Low Earth orbit(LEO)satellite networks exhibit distinct characteristics,e.g.,limited resources of individual satellite nodes and dynamic network topology,which have brought many challenges for routing algorithms.To sa...Low Earth orbit(LEO)satellite networks exhibit distinct characteristics,e.g.,limited resources of individual satellite nodes and dynamic network topology,which have brought many challenges for routing algorithms.To satisfy quality of service(QoS)requirements of various users,it is critical to research efficient routing strategies to fully utilize satellite resources.This paper proposes a multi-QoS information optimized routing algorithm based on reinforcement learning for LEO satellite networks,which guarantees high level assurance demand services to be prioritized under limited satellite resources while considering the load balancing performance of the satellite networks for low level assurance demand services to ensure the full and effective utilization of satellite resources.An auxiliary path search algorithm is proposed to accelerate the convergence of satellite routing algorithm.Simulation results show that the generated routing strategy can timely process and fully meet the QoS demands of high assurance services while effectively improving the load balancing performance of the link.展开更多
Efficient warehouse management is critical for modern supply chain systems,particularly in the era of e-commerce and automation.The Multi-Picker Robot Routing Problem(MPRRP)presents a complex challenge involving the o...Efficient warehouse management is critical for modern supply chain systems,particularly in the era of e-commerce and automation.The Multi-Picker Robot Routing Problem(MPRRP)presents a complex challenge involving the optimization of routes for multiple robots assigned to retrieve items from distinct locations within a warehouse.This study introduces optimized metaheuristic strategies to address MPRRP,with the aim of minimizing travel distances,energy consumption,and order fulfillment time while ensuring operational efficiency.Advanced algorithms,including an enhanced Particle Swarm Optimization(PSO-MPRRP)and a tailored Genetic Algorithm(GA-MPRRP),are specifically designed with customized evolutionary operators to effectively solve the MPRRP.Comparative experiments are conducted to evaluate the proposed strategies against benchmark approaches,demonstrating significant improvements in solution quality and computational efficiency.The findings contribute to the development of intelligent,scalable,and environmentally friendly warehouse systems,paving the way for future advances in robotics and automated logistics management.展开更多
This paper addresses the Multi-Vehicle Routing Problem with Time Windows and Simultaneous Pickup and Delivery(MVRPTWSPD),aiming to optimize logistics distribution routes and minimize total costs.A vehicle routing opti...This paper addresses the Multi-Vehicle Routing Problem with Time Windows and Simultaneous Pickup and Delivery(MVRPTWSPD),aiming to optimize logistics distribution routes and minimize total costs.A vehicle routing optimization model is developed based on the operational requirements of the KS Logistics Center,focusing on minimizing vehicle dispatch,loading and unloading,operating,and time window penalty costs.The model incorporates constraints such as vehicle capacity,time windows,and travel distance,and is solved using a genetic algorithm to ensure optimal route planning.Through MATLAB simulations,34 customer points are analyzed,demonstrating that the simultaneous pickup and delivery model reduces total costs by 30.13%,increases vehicle loading rates by 20.04%,and decreases travel distance compared to delivery-only or pickup-only models.The results demonstrate the significant advantages of the simultaneous pickup and delivery mode in reducing logistics costs and improving vehicle utilization,offering valuable insights for enhancing the operational efficiency of the KS Logistics Center.展开更多
Automated guided vehicles(AGVs)are key equipment in automated container terminals(ACTs),and their operational efficiency can be impacted by conflicts and battery swapping.Additionally,AGVs have bidirectional transport...Automated guided vehicles(AGVs)are key equipment in automated container terminals(ACTs),and their operational efficiency can be impacted by conflicts and battery swapping.Additionally,AGVs have bidirectional transportation capabilities,allowing them tomove in the opposite directionwithout turning around,which helps reduce transportation time.This paper aims at the problem of AGV scheduling and bidirectional conflict-free routing with battery swapping in automated terminals.A bi-level mixed integer programming(MIP)model is proposed,taking into account task assignment,bidirectional conflict-free routing,and battery swapping.The upper model focuses on container task assignment and AGV battery swapping planning,while the lower model ensures conflict-free movement of AGVs.A double-threshold battery swapping strategy is introduced,allowing AGVs to utilize waiting time for loading for battery swapping.An improved differential evolution variable neighborhood search(IDE-VNS)algorithm is developed to solve the bi-level MIP model,aiming to minimize the completion time of all jobs.Experimental results demonstrate that compared to the differential evolution(DE)algorithm and the genetic algorithm(GA),the IDEVNS algorithmreduces fitness values by 44.49% and 45.22%,though it does increase computation time by 56.28% and 62.03%,respectively.Bidirectional transportation reduces the fitness value by an average of 10.97% when the container scale is small.As the container scale increases,the fitness value of bidirectional transportation gradually approaches that of unidirectional transportation.The results further show that the double-threshold battery swapping strategy enhances AGV utilization and reduces the fitness value.展开更多
