This paper studies the decoding performance of low-density parity-check(LDPC)codes in a serial concatenation system with polar codes employing the successive cancellation(SC)decoding.It is known that the absolute inco...This paper studies the decoding performance of low-density parity-check(LDPC)codes in a serial concatenation system with polar codes employing the successive cancellation(SC)decoding.It is known that the absolute incorrect log-likelihood ratio(LLR)values from the SC decoding can be very large.This phenomenon dramatically deteriorates the error correcting performance of the outer LDPC codes.In this paper,the LLR values of polar codes are regulated by a log processing before being sent to the LDPC decoder.Simulation results show that the log processing is an efficient approach with a low optimization complexity compared with the existing procedures to improve the performance of the serial concatenation systems.展开更多
基金supported in part by National Natural Science Foundation of China through grant 61501002in part by Natural Science Project of Ministry of Education of Anhui through grant KJ2015A102+1 种基金in part by Talents Recruitment Program of Anhui Universityin part by the Key Laboratory Project of the Key Laboratory of Intelligent Computing and Signal Processing of the Ministry of Education of China, Anhui University
文摘This paper studies the decoding performance of low-density parity-check(LDPC)codes in a serial concatenation system with polar codes employing the successive cancellation(SC)decoding.It is known that the absolute incorrect log-likelihood ratio(LLR)values from the SC decoding can be very large.This phenomenon dramatically deteriorates the error correcting performance of the outer LDPC codes.In this paper,the LLR values of polar codes are regulated by a log processing before being sent to the LDPC decoder.Simulation results show that the log processing is an efficient approach with a low optimization complexity compared with the existing procedures to improve the performance of the serial concatenation systems.