received a lot of attention due to their environmental friendliness and promising attributes. However, studying the effect of film thickness on LFHDPs optoelectronic pr... Lead-free hybrid double perovskites(LFHDPs) have received a lot of attention due to their environmental friendliness and promising attributes. However, studying the effect of film thickness on LFHDPs optoelectronic properties has not yet been investigated. Herein, we synthesized two new Ruddlesden–Popper LFHDPs, namely(C_(5)H_(12)N)_(4)AgBiI_(8)(CAB-1) and(C_(6)H_(14)N)_(4)Ag Bi I8(CAB-2) using cyclopentylamine and cyclohexylamine as monoamine ligands. Indeed, these two Ag(Ⅰ)-Bi(Ⅲ) LFHDPs form smooth and uniform films ranging in thickness from 250 nm to 1 μm, with preferred orientations. Notably, the studies on the optical properties showed that the direct band gap value decreased from 2.17 e V to 1.91 e V for CAB-1 and from 2.05 e V to 1.86 e V for CAB-2 with increasing thickness. Accordingly, photo-current response using a xenon lamp revealed a significant difference of over 1000 n A between light and dark conditions for1 μm-thickness films, suggesting potential for light harvesting. Other than that, thicker films of CAB-1and CAB-2 exhibit high stability for 90 days in a relatively humid environment(RH of 55%), paving the way for promising optoelectronic applications. 展开更多
关键词 lead-free Double perovskites Film thickness Photocurrent response High stability
原文传递
Efficient and stable silver-europium codoped lead-free double perovskite nanocrystals for warm-white emission
2
作者 Ruixiang Wu Fengjie Guo +8 位作者 Zixuan Wang Jiayu Di Cheng Li Ruiling Zhang Peigeng Han Yujing Wang Xilin Bai Junfeng Zhang Xiangyang Miao 《Journal of Rare Earths》 2025年第5期882-887,共6页
Owing to their unique optical properties and nontoxicity,lead-free halide double perovskite nanocrystals are of interest for widespread applications.Herein,the colloid synthesis and photoluminescenc e property of Ag^(... Owing to their unique optical properties and nontoxicity,lead-free halide double perovskite nanocrystals are of interest for widespread applications.Herein,the colloid synthesis and photoluminescenc e property of Ag^(+)-Eu^(3+)codoped Cs_(2)NaInCl_(6)nanocrystals were investigated.The pe rovskite nanocrystals exhibit a broad warm-white photo luminescence with correlated color temperature(CCT)of 3447 K and color rendering index(CRI)of 90.2,and the means of codoping would improve its optical performance.A fast energy transfer and a long-lived self-trapped excitons state are unveiled by the femtosecond transient absorption spectra.The fast energy transfer from the self-trapped excitons of host nanocrystals to the Eu^(3+)ions is helpful to achieve a broad photoluminescence,and the quantum yield of Cs_(2)NaInCl_(6):0.05Ag^(+)-Eu^(3+)anocrystals can be enha nced to 69.5%.There is a large exciton binding energy and strong electron-phonon interaction in the codoped perovskite nanocrystals.The efficient and excellent air-stable double perovskite nanocrystals would be considered as a single-component phosphor for warm-white lighting. 展开更多
关键词 lead-free perovskite nanocrystals Warm-white emission Silver-europium codoping Femtosecond transient absorption spectra Rare earths
原文传递
Facile synthesis,multimode and tunable luminescence,and multifunctional applications of rare earth ions-activated lead-free double perovskite crystals
3
作者 Huilin Li Guang Jia +3 位作者 Zhaoxin Meng Qile Guo Yunyu Bai Cuimiao Zhang 《Journal of Rare Earths》 2025年第10期2108-2116,I0002,共10页
Lead-free double perovskites have gained recognition as top luminescent materials due to their environmental friendliness,high chemical stability,structural adjustability,and excellent photoelectric properties.However... Lead-free double perovskites have gained recognition as top luminescent materials due to their environmental friendliness,high chemical stability,structural adjustability,and excellent photoelectric properties.However,the poor modulation of emission restricts their applications,and it is highly desirable to explore stable and efficient double perovskites with multimode luminescence and adjustable spectra for multifunctional photoelectric applications.Herein,the rare earth ions Ln^(3+)(Er^(3+)and Ho^(3+))-doped Cs_(2)NaYCl_(6):Sb^(3+)crystals were synthesized by a simple solvothermal route.The X-ray diffraction pattern(XRD),energy-dispersive spectroscopy(EDS),X-ray photoelectron spectroscopy(XPS),and elemental mapping images demonstrate that the Sb^(3+),Er^(3+),and Ho^(3+)ions have been homogeneously incorporated into the Cs_(2)NaYCl_(6)crystals.As anticipated,the emissio n spectra of Cs_(2)NaYCl_(6):Sb^(3+)/Ln^(3+)are