The Vehicle Routing Problem with Time Windows(VRPTW)presents a significant challenge in combinatorial optimization,especially under real-world uncertainties such as variable travel times,service durations,and dynamic ...The Vehicle Routing Problem with Time Windows(VRPTW)presents a significant challenge in combinatorial optimization,especially under real-world uncertainties such as variable travel times,service durations,and dynamic customer demands.These uncertainties make traditional deterministic models inadequate,often leading to suboptimal or infeasible solutions.To address these challenges,this work proposes an adaptive hybrid metaheuristic that integrates Genetic Algorithms(GA)with Local Search(LS),while incorporating stochastic uncertainty modeling through probabilistic travel times.The proposed algorithm dynamically adjusts parameters—such as mutation rate and local search probability—based on real-time search performance.This adaptivity enhances the algorithm’s ability to balance exploration and exploitation during the optimization process.Travel time uncertainties are modeled using Gaussian noise,and solution robustness is evaluated through scenario-based simulations.We test our method on a set of benchmark problems from Solomon’s instance suite,comparing its performance under deterministic and stochastic conditions.Results show that the proposed hybrid approach achieves up to a 9%reduction in expected total travel time and a 40% reduction in time window violations compared to baseline methods,including classical GA and non-adaptive hybrids.Additionally,the algorithm demonstrates strong robustness,with lower solution variance across uncertainty scenarios,and converges faster than competing approaches.These findings highlight the method’s suitability for practical logistics applications such as last-mile delivery and real-time transportation planning,where uncertainty and service-level constraints are critical.The flexibility and effectiveness of the proposed framework make it a promising candidate for deployment in dynamic,uncertainty-aware supply chain environments.展开更多
To provide the supplier with the minimizum vehicle travel distance in the distribution process of goods in three situations of new customer demand,customer cancellation service,and change of customer delivery address,...To provide the supplier with the minimizum vehicle travel distance in the distribution process of goods in three situations of new customer demand,customer cancellation service,and change of customer delivery address,based on the ideas of pre-optimization and real-time optimization,a two-stage planning model of dynamic demand based vehicle routing problem with time windows was established.At the pre-optimization stage,an improved genetic algorithm was used to obtain the pre-optimized distribution route,a large-scale neighborhood search method was integrated into the mutation operation to improve the local optimization performance of the genetic algorithm,and a variety of operators were introduced to expand the search space of neighborhood solutions;At the real-time optimization stage,a periodic optimization strategy was adopted to transform a complex dynamic problem into several static problems,and four neighborhood search operators were used to quickly adjust the route.Two different scale examples were designed for experiments.It is proved that the algorithm can plan the better route,and adjust the distribution route in time under the real-time constraints.Therefore,the proposed algorithm can provide theoretical guidance for suppliers to solve the dynamic demand based vehicle routing problem.展开更多
Constraint-based multicast routing, which aims at identifying a path that satisfies a set of quality of service (QoS) constraints, has became a very important research issue in the areas of networks and distributed sy...Constraint-based multicast routing, which aims at identifying a path that satisfies a set of quality of service (QoS) constraints, has became a very important research issue in the areas of networks and distributed systems. In general, multi-constrained path selection with or without optimization is a NP-complete problem that can not be exactly solved in polynomial time. Hence, accurate constraints-based routing algorithms with a fast running time are scarce, perhaps even non-existent. The expected impact of such a constrained-based routing algorithm has resulted in the proposal of numerous heuristics and a few exact QoS algorithms. This paper aims to give a thorough, concise and fair evaluation of the most important multiple constraint-based QoS multicast routing algorithms known today, and it provides a descriptive overview and simulation results of these multi-constrained routing algorithms.展开更多
The vehicle routing problem(VRP)is a typical discrete combinatorial optimization problem,and many models and algorithms have been proposed to solve the VRP and its variants.Although existing approaches have contribute...The vehicle routing problem(VRP)is a typical discrete combinatorial optimization problem,and many models and algorithms have been proposed to solve the VRP and its variants.Although existing approaches have contributed significantly to the development of this field,these approaches either are limited in problem size or need manual intervention in choosing parameters.To solve these difficulties,many studies have considered learning-based optimization(LBO)algorithms to solve the VRP.This paper reviews recent advances in this field and divides relevant approaches into end-to-end approaches and step-by-step approaches.We performed a statistical analysis of the reviewed articles from various aspects and designed three experiments to evaluate the performance of four representative LBO algorithms.Finally,we conclude the applicable types of problems for different LBO algorithms and suggest directions in which researchers can improve LBO algorithms.展开更多
Improved traditional ant colony algorithms,a data routing model used to the data remote exchange on WAN was presented.In the model,random heuristic factors were introduced to realize multi-path search.The updating mod...Improved traditional ant colony algorithms,a data routing model used to the data remote exchange on WAN was presented.In the model,random heuristic factors were introduced to realize multi-path search.The updating model of pheromone could adjust the pheromone concentration on the optimal path according to path load dynamically to make the system keep load balance.The simulation results show that the improved model has a higher performance on convergence and load balance.展开更多
