The application of protograph low density parity check (LDPC) codes involves the encoding complexity problem. Since the generator matrices are dense, and if the positions of "1" s are irregularity, the encoder nee...The application of protograph low density parity check (LDPC) codes involves the encoding complexity problem. Since the generator matrices are dense, and if the positions of "1" s are irregularity, the encoder needs to store every "1" of the generator matrices by using huge chip area. In order to solve this problem, we need to design the protograph LDPC codes with circular generator matrices. A theorem concerning the circulating property of generator matrices of nonsingular protograph LDPC codes is proposed. The circulating property of generator matrix of nonsingular protograph LDPC codes can be obtained from the corresponding quasi-cyclic parity check matrix. This paper gives a scheme of constructing protograph LDPC codes with circulating generator matrices, and it reveals that the fast encoding algorithm of protograph LDPC codes has lower encoding complexity under the condition of the proposed theorem. Simulation results in ad- ditive white Gaussian noise (AWGN) channels show that the bit error rate (BER) performance of the designed codes based on the proposed theorem is much better than that of GB20600 LDPC codes and Tanner LDPC codes.展开更多
According to the requirements of the increasing development for optical transmission systems,a novel construction method of quasi-cyclic low-density parity-check(QC-LDPC) codes based on the subgroup of the finite fiel...According to the requirements of the increasing development for optical transmission systems,a novel construction method of quasi-cyclic low-density parity-check(QC-LDPC) codes based on the subgroup of the finite field multiplicative group is proposed.Furthermore,this construction method can effectively avoid the girth-4 phenomena and has the advantages such as simpler construction,easier implementation,lower encoding/decoding complexity,better girth properties and more flexible adjustment for the code length and code rate.The simulation results show that the error correction performance of the QC-LDPC(3 780,3 540) code with the code rate of 93.7% constructed by this proposed method is excellent,its net coding gain is respectively 0.3dB,0.55dB,1.4dB and 1.98dB higher than those of the QC-LDPC(5 334,4 962) code constructed by the method based on the inverse element characteristics in the finite field multiplicative group,the SCG-LDPC(3 969,3 720) code constructed by the systematically constructed Gallager(SCG) random construction method,the LDPC(32 640,30 592) code in ITU-T G.975.1 and the classic RS(255,239) code which is widely used in optical transmission systems in ITU-T G.975 at the bit error rate(BER) of 10-7.Therefore,the constructed QC-LDPC(3 780,3 540) code is more suitable for optical transmission systems.展开更多
The pilotless frame synchronization approach and implementations of LDPC code are the crucial issue of LDPC decoder. The Maximum-A-Posteriori probability( MAP) decoder has a perfect frame synchronization error rate( F...The pilotless frame synchronization approach and implementations of LDPC code are the crucial issue of LDPC decoder. The Maximum-A-Posteriori probability( MAP) decoder has a perfect frame synchronization error rate( FSER) performance. In this paper,a theoretical derivation of the FSER performance of pilotless frame synchronization for LDPC code is presented. The FSER performance by theoretical analysis coincides well with that by simulation in additive white Gaussian channel and Rician fading channel. So it is estimated the FSER performance of an LDPC code by theoretical analysis can be used instead of the simulations which are much more time-consuming.展开更多
提出了一种基于OFDM信号子载波信噪比的LDPC-OOFDM-PON系统纠错码方案。该方案通过对性能差的子载波采取不同码率的编码,改善了系统的总误码性能。采用Mat l ab软件对系统进行仿