composed of two bands.One broad blue band derives from self-trapped exciton(STE)in[SbCl_(6)]3-octahedra while another group of emission peaks stems from the f-f transitions of Ln^(3+)ions.The emission colors of Cs_(2)NaYCl_(6):Sb^(3+)/Ln^(3+)phosphors can be tuned in a wide range by modulating the doping concentrations of Ln^(3+)ions.The efficient energy transfer from STE to Ln^(3+)is the key point to achieving the efficient and tunable emissions Cs_(2)NaYCl_(6):Sb^(3+)/Ln^(3+)samples.Interestingly,Cs_(2)NaYCl_(6):Sb^(3+)/Ln^(3+)can also exhibit characteristic up-conversion luminescence of Ln^(3+)under nearinfrared(NIR)excitation besides the down-conversion luminescence,revealing that the materials may have potential applicability in multimode anti-counterfeiting and information encryption applications.Furthermore,the light emitting diodes(LEDs)assembled by Cs_(2)NaYCl_(6):Sb^(3+)and Cs_(2)NaYCl_(6):Sb^(3+)/Ln^(3+)phosphors display dazzling blue,green,and red emissions under a forward bias current,which indicates that the as-obtained double perovskites materials may have great potential in solid-state lighting and optoelectronic devices. 展开更多
关键词 lead-free double perovskites Rare earthions doping Tunable luminescence Multimode anti-counterfeiting LED devices
原文传递
Halogen sites regulation in lead-free AgSb-based perovskites for efficient photocatalytic CO_(2) reduction
4
作者 Baofei Sun Haowei Xu +7 位作者 Yanyi Huang Daofu Wu Heng Luo Faguang Kuang Hongmei Ran Wei Chen Liqin Gao Xiaosheng Tang 《DeCarbon》 2025年第1期47-56,共10页
Although the lead-free halide double perovskites(DPs)have shown great promise for the photocatalytic reduction of CO_(2),the catalytic performance is still far from satisfactory.In this work,lead-free Cs_(2)AgSbX_(6)(... Although the lead-free halide double perovskites(DPs)have shown great promise for the photocatalytic reduction of CO_(2),the catalytic performance is still far from satisfactory.In this work,lead-free Cs_(2)AgSbX_(6)(X=Cl,Br,I)DPs nanocrystals(NCs)are prepared by a modified ligand-assisted reprecipitation(LARP)approach at room temperature.The crystal surface,shape,and optoelectronic properties of the AgSb-based DPs are modified using halogen modulation technique.Moreover,a series of Cs_(2)AgSbX_(6) perovskites NCs are utilized as efficient catalysts for the photocatalytic CO_(2) reduction.Among them,the Cs_(2)AgSbBr_(6) NCs demonstrate the optimal CO_(2) photoreduction activity with CO and CH_(4) evolutions of 366 and 49μmol g^(-1) respectively under 3h irradiation.Additionally,using the in-situ DRIFTS research,the surface reaction intermediates were precisely identified and dynamically tracked.This study suggests the potential of the lead-free halide DPs NCs as an important platform for the practical solar-to-fuel conversions. 展开更多
关键词 lead-free halide double perovskites Photocatalytic CO_(2)reduction Cs_(2)AgSbX_(6) Nanocrystals Reaction mechanism
在线阅读 下载PDF
Lead-free perovskite Cs_(3)Bi_(2)Br_(9)/FeS_(2) hollow core-shell Z-scheme heterojunctions toward optimized photothermal-photocatalytic H_(2) production
5
作者 Yongmei Xia Zuming He +7 位作者 Gang He Lianxiang Chen Juan Zhang Jiangbin Su Muhammad Saboor Siddique Xiaofei Fu Guihua Chen Wei Zhou 《Chinese Chemical Letters》 2025年第10期353-359,共7页
Photothermal catalysis is a promising technology primarily utilized the solar energy to produce photogenerated e^(-)/h^(+) pairs together with the production of heat energy.However,the inefficient separation of charge... Photothermal catalysis is a promising technology primarily utilized the solar energy to produce photogenerated e^(-)/h^(+) pairs together with the production of heat energy.However,the inefficient separation of charge carriers and inadequate response to near-infrared(NIR)light usually leads to the unsatisfactory photocatalytic efficiency,hindering their application potentials.In this work,a significantly enhanced photothermal catalytic hydrogen evolution reaction over the lead-free perovskite Cs_(3)Bi_(2)Br_(9)/FeS_(2)(CBB/FS)heterostructure is simultaneously verified,where the CBB/FS Z-scheme heterojunctions display the strong stability and superb photothermal catalytic activity.Under the simulated solar irradiation(AM 1.5G),the optimized CBB/FS-5 achieves a photocatalytic hydrogen evolution rate of 31.5 mmol g^(-1)h^(-1),which is 112.6 and 77.1 times higher than that of FS and CBB,respectively,together with an apparent quantum yield of 29.5%at 420 nm.This significantly improved photocatalytic H_(2)evolution can be mainly attributed to the Z-scheme charge transfer and photothermal-assisted synergistically enhanced photocatalytic H_(2)production,and the potential mechanism of the enhanced photocatalytic H_(2)evolution is also proposed by photoelectrochemical characterizations,in situ XPS,EPR spectra,and the DFT calculations.This work provides new insights to the design of high-efficient photothermal catalysts,leading to the sustainable and efficient solutions towards the energy and environmental challenges. 展开更多