Opportunistic Mobile Social Networks(OMSNs)are kind of Delay Tolerant Networks(DTNs)that leverage characteristics of Mobile Ad Hoc Networks(MANETs)and Social Networks,particularly the social features,to boost performa...Opportunistic Mobile Social Networks(OMSNs)are kind of Delay Tolerant Networks(DTNs)that leverage characteristics of Mobile Ad Hoc Networks(MANETs)and Social Networks,particularly the social features,to boost performance of routing algorithms.Users in OMSNs communicate to share and disseminate data to meet needs for variety of applications.Such networks have attracted tremendous attention lately due to the data transmission requirement from emerging applications such as IoT and smart city initiatives.Devices carried by human is the carrier of message transmission,so the social features of human can be used to improve the ability of data transmission.In this paper,we conduct a comparative survey on routing algorithms in OMSNs.We first analyze routing algorithms based on three social features.Since node selfishness is not really considered previously in aforementioned routing algorithms,but has significant impact on network performance,we treat node selfishness as another social feature,classify and elaborate routing algorithms based on incentive mechanism.To assess the impact of social features on routing algorithms,we conducted simulation for six routing algorithms and analyzed the simulation result.Finally,we conclude the paper with challenges on design of routing in OMSNs and point out some future research directions.展开更多
The Tori-connected mESH (TESH) Network is a k-ary n-cube networks of multiple basic modules, in which the basic modules are 2D-mesh networks that are hierarchically interconnected for higher level k-ary n-cube network...The Tori-connected mESH (TESH) Network is a k-ary n-cube networks of multiple basic modules, in which the basic modules are 2D-mesh networks that are hierarchically interconnected for higher level k-ary n-cube networks. Many adaptive routing algorithms for k-ary n-cube networks have already been proposed. Thus, those algorithms can also be applied to TESH network. We have proposed three adaptive routing algorithms—channel-selection, link-selection, and dynamic dimension reversal—for the efficient use of network resources of a TESH network to improve dynamic communication performance. In this paper, we implement these routers using VHDL and evaluate the hardware cost and delay for the proposed routing algorithms and compare it with the dimension order routing. The delay and hardware cost of the proposed adaptive routing algorithms are almost equal to that and slightly higher than that of dimension order routing, respectively. Also we evaluate the communication performance with hardware implementation. It is found that the communication performance of a TESH network using these adaptive algorithms is better than when the dimension-order routing algorithm is used.展开更多
Quantum transmission experiments have shown that the success-ful transmission rate of entangled quanta in optical fibers decreases expo-nentially.Although current quantum networks deploy quantum relays to establish lo...Quantum transmission experiments have shown that the success-ful transmission rate of entangled quanta in optical fibers decreases expo-nentially.Although current quantum networks deploy quantum relays to establish long-distance connections,the increase in transmission distance and entanglement switching costs still need to be considered when selecting the next hop.However,most of the existing quantum network models prefer to consider the parameters of the physical layer,which ignore the influence factors of the network layer.In this paper,we propose a meshy quantum network model based on quantum teleportation,which considers both net-work layer and physical layer parameters.The proposed model can reflect the realistic transmission characteristics and morphological characteristics of the quantum relay network.Then,we study the network throughput of different routing algorithms with the same given parameters when multiple source-destination pairs are interconnected simultaneously.To solve the chal-lenges of routing competition caused by the simultaneous transmission,we present greedy memory-occupied algorithm Q-GMOA and random memory-occupied algorithm Q-RMOA.The proposed meshy quantum network model and the memory-occupied routing algorithms can improve the utilization rate of resources and the transmission performance of the quantum network.And the evaluation results indicate that the proposed methods embrace a higher transmission rate than the previous methods with repeater occupation.展开更多
Most of the multimedia applications require strict Quality-of-Service (QoS) guarantee during the communication between a single source and multiple destinations. The paper mainly presents a QoS Multicast Routing algor...Most of the multimedia applications require strict Quality-of-Service (QoS) guarantee during the communication between a single source and multiple destinations. The paper mainly presents a QoS Multicast Routing algorithms based on Genetic Algorithm (QMRGA). Simulation results demonstrate that the algorithm is capable of discovering a set of QoS-based near optimized, non-dominated multicast routes within a few iterations, even for the networks environment with uncertain parameters.展开更多