关键词 Photocatalytic H_(2)evolution FeS_(2) lead-free perovskite Cs_(3)Bi_(2)Br_(9) Photothermal-photocatalysis Z-scheme heterojunction
原文传递
Sb^(3+)and Sm^(3+)co-doped lead-free Cs_(2)NaInCl_(6)double perovskite nanocrystals for single-component cold white emitter 被引量:1
6
作者 Biao Zhou Xiangtong Zhang +2 位作者 Ranran Hu Ruixue Hou William W.Yu 《Journal of Rare Earths》 SCIE EI CAS CSCD 2024年第9期1646-1651,I0001,共7页
Metal halide perovskites exhibit promising prospect in light-emitting diodes,solar cells,photodetectors and bioimaging.However,the workhorse of metal halide perovskites relies on toxicity lead element,which severely d... Metal halide perovskites exhibit promising prospect in light-emitting diodes,solar cells,photodetectors and bioimaging.However,the workhorse of metal halide perovskites relies on toxicity lead element,which severely damages human body and environment.Among lead-free perovskites,Cs_(2)NaInCl_(6)double perovskite is one of the most promising candidates because of its great stability and easy synthesis,but suffers inadequate optical performance.Here,we doped Sb^(3+)and Sm^(3+)into Cs_(2)NaInCl_(6)nanocrystals by a hot injection method.Cs_(2)NaInCl_(6):Sb^(3+)exhibits blue emission at 447 nm.Cs_(2)NaInCl_(6):Sm^(3+),Sb^(3+)nanocrystals simultaneously generate the blue emission of Sb^(3+)and the multiple emissions of Sm^(3+)at 565,602,650 and 710 nm.With the increase of Sm^(3+)feed ratio,the emission color of Cs_(2)NaInCl_(6):Sm^(3+),Sb^(3+)gradually moves to cold white region at(0.27,0.28)in CIE chromaticity diagram and correlated color temperature of 11840 K.This work shows the potential application of Cs_(2)NaInCl_(6):Sm^(3+),Sb^(3+)nanocrystals as a single-component cold white emitter. 展开更多
关键词 lead-free Double perovskites Single component White emitter Doping Rare earths
原文传递
Enhanced electric-field induced strain in Eu^(3+) doped 0.67BiFeO_(3)-0.33BaTiO_(3) lead-free piezoelectric ceramics 被引量:1
7
作者 Wei Li Tongxiang Liang +3 位作者 Xiang He Vyunov Oleg Dongfang Pang Shan Wu 《Journal of Rare Earths》 SCIE EI CAS CSCD 2024年第9期1747-1754,I0004,共9页
Lead-free ferroelectric ceramics,0.67Bi_(1-x)Eu_(x)FeO_(3)-0.33BaTiO_(3)(BF-BT-xEu,x=0-0.02),were prepared via a solid-state reaction,The effect of Eu^(3+) doping on the microstructure,dielectric properties,ferroelect... Lead-free ferroelectric ceramics,0.67Bi_(1-x)Eu_(x)FeO_(3)-0.33BaTiO_(3)(BF-BT-xEu,x=0-0.02),were prepared via a solid-state reaction,The effect of Eu^(3+) doping on the microstructure,dielectric properties,ferroelectric properties,and electric-field-induced strain was investigated.The X-ray diffraction(XRD) results indicate the presence of a mixed phase of tetragonal and rhombohedral at the morphotropic phase boundary(MPB).Doping with an appropriate amount of Eu^(3+) reduces the Fe^(3+) content and decreases the leakage current in the binary system.A converse piezoelectric coefficient(d_(33)*) of 392 pm/V is obtained at BF-BT-0.003Eu under an electric field of 60 kV/cm at room temperature,which has a Curie temperature(T_(C)) of 414℃,The unipolar strain and d_(33)* of BF-BT-0.003Eu ceramics increase to 0.438%and 730 pm/V at 125℃ The field-induced strain response of the BF-BT-0.003Eu ceramics is greater than that of 0.67BF-0.33BT,mainly due to its optimal grain size,reduction of leakage current,and coexistence of ferroelectric-relaxation phases,BF-BT-0.003Eu ceramic is a lead-free candidate for high-temperature actuator applications. 展开更多
关键词 FERROELECTRIC Field-induced strain CERAMICS lead-free Rare earths
原文传递
Design strategies of high-performance lead-free electroceramics for energy storage applications 被引量:1
8
作者 Biao Guo Fei Jin +3 位作者 Li Li Zi-Zhao Pan Xin-Wei Xu Hong Wang 《Rare Metals》 SCIE EI CAS CSCD 2024年第3期853-878,共26页
A greater number of compact and reliable electrostatic capacitors are in demand due to the Internet of Things boom and rapidly growing complex and integrated electronic systems,continuously promoting the development o... A greater number of compact and reliable electrostatic capacitors are in demand due to the Internet of Things boom and rapidly growing complex and integrated electronic systems,continuously promoting the development of high-energy-density ceramic-based capacitors.Although significant successes have been achieved in obtaining high energy densities in lead-based ferroelectric ceramics,the utilization of lead-containing ceramies has been restricted due to environmental and health hazards of lead.Lead-free ferroelectric ceramics have garnered tremendous attention and are expected to replace lead-based ceramics in the near future.However,the energy density of lead-free ceramics is still lagging behind that of lead-containing cou.nterparts,severely limiting their applications.Significant efforts have been made to enhance the energy storage performance of lead-free ceramics using multi-scale design strategies,and exciting progress has been achieved in the past decade.This review briefly discusses the energy storage mechanism and fundamental characteristics of a dielectric capacitor,summarizes and compares the state-of-the-art design strategies for high-energy-density lead-free ceramics,and highlights several critical issues and requirements for industrial production.The prospects and challenges of lead-free ceramics for energy storage applications are also discussed. 展开更多
关键词 Dielectric materials lead-free ceramic Environment friendly Energy storage Design strategy
原文传递
Lead-free silver niobate microparticles-loaded PDMS composite films for high-performance clip-like hybrid mechanical energy harvesters 被引量:1
9
作者 Mandar Vasant Paranjape Sontyana Adonijah Graham +2 位作者 Punnarao Manchi Anand Kurakula Jae Su Yu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2024年第9期145-154,共10页
A triboelectric nanogenerator(TENG)is a highly potential green energy harvesting technology to power small-scale electronic devices.Enhancing the overall electricity production capacity of TENGs is a primary concern f... A triboelectric nanogenerator(TENG)is a highly potential green energy harvesting technology to power small-scale electronic devices.Enhancing the overall electricity production capacity of TENGs is a primary concern for their utilization as an electricity generator in day-to-day life.Herein,we proposed a lead-free silver niobate(AgNbO_(3)(ANb))microparticles(MPs)-embedded polydimethylsiloxane(PDMS)composite film-based clip-like hybrid nanogenerator(HNG)device,producing an enhanced electrical output from the applied mechanical movements.The ANb MPs with a high dielectric constant were initially synthesized and embedded inside the PDMS polymer matrix.Various HNGs were fabricated utilizing ANb MPs/PDMS composite films/aluminum tape as negative/positive triboelectric films,respectively and operated in contact-separation mode.The electrical output from them was comparatively analyzed to investigate an optimum concentration of the ANb MPs inside the PDMS film.The robust HNG with 5 wt%ANb MPs/PDMS composite film produced the highest electrical output with promising stability.Thereafter,three similar optimized HNGs were fabricated and integrated within a 3D-printed clip-like structure and the electrical output was thoroughly evaluated while combining multiple HNGs as well as from each independent HNG.The clip-like HNG device exhibited an electrical output of 340 V and 20μA that can be further utilized to charge various capacitors and power portable electronics.Owing to the high resilience structure of the clip-like HNG device,it was also demonstrated to harvest biomechanical energy produced by human movements into electricity.The mechanical energy harvesting when the clip-like HNG device was attached to the accelerator pedal of the car and the pedal of a musical piano was successfully demonstrated. 展开更多
关键词 AgNbO_(3)MPs lead-free ANb MPs/PDMS composite film Dielectric material Clip-like HNG Biomechanical energy harvesting
原文传递
Lead-free hybrid two-dimensional double perovskite with switchable dielectric phase transition
10
作者 Tian Yang Yi Liu +8 位作者 Lina Hua Yaoyao Chen Wuqian Guo Haojie Xu Xi Zeng Changhao Gao Wenjing Li Junhua Luo Zhihua Sun 《Chinese Chemical Letters》 SCIE CAS CSCD 2024年第6期176-179,共4页
Molecular dielectric switches constitute a type of intelligent materials that are highly coveted for their distinctive advantages of switchable dielectric responses,lightweight,and mechanical flexibility.Twodimensiona... Molecular dielectric switches constitute a type of intelligent materials that are highly coveted for their distinctive advantages of switchable dielectric responses,lightweight,and mechanical flexibility.Twodimensional(2D)hybrid perovskites have demonstrated excellent promise for assembling dielectric switches,in which the dynamic motions of organic moieties afford driving force to trigger switchable dielectric phase transition.Here,we successfully assembled a new lead-free hybrid double perovskite,(CHA)4Cu Bi Br8(1,CHA=cyclohexylammonium),adopting a typical 2D structural motif,which shows dielectric anisotropy and bistable behaviors during the reversible phase transition near T_(c)=378 K(the Curie temperature).That is,its dielectric constants could be switched and tuned between high-dielectric and low-dielectric states.Structure analyses reveal that the ordered-disordered transformation of the organic CHA+moiety and distortion of inorganic framework account for its phase transition.This result will stimulate further exploration of molecular dielectric switches in this 2D environmentally friendly family. 展开更多