Nowadays the number of cores that are integrated into NoC (Network on Chip) systems is steadily increasing, and real application traffic, running in such multi-core environments requires more and more bandwidth. In th...Nowadays the number of cores that are integrated into NoC (Network on Chip) systems is steadily increasing, and real application traffic, running in such multi-core environments requires more and more bandwidth. In that sense, NoC architectures should be properly designed so as to provide efficient traffic engineering, as well as QoS support. Routing algorithm choice in conjunction with other parameters, such as network size and topology, traffic features (time and spatial distribution), as well as packet injection rate, packet size, and buffering capability, are all equivalently critical for designing a robust NoC architecture, on the grounds of traffic engineering and QoS provision. In this paper, a thorough numerical investigation is achieved by taking into consideration the criticality of selecting the proper routing algorithm, in conjunction with all the other aforementioned parameters. This is done via implementation of four routing evaluation traffic scenarios varying each parameter either individually, or as a set, thus exhausting all possible combinations, and making compact decisions on proper routing algorithm selection in NoC architectures. It has been shown that the simplicity of a deterministic routing algorithm such as XY, seems to be a reasonable choice, not only for random traffic patterns but also for non-uniform distributed traffic patterns, in terms of delay and throughput for 2D mesh NoC systems.展开更多
Routing algorithms based on geographical location is an important research subject in the Wireless Sensor Network(WSN).They use location information to guide routing discovery and maintenance as well as packet forward...Routing algorithms based on geographical location is an important research subject in the Wireless Sensor Network(WSN).They use location information to guide routing discovery and maintenance as well as packet forwarding,thus enabling the best routing to be selected,reducing energy consumption and optimizing the whole network.Through three aspects involving the flooding restriction scheme,the virtual area partition scheme and the best routing choice scheme,the importance of location information is seen in the routing algorithm.展开更多
[Objective] This study was to design an intelligent greenhouse real-time monitoring system based on the core technology of Internet of Things in order to meet the needs of agricultural informatization and intellectual...[Objective] This study was to design an intelligent greenhouse real-time monitoring system based on the core technology of Internet of Things in order to meet the needs of agricultural informatization and intellectualization. [Method] Based on the application characteristics of Wireless Sensor Network (WSN), the intelligent greenhouse monitoring system was designed. And for the incompleteness strategy of load balancing in the Low-Energy Adaptive Clustering Hierarchy (LEACH), a Real- time Threshold Routing Algorithm (RTRA) was proposed. [Result] The performance of network lifetime and network delay of RTRA were tested in MATLAB and found that, within the same testing environment, RTRA can save nodes energy consumption, prolong network lifetime, and had better real-time performance than LEACH. The al- gorithm satisfies the crops' requirements on real-time and energy efficiency in the greenhouse system. [Conclusion] For the good performance on real-time, the de- signed intelligent greenhouse real-time monitoring system laid the foundation for the research and development of agricultural informatization and intellectualization.展开更多
In order to improve the picking efficiency,reduce the picking time,this paper take artificial picking operation of a certain distribution center which has double-area warehouse as the studying object.Discuss the picki...In order to improve the picking efficiency,reduce the picking time,this paper take artificial picking operation of a certain distribution center which has double-area warehouse as the studying object.Discuss the picking task allocation and routing problems.Establish the TSP model of order-picking system.Create a heuristic algorithm bases on the Genetic Algorithm(GA)which help to solve the task allocating problem and to get the associated order-picking routes.And achieve the simulation experiment with the Visual 6.0C++platform to prove the rationality of the model and the effectiveness of the arithmetic.展开更多
The multicast routing problem with multiple QoS constraints in networks with uncertain parameters is discussed, and a network model that is suitable to research such QoS multicast routing problem is described. The QMR...The multicast routing problem with multiple QoS constraints in networks with uncertain parameters is discussed, and a network model that is suitable to research such QoS multicast routing problem is described. The QMRGA, a multicast routing policy for Internet, mobile network or other highperformance networks is mainly presented, which is based on the genetic algorithm(GA), and can provide QoSsensitive paths in a scalable and flexible way in the network environment with uncertain parameters. The QMRGA can also optimize the network resources such as bandwidth and delay, and can converge to the optimal or nearoptimal solution within few iterations, even for the network environment with uncertain parameters. The incremental rate of computational cost can be close to a polynomial and is less than exponential rate. The performance measures of the QMRGA are evaluated by using simulations. The results show that QMRGA provides an available approach to QoS multicast routing in network environment with uncertain parameters.展开更多