关键词 Dielectric switch lead-free Double perovskite Phase transition Symmetry breaking
原文传递
Ligand modulation of active center to promote lead-free Cs_(2)AgInCl_(6)photocatalytic CO_(2)reduction
11
作者 Baofei Sun Wei Chen +10 位作者 Yanyi Huang Daofu Wu Heng Luo Faguang Kuang Hongmei Ran Yichen Liu Liqin Gao Jinchen Zhou Bo Gao Qiang Huang Xiaosheng Tang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第8期660-669,I0015,共11页
Metal halide perovskites(MHP)are potential candidates for the photocatalytic reduction of CO_(2)due to their long photogenerated carrier lifetime and charge diffusion length.However,the conventional long-chain ligand ... Metal halide perovskites(MHP)are potential candidates for the photocatalytic reduction of CO_(2)due to their long photogenerated carrier lifetime and charge diffusion length.However,the conventional long-chain ligand impedes the adsorption and activation of CO_(2)molecules in practical applications.Here,a ligand modulation technology is employed to enhance the photocatalytic CO_(2)reduction activity of lead-free Cs_(2)AgInCl_(6)microcrystals(MCs).The Cs_(2)AgInCl_(6)MCs passivated by Oleic acid(OLA)and Octanoic acid(OCA)are used for photocatalytic CO_(2)reduction.The results show that the surface defects and electronic properties of Cs_(2)AgInCl_(6)MCs can be adjusted through ligand modulation.Compared with the OLA-Cs_(2)AgInCl_(6),the OCA-Cs_(2)AgInCl_(6)catalyst demonstrated a significant improvement in the catalytic yield of CO and CH_(4).The CO and CH_(4)catalytic yields of OCA-Cs_(2)AgInCl_(6)reached 171.88 and34.15μmol g^(-1)h^(-1)which were 2.03 and 12.98 times higher than those of OLA-Cs_(2)AgInCl_(6),and the total electron consumption rate of OCA-Cs_(2)AgInCl_(6)was 615.2μmol g^(-1)h^(-1)which was 3.25 times higher than that of OLA-Cs_(2)AgInCl_(6).Furthermore,in situ diffuse reflectance infrared Fourier transform spectra revealed the enhancement of photocatalytic activity in Cs_(2)AgInCl_(6)MCs induced by ligand modulation.This study illustrates the potential of lead-free Cs_(2)AgInCl_(6)MCs for efficient photocatalytic CO_(2)reduction and provides a ligand modulation strategy for the active promotion of MHP photocatalysts. 展开更多
关键词 Surface ligand Photocatalysis CO_(2)reduction lead-free perovskite Reactive mechanism
在线阅读 下载PDF
Lead-free Ce-doped perovskite scintillators with high figure of merit
12
作者 Xiang Li Haixia Cui +4 位作者 Yanxi Zhong Xiaoxi Zhou Shuhong Xu Shujuan Liu Chunlei Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第12期74-82,共9页
Lead halide perovskite scintillators have recently received extensive research attention owing to their short fluorescence lifetimes,low detection limits,and ease of fabrication compared to traditional scintillators.T... Lead halide perovskite scintillators have recently received extensive research attention owing to their short fluorescence lifetimes,low detection limits,and ease of fabrication compared to traditional scintillators.The nontoxic cerium-doped lead-free perovskites with intrinsically efficient and short lifetime d–f transitions are a prospective replacement for the toxic Pb^(2+).Here,we demonstrated Ce-doped cesium lanthanide chloride perovskites (Cs_(3)LnCl_(6),Ln=Gd,Y,Lu) synthesized through a facile solution method for the first time.These perovskites exhibit blue-violet emission,which arises from Ce 5d→4f transitions.Among three types of Cs_(3)LnCl_(6) perovskites,Ce:Cs_(3)LuCl_(6) exhibited high photoluminescence quantum yield (PLQY) of 82%and a short excited-state lifetime of approximately 34 ns.When utilized as X-ray scintillators,Ce:Cs_(3)LuCl_(6) crystals display a high light yield of 8120 photons per MeV and a low detection limit of 36.8 n Gy air s^(-1).Importantly,the figure of merit (FoM),representing the ratio of light yield to decay time,reaches 239,which is the highest reported value for lead-free perovskite scintillators up to now.Additionally,the fabrication of perovskite/PMMA films was undertaken for practical demonstrations in X-ray imaging,resulting in the attainment of a resolution of up to 8.38 lp/mm.We anticipate that this work will inspire the utilization of Ce-doped Cs_(3)LnCl_(6) perovskites in ultrafast scintillation applications such as high-energy physics,nuclear reaction monitoring,and dynamic X-ray imaging. 展开更多
关键词 lead-free perovskite Short lifetime scintillators X-ray imaging
在线阅读 下载PDF
Mechanical and Electrical Properties of Some Sn-Zn Based Lead-Free Quinary Alloys
13
作者 Shihab Uddin Md. Abdul Gafur +1 位作者 Suraya Sabrin Soshi Mohammad Obaidur Rahman 《Materials Sciences and Applications》 2024年第7期213-227,共15页
Although there are many lead-free soldering alloys on the market, none of them have ideal qualities. The researchers are combining binary alloys with a variety of additional materials to create the soldering alloys’ ... Although there are many lead-free soldering alloys on the market, none of them have ideal qualities. The researchers are combining binary alloys with a variety of additional materials to create the soldering alloys’ features. The eutectic Sn-9Zn alloy is among them. This paper investigated the mechanical and electrical properties of Sn-9Zn-x (Ag, Cu, Sb);{x = 0.2, 0.4, and 0.6} lead-free solder alloys. The mechanical properties such as elastic modulus, ultimate tensile strength (UTS), yield strength (YS), and ductility were examined at the strain rates in a range from 4.17 10−3 s−1 to 208.5 10−3 s−1 at room temperature. It is found that increasing the content of the alloying elements and strain rate increases the elastic modulus, ultimate tensile strength, and yield strength while the ductility decreases. The electrical conductivity of the alloys is found to be a little smaller than that of the Sn-9Zn eutectic alloy. 展开更多
关键词 lead-free Solder Strain Rate Ultimate Tensile Strength DUCTILITY Electrical Conductivity
在线阅读 下载PDF
Preparation of lead-free free-cutting graphite brasses by graphitization of cementite 被引量:1
14
作者 卓海鸥 唐建成 +1 位作者 薛滢妤 叶楠 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第10期3252-3257,共6页
Graphite brasses were prepared by graphitizing annealing of cast brasses containing cementite particles,which were in-situ formed during the fasting process.The eutectic cast iron as carbon source was added into commo... Graphite brasses were prepared by graphitizing annealing of cast brasses containing cementite particles,which were in-situ formed during the fasting process.The eutectic cast iron as carbon source was added into common brasses by casting.SEM and EDS were used to analyze the microstructure of graphite brasses,and the relationship between the microstructure and machinability was investigated.The results show that graphite particles are formed by the decomposition of cementite particles in cast brasses.The graphite particles are uniformly dispersed in the brass matrix with the average size of 5.0 μm and the volume fraction of ~1.1%.The machinability in the graphite brass is dramatically increased relative to the common brass,because of the lubricating properties of graphite particles and its role in chip breaking.The workpiece surface of the graphite brasses chips is smooth and burr-free,and the chips of graphite brasses are short(C-shape) and discontinuous,which is much better than that of the long spiral chips of common brasses. 展开更多
关键词 lead-free graphite brass graphitization annealing microstructure machinability
在线阅读 下载PDF
Ultrasensitive and stable X-ray detection using zero-dimensional lead-free perovskites 被引量:17
15
作者 Xiaojia Zheng Wei Zhao +7 位作者 Peng Wang Hairen Tan Makhsud I.Saidaminov Shujie Tie Ligao Chen Yufei Peng Jidong Long Wen-HuZhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第10期299-306,共8页
Sensitive and reliable X-ray detectors are essential for medical radiography,industrial inspection and security screening.Lowering the radiation dose allows reduced health risks and increased frequency and fidelity of... Sensitive and reliable X-ray detectors are essential for medical radiography,industrial inspection and security screening.Lowering the radiation dose allows reduced health risks and increased frequency and fidelity of diagnostic technologies for earlier detection of disease and its recurrence.Three-dimensional(3 D)organic-inorganic hybrid lead halide perovskites are promising for direct X-ray detection-they show improved sensitivity compared to conventional X-ray detectors.However,their high and unstable dark current,caused by ion migration and high dark carrier concentration in the 3 D hybrid perovskites,limits their performance and long-term operation stability.Here we report ultrasensitive,stable X-ray detectors made using zero-dimensional(0 D)methylammonium bismuth iodide perovskite(MA3Bi2I9)single crystals.The 0 D crystal structure leads to a high activation energy(Ea)for ion migration(0.46 e V)and is also accompanied by a low dark carrier concentration(~10^6 cm^-3).The X-ray detectors exhibit sensitivity of 10,620μC Gy-1 air cm-2,a limit of detection(Lo D)of 0.62 nG yairs-1,and stable operation even under high applied biases;no deterioration in detection performance was observed following sensing of an integrated X-ray irradiation dose of^23,800 m Gyair,equivalent to>200,000 times the dose required for a single commercial X-ray chest radiograph.Regulating the ion migration channels and decreasing the dark carrier concentration in perovskites provide routes for stable and ultrasensitive X-ray detectors. 展开更多