In this paper, a memetic algorithm with competition(MAC) is proposed to solve the capacitated green vehicle routing problem(CGVRP). Firstly, the permutation array called traveling salesman problem(TSP) route is used t...In this paper, a memetic algorithm with competition(MAC) is proposed to solve the capacitated green vehicle routing problem(CGVRP). Firstly, the permutation array called traveling salesman problem(TSP) route is used to encode the solution, and an effective decoding method to construct the CGVRP route is presented accordingly. Secondly, the k-nearest neighbor(k NN) based initialization is presented to take use of the location information of the customers. Thirdly, according to the characteristics of the CGVRP, the search operators in the variable neighborhood search(VNS) framework and the simulated annealing(SA) strategy are executed on the TSP route for all solutions. Moreover, the customer adjustment operator and the alternative fuel station(AFS) adjustment operator on the CGVRP route are executed for the elite solutions after competition. In addition, the crossover operator is employed to share information among different solutions. The effect of parameter setting is investigated using the Taguchi method of design-ofexperiment to suggest suitable values. Via numerical tests, it demonstrates the effectiveness of both the competitive search and the decoding method. Moreover, extensive comparative results show that the proposed algorithm is more effective and efficient than the existing methods in solving the CGVRP.展开更多
基金National Key Research and Development Program(2021YFB2900604)。
文摘Low Earth orbit(LEO)satellite networks exhibit distinct characteristics,e.g.,limited resources of individual satellite nodes and dynamic network topology,which have brought many challenges for routing algorithms.To satisfy quality of service(QoS)requirements of various users,it is critical to research efficient routing strategies to fully utilize satellite resources.This paper proposes a multi-QoS information optimized routing algorithm based on reinforcement learning for LEO satellite networks,which guarantees high level assurance demand services to be prioritized under limited satellite resources while considering the load balancing performance of the satellite networks for low level assurance demand services to ensure the full and effective utilization of satellite resources.An auxiliary path search algorithm is proposed to accelerate the convergence of satellite routing algorithm.Simulation results show that the generated routing strategy can timely process and fully meet the QoS demands of high assurance services while effectively improving the load balancing performance of the link.
基金funded by Hanoi University of Industry,Hanoi,Vietnam,under contract number 25−2024−RD/HD−DHCN.
文摘Efficient warehouse management is critical for modern supply chain systems,particularly in the era of e-commerce and automation.The Multi-Picker Robot Routing Problem(MPRRP)presents a complex challenge involving the optimization of routes for multiple robots assigned to retrieve items from distinct locations within a warehouse.This study introduces optimized metaheuristic strategies to address MPRRP,with the aim of minimizing travel distances,energy consumption,and order fulfillment time while ensuring operational efficiency.Advanced algorithms,including an enhanced Particle Swarm Optimization(PSO-MPRRP)and a tailored Genetic Algorithm(GA-MPRRP),are specifically designed with customized evolutionary operators to effectively solve the MPRRP.Comparative experiments are conducted to evaluate the proposed strategies against benchmark approaches,demonstrating significant improvements in solution quality and computational efficiency.The findings contribute to the development of intelligent,scalable,and environmentally friendly warehouse systems,paving the way for future advances in robotics and automated logistics management.
文摘This paper addresses the Multi-Vehicle Routing Problem with Time Windows and Simultaneous Pickup and Delivery(MVRPTWSPD),aiming to optimize logistics distribution routes and minimize total costs.A vehicle routing optimization model is developed based on the operational requirements of the KS Logistics Center,focusing on minimizing vehicle dispatch,loading and unloading,operating,and time window penalty costs.The model incorporates constraints such as vehicle capacity,time windows,and travel distance,and is solved using a genetic algorithm to ensure optimal route planning.Through MATLAB simulations,34 customer points are analyzed,demonstrating that the simultaneous pickup and delivery model reduces total costs by 30.13%,increases vehicle loading rates by 20.04%,and decreases travel distance compared to delivery-only or pickup-only models.The results demonstrate the significant advantages of the simultaneous pickup and delivery mode in reducing logistics costs and improving vehicle utilization,offering valuable insights for enhancing the operational efficiency of the KS Logistics Center.
基金supported by National Natural Science Foundation of China(No.62073212)Shanghai Science and Technology Commission(No.23ZR1426600).
文摘Automated guided vehicles(AGVs)are key equipment in automated container terminals(ACTs),and their operational efficiency can be impacted by conflicts and battery swapping.Additionally,AGVs have bidirectional transportation capabilities,allowing them tomove in the opposite directionwithout turning around,which helps reduce transportation time.This paper aims at the problem of AGV scheduling and bidirectional conflict-free routing with battery swapping in automated terminals.A bi-level mixed integer programming(MIP)model is proposed,taking into account task assignment,bidirectional conflict-free routing,and battery swapping.The upper model focuses on container task assignment and AGV battery swapping planning,while the lower model ensures conflict-free movement of AGVs.A double-threshold battery swapping strategy is introduced,allowing AGVs to utilize waiting time for loading for battery swapping.An improved differential evolution variable neighborhood search(IDE-VNS)algorithm is developed to solve the bi-level MIP model,aiming to minimize the completion time of all jobs.Experimental results demonstrate that compared to the differential evolution(DE)algorithm and the genetic algorithm(GA),the IDEVNS algorithmreduces fitness values by 44.49% and 45.22%,though it does increase computation time by 56.28% and 62.03%,respectively.Bidirectional transportation reduces the fitness value by an average of 10.97% when the container scale is small.As the container scale increases,the fitness value of bidirectional transportation gradually approaches that of unidirectional transportation.The results further show that the double-threshold battery swapping strategy enhances AGV utilization and reduces the fitness value.
文摘The Vehicle Routing Problem with Time Windows(VRPTW)presents a significant challenge in combinatorial optimization,especially under real-world uncertainties such as variable travel times,service durations,and dynamic customer demands.These uncertainties make traditional deterministic models inadequate,often leading to suboptimal or infeasible solutions.To address these challenges,this work proposes an adaptive hybrid metaheuristic that integrates Genetic Algorithms(GA)with Local Search(LS),while incorporating stochastic uncertainty modeling through probabilistic travel times.The proposed algorithm dynamically adjusts parameters—such as mutation rate and local search probability—based on real-time search performance.This adaptivity enhances the algorithm’s ability to balance exploration and exploitation during the optimization process.Travel time uncertainties are modeled using Gaussian noise,and solution robustness is evaluated through scenario-based simulations.We test our method on a set of benchmark problems from Solomon’s instance suite,comparing its performance under deterministic and stochastic conditions.Results show that the proposed hybrid approach achieves up to a 9%reduction in expected total travel time and a 40% reduction in time window violations compared to baseline methods,including classical GA and non-adaptive hybrids.Additionally,the algorithm demonstrates strong robustness,with lower solution variance across uncertainty scenarios,and converges faster than competing approaches.These findings highlight the method’s suitability for practical logistics applications such as last-mile delivery and real-time transportation planning,where uncertainty and service-level constraints are critical.The flexibility and effectiveness of the proposed framework make it a promising candidate for deployment in dynamic,uncertainty-aware supply chain environments.
基金supported by Natural Science Foundation Project of Gansu Provincial Science and Technology Department(No.1506RJZA084)Gansu Provincial Education Department Scientific Research Fund Grant Project(No.1204-13).
文摘To provide the supplier with the minimizum vehicle travel distance in the distribution process of goods in three situations of new customer demand,customer cancellation service,and change of customer delivery address,based on the ideas of pre-optimization and real-time optimization,a two-stage planning model of dynamic demand based vehicle routing problem with time windows was established.At the pre-optimization stage,an improved genetic algorithm was used to obtain the pre-optimized distribution route,a large-scale neighborhood search method was integrated into the mutation operation to improve the local optimization performance of the genetic algorithm,and a variety of operators were introduced to expand the search space of neighborhood solutions;At the real-time optimization stage,a periodic optimization strategy was adopted to transform a complex dynamic problem into several static problems,and four neighborhood search operators were used to quickly adjust the route.Two different scale examples were designed for experiments.It is proved that the algorithm can plan the better route,and adjust the distribution route in time under the real-time constraints.Therefore,the proposed algorithm can provide theoretical guidance for suppliers to solve the dynamic demand based vehicle routing problem.
文摘Constraint-based multicast routing, which aims at identifying a path that satisfies a set of quality of service (QoS) constraints, has became a very important research issue in the areas of networks and distributed systems. In general, multi-constrained path selection with or without optimization is a NP-complete problem that can not be exactly solved in polynomial time. Hence, accurate constraints-based routing algorithms with a fast running time are scarce, perhaps even non-existent. The expected impact of such a constrained-based routing algorithm has resulted in the proposal of numerous heuristics and a few exact QoS algorithms. This paper aims to give a thorough, concise and fair evaluation of the most important multiple constraint-based QoS multicast routing algorithms known today, and it provides a descriptive overview and simulation results of these multi-constrained routing algorithms.
文摘The vehicle routing problem(VRP)is a typical discrete combinatorial optimization problem,and many models and algorithms have been proposed to solve the VRP and its variants.Although existing approaches have contributed significantly to the development of this field,these approaches either are limited in problem size or need manual intervention in choosing parameters.To solve these difficulties,many studies have considered learning-based optimization(LBO)algorithms to solve the VRP.This paper reviews recent advances in this field and divides relevant approaches into end-to-end approaches and step-by-step approaches.We performed a statistical analysis of the reviewed articles from various aspects and designed three experiments to evaluate the performance of four representative LBO algorithms.Finally,we conclude the applicable types of problems for different LBO algorithms and suggest directions in which researchers can improve LBO algorithms.
基金Sponsored by the National High Technology Research and Development Program of China(2006AA701306)the National Innovation Foundation of Enterprises(05C26212200378)
文摘Improved traditional ant colony algorithms,a data routing model used to the data remote exchange on WAN was presented.In the model,random heuristic factors were introduced to realize multi-path search.The updating model of pheromone could adjust the pheromone concentration on the optimal path according to path load dynamically to make the system keep load balance.The simulation results show that the improved model has a higher performance on convergence and load balance.
基金This work was supported by National Natural Science Foundation of China(No.61672106)Natural Science Foundation of Beijing,China(L192023).
文摘Opportunistic Mobile Social Networks(OMSNs)are kind of Delay Tolerant Networks(DTNs)that leverage characteristics of Mobile Ad Hoc Networks(MANETs)and Social Networks,particularly the social features,to boost performance of routing algorithms.Users in OMSNs communicate to share and disseminate data to meet needs for variety of applications.Such networks have attracted tremendous attention lately due to the data transmission requirement from emerging applications such as IoT and smart city initiatives.Devices carried by human is the carrier of message transmission,so the social features of human can be used to improve the ability of data transmission.In this paper,we conduct a comparative survey on routing algorithms in OMSNs.We first analyze routing algorithms based on three social features.Since node selfishness is not really considered previously in aforementioned routing algorithms,but has significant impact on network performance,we treat node selfishness as another social feature,classify and elaborate routing algorithms based on incentive mechanism.To assess the impact of social features on routing algorithms,we conducted simulation for six routing algorithms and analyzed the simulation result.Finally,we conclude the paper with challenges on design of routing in OMSNs and point out some future research directions.
文摘The Tori-connected mESH (TESH) Network is a k-ary n-cube networks of multiple basic modules, in which the basic modules are 2D-mesh networks that are hierarchically interconnected for higher level k-ary n-cube networks. Many adaptive routing algorithms for k-ary n-cube networks have already been proposed. Thus, those algorithms can also be applied to TESH network. We have proposed three adaptive routing algorithms—channel-selection, link-selection, and dynamic dimension reversal—for the efficient use of network resources of a TESH network to improve dynamic communication performance. In this paper, we implement these routers using VHDL and evaluate the hardware cost and delay for the proposed routing algorithms and compare it with the dimension order routing. The delay and hardware cost of the proposed adaptive routing algorithms are almost equal to that and slightly higher than that of dimension order routing, respectively. Also we evaluate the communication performance with hardware implementation. It is found that the communication performance of a TESH network using these adaptive algorithms is better than when the dimension-order routing algorithm is used.
基金supported by the Fundamental Research Funds for the Central Universities(2021RC239)the Postdoctoral Science Foundation of China(2021 M690338)+3 种基金the Hainan Provincial Natural Science Foundation of China(620RC562,2019RC096,620RC560)the Scientific Research Setup Fund of Hainan University(KYQD(ZR)1877)the Program of Hainan Association for Science and Technology Plans to Youth R&D Innovation(QCXM201910)the National Natural Science Foundation of China(61802092,62162021).
文摘Quantum transmission experiments have shown that the success-ful transmission rate of entangled quanta in optical fibers decreases expo-nentially.Although current quantum networks deploy quantum relays to establish long-distance connections,the increase in transmission distance and entanglement switching costs still need to be considered when selecting the next hop.However,most of the existing quantum network models prefer to consider the parameters of the physical layer,which ignore the influence factors of the network layer.In this paper,we propose a meshy quantum network model based on quantum teleportation,which considers both net-work layer and physical layer parameters.The proposed model can reflect the realistic transmission characteristics and morphological characteristics of the quantum relay network.Then,we study the network throughput of different routing algorithms with the same given parameters when multiple source-destination pairs are interconnected simultaneously.To solve the chal-lenges of routing competition caused by the simultaneous transmission,we present greedy memory-occupied algorithm Q-GMOA and random memory-occupied algorithm Q-RMOA.The proposed meshy quantum network model and the memory-occupied routing algorithms can improve the utilization rate of resources and the transmission performance of the quantum network.And the evaluation results indicate that the proposed methods embrace a higher transmission rate than the previous methods with repeater occupation.
基金Supported by the National Natural Science Foundation of China (No.90304018)Natural Science Foundation of Hubei Province (No.2004ABA014)Teaching Research Project of Higher Educational Institutions of Hubei Province (No.20040231).
文摘Most of the multimedia applications require strict Quality-of-Service (QoS) guarantee during the communication between a single source and multiple destinations. The paper mainly presents a QoS Multicast Routing algorithms based on Genetic Algorithm (QMRGA). Simulation results demonstrate that the algorithm is capable of discovering a set of QoS-based near optimized, non-dominated multicast routes within a few iterations, even for the networks environment with uncertain parameters.
文摘Nowadays the number of cores that are integrated into NoC (Network on Chip) systems is steadily increasing, and real application traffic, running in such multi-core environments requires more and more bandwidth. In that sense, NoC architectures should be properly designed so as to provide efficient traffic engineering, as well as QoS support. Routing algorithm choice in conjunction with other parameters, such as network size and topology, traffic features (time and spatial distribution), as well as packet injection rate, packet size, and buffering capability, are all equivalently critical for designing a robust NoC architecture, on the grounds of traffic engineering and QoS provision. In this paper, a thorough numerical investigation is achieved by taking into consideration the criticality of selecting the proper routing algorithm, in conjunction with all the other aforementioned parameters. This is done via implementation of four routing evaluation traffic scenarios varying each parameter either individually, or as a set, thus exhausting all possible combinations, and making compact decisions on proper routing algorithm selection in NoC architectures. It has been shown that the simplicity of a deterministic routing algorithm such as XY, seems to be a reasonable choice, not only for random traffic patterns but also for non-uniform distributed traffic patterns, in terms of delay and throughput for 2D mesh NoC systems.
文摘Routing algorithms based on geographical location is an important research subject in the Wireless Sensor Network(WSN).They use location information to guide routing discovery and maintenance as well as packet forwarding,thus enabling the best routing to be selected,reducing energy consumption and optimizing the whole network.Through three aspects involving the flooding restriction scheme,the virtual area partition scheme and the best routing choice scheme,the importance of location information is seen in the routing algorithm.
基金Supported by the Science and Technology Surface Project of Yunnan Province(2010ZC142)the Doctoral Foundation of Dali University(KYBS201015),the Scientific Research Program for College Students of Dali University~~
文摘[Objective] This study was to design an intelligent greenhouse real-time monitoring system based on the core technology of Internet of Things in order to meet the needs of agricultural informatization and intellectualization. [Method] Based on the application characteristics of Wireless Sensor Network (WSN), the intelligent greenhouse monitoring system was designed. And for the incompleteness strategy of load balancing in the Low-Energy Adaptive Clustering Hierarchy (LEACH), a Real- time Threshold Routing Algorithm (RTRA) was proposed. [Result] The performance of network lifetime and network delay of RTRA were tested in MATLAB and found that, within the same testing environment, RTRA can save nodes energy consumption, prolong network lifetime, and had better real-time performance than LEACH. The al- gorithm satisfies the crops' requirements on real-time and energy efficiency in the greenhouse system. [Conclusion] For the good performance on real-time, the de- signed intelligent greenhouse real-time monitoring system laid the foundation for the research and development of agricultural informatization and intellectualization.
文摘In order to improve the picking efficiency,reduce the picking time,this paper take artificial picking operation of a certain distribution center which has double-area warehouse as the studying object.Discuss the picking task allocation and routing problems.Establish the TSP model of order-picking system.Create a heuristic algorithm bases on the Genetic Algorithm(GA)which help to solve the task allocating problem and to get the associated order-picking routes.And achieve the simulation experiment with the Visual 6.0C++platform to prove the rationality of the model and the effectiveness of the arithmetic.
文摘The multicast routing problem with multiple QoS constraints in networks with uncertain parameters is discussed, and a network model that is suitable to research such QoS multicast routing problem is described. The QMRGA, a multicast routing policy for Internet, mobile network or other highperformance networks is mainly presented, which is based on the genetic algorithm(GA), and can provide QoSsensitive paths in a scalable and flexible way in the network environment with uncertain parameters. The QMRGA can also optimize the network resources such as bandwidth and delay, and can converge to the optimal or nearoptimal solution within few iterations, even for the network environment with uncertain parameters. The incremental rate of computational cost can be close to a polynomial and is less than exponential rate. The performance measures of the QMRGA are evaluated by using simulations. The results show that QMRGA provides an available approach to QoS multicast routing in network environment with uncertain parameters.
基金supported by the National Science Fund for Distinguished Young Scholars of China(61525304)the National Natural Science Foundation of China(61873328)
文摘In this paper, a memetic algorithm with competition(MAC) is proposed to solve the capacitated green vehicle routing problem(CGVRP). Firstly, the permutation array called traveling salesman problem(TSP) route is used to encode the solution, and an effective decoding method to construct the CGVRP route is presented accordingly. Secondly, the k-nearest neighbor(k NN) based initialization is presented to take use of the location information of the customers. Thirdly, according to the characteristics of the CGVRP, the search operators in the variable neighborhood search(VNS) framework and the simulated annealing(SA) strategy are executed on the TSP route for all solutions. Moreover, the customer adjustment operator and the alternative fuel station(AFS) adjustment operator on the CGVRP route are executed for the elite solutions after competition. In addition, the crossover operator is employed to share information among different solutions. The effect of parameter setting is investigated using the Taguchi method of design-ofexperiment to suggest suitable values. Via numerical tests, it demonstrates the effectiveness of both the competitive search and the decoding method. Moreover, extensive comparative results show that the proposed algorithm is more effective and efficient than the existing methods in solving the CGVRP.