关键词 X-ray detector Zero-dimensional perovskite lead-free Carrier concentration STABILITY Limit of detection Sensitivity
在线阅读 下载PDF
Microstructures and properties of SnZn-xEr lead-free solders 被引量:12
16
作者 张亮 崔俊华 +2 位作者 韩继光 郭永环 何成文 《Journal of Rare Earths》 SCIE EI CAS CSCD 2012年第8期790-793,共4页
The Sn9Zn eutectic alloy is the nontoxic lead-free solders alternative having a melting temperature which is closest to that of the eutectic SnPb alloy. In order to improve the properties of SnZn lead-free solders, 0-... The Sn9Zn eutectic alloy is the nontoxic lead-free solders alternative having a melting temperature which is closest to that of the eutectic SnPb alloy. In order to improve the properties of SnZn lead-free solders, 0-0.5 wt.% of rare earth Er was added to the base alloys, and the microstructures were studied. Results showed that the addition of rare earth Er could enhance the wettability of SnZn solders, with 0.08%Er addition, the spreading area gavc an 19.1% increase. And based on the mechanical testing, it was found that the tensile force and shear force of SnZn-xEr solder joints could be improved significantly. Moreover, the oxidation resistance of SnZn0.08Er solder was better than that of SnZn solder, in addition, it was found that trace amounts of rare earth Er could refine the microstructures of SnZn solders, espe- cially for Zn-rich phases, and excessive amount of rare earth Er led to a coarse microstructure. 展开更多
关键词 lead-free solders solder joints mechanical orooerties: oxidation resistance rare earths
原文传递
Effect of diode-laser parameters on shear force of micro-joints soldered with Sn-Ag-Cu lead-free solder on Au/Ni/Cu pad 被引量:6
17
作者 王俭辛 薛松柏 +3 位作者 方典松 鞠金龙 韩宗杰 姚立华 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2006年第6期1374-1378,共5页
Soldering experiments with Sn-3.5Ag-0.5Cu lead-free solder on Au/Ni/Cu pad were carried out by means of diode-laser and IR reflow soldering methods respectively.The influence of different heating methods as well as ou... Soldering experiments with Sn-3.5Ag-0.5Cu lead-free solder on Au/Ni/Cu pad were carried out by means of diode-laser and IR reflow soldering methods respectively.The influence of different heating methods as well as output power of diode-laser on shear force of micro-joints was studied and the relationship between the shear force and microstructures of micro-joints was analyzed.The results indicate that the formation of intermetallic compound Ag3Sn is the key factor to affect the shear force and the fine eutectic network structures of micro-joints as well as the dispersion morphology of fine compound Ag3Sn,in which eutectic network band is responsible for the improvement of the shear force of micro-joints soldered with Sn-Ag-Cu lead-free solder.With the increases of output power of diode-laser,the shear force and the microstructures change obviously.The eutectic network structures of micro-joints soldered with diode-laser soldering method are more homogeneous and the grains of Ag3Sn compounds are finer in the range of near optimal output power than those soldered with IR reflow soldering method,so the shear force is also higher than that using IR reflow soldering method.When the output power value of diode-laser is about 41.0 W,the shear force exhibits the highest value that is 70% higher than that using IR reflow soldering method. 展开更多
关键词 DIODE-LASER SOLDERING SN-AG-CU lead-free SOLDER shear force microstructure
在线阅读 下载PDF
Effects of phosphorus addition on the properties of Sn-9Zn lead-free solder alloy 被引量:7
18
作者 Hui-zhen Huang Xiu-qin Wei +1 位作者 Dun-qiang Tan Lang Zhou 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2013年第6期563-567,共5页
This article explores tile effects of phosphorus addition on the wettability between Sn-9Zn solder alloy and Cu substrates, the oxidation behavior and the corrosion behavior of Sn-9Zn solder alloy. Spreading test was ... This article explores tile effects of phosphorus addition on the wettability between Sn-9Zn solder alloy and Cu substrates, the oxidation behavior and the corrosion behavior of Sn-9Zn solder alloy. Spreading test was used to characterize the wettability of Sn-9Zn-xP solder alloys to Cu substrates. The oxidation and corrosion behaviors of Sn- 9Zn-xP solder alloys were determined by means of weight gaining, and secondary ion mass spectrometry was used to analyze the oxygen content. The role and mechanism of P in the solder alloys were also discussed. It is found that the addition of P can significantly improve the wettability of the solder alloys. Incorporating P into Sn-9Zn solder alloy obviously decreases the oxygen content and enhances the oxidation and corrosion resistance. Microstructure observations show that an appropriate amount of P can greatly refine coarse rod-like Zn-rich phases in Sn-gZn solder alloy. 展开更多
关键词 lead-free solder PHOSPHORUS WETTABILITY oxidntion CORROSION
在线阅读 下载PDF
Influence of CeO_2 doping amount on property of BCTZ lead-free piezoelectric ceramics sintered at low temperature 被引量:8
19
作者 黄新友 邢仁克 +1 位作者 高春华 陈志刚 《Journal of Rare Earths》 SCIE EI CAS CSCD 2014年第8期733-737,共5页
Ba0.85Ca0.15Ti0.9Zr0.1O3 (BCTZ) lead-free piezoelectric ceramics co-doped with CeO2 (x=0.1 wt.%, 0.2 wt.%, 0.3 wt.%, 0.4 wt.%, 0.5 wt.%) and Li2CO3 (0.6 wt.%) were prepared by conventional solid-state reaction m... Ba0.85Ca0.15Ti0.9Zr0.1O3 (BCTZ) lead-free piezoelectric ceramics co-doped with CeO2 (x=0.1 wt.%, 0.2 wt.%, 0.3 wt.%, 0.4 wt.%, 0.5 wt.%) and Li2CO3 (0.6 wt.%) were prepared by conventional solid-state reaction method. Influence of CeO2 doping amount on the piezoelectric properties, dielectric properties, phase composition and microstructure of prepared BCTZ lead-free piezoelectric ceramics doped with Li2CO3 were investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM) and other analytical methods. The results showed that the sintered temperature of BCTZ lead-free piezoelectric ceramics doped with CeO2 decreased greatly when Li2CO3 doping amount was 0.6 wt.%;a pure perovskite structure of BCTZ lead-free piezoelectric ceramics co-doped with Li2CO3 and CeO2 and sintered at 1050 ℃ could also be obtained. The piezoelectric constant (d33), the relative permit-tivity (εr) and the planar electromechanical coupling factor (kp) of BCTZ ceramics doped with Li2CO3 increased firstly and then de-creased, the dielectric loss (tanδ) decreased firstly and then increased and decreased at last when CeO2 doping amount increased. The influence of CeO2 doping on the properties of BCTZ lead-free piezoelectric ceramics doped with Li2CO3 were caused by“soft effect”and “hard effect”piezoelectric additive and causing lattice distortion. When CeO2 doping amount (x) was 0.2 wt.%, the BCTZ ceramics doped with Li2CO3 (0.6 wt.%) and sintered at 1050 ℃ possessed the best piezoelectric property and dielectric property with d33 of 436 pC/N, kp of 48.3%,εr of 3650, tanδof 1.5%. 展开更多
关键词 lead-free piezoelectric ceramics barium calcium zirconate and titanate CeO2 doping rare earths piezoelectric property
原文传递
Large Energy Capacitive High-Entropy Lead-Free Ferroelectrics 被引量:12
20
作者 Liang Chen Huifen Yu +5 位作者 Jie Wu Shiqing Deng Hui Liu Lifeng Zhu He Qi Jun Chen 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第5期69-82,共14页
Advanced lead-free energy storage ceramics play an indispensable role in next-generation pulse power capacitors market.Here,an ultrahigh energy storage density of~13.8 J cm^(-3)and a large efficiency of~82.4%are achie... Advanced lead-free energy storage ceramics play an indispensable role in next-generation pulse power capacitors market.Here,an ultrahigh energy storage density of~13.8 J cm^(-3)and a large efficiency of~82.4%are achieved in high-entropy lead-free relaxor ferroelectrics by increasing configuration entropy,named high-entropy strategy,realizing nearly ten times growth of energy storage density compared with low-entropy material.Evolution of energy storage performance and domain structure with increasing configuration entropy is systematically revealed for the first time.The achievement of excellent energy storage properties should be attributed to the enhanced random field,decreased nanodomain size,strong multiple local distortions,and improved breakdown field.Furthermore,the excellent frequency and fatigue stability as well as charge/discharge properties with superior thermal stability are also realized.The significantly enhanced comprehensive energy storage performance by increasing configuration entropy demonstrates that high entropy is an effective but convenient strategy to design new high-performance dielectrics,promoting the development of advanced capacitors. 展开更多
关键词 High-entropy Energy storage lead-free Relaxor ferroelectrics Capacitors
在线阅读 下载PDF
上一页 1 2 144 下一页 到第
使用帮助 返回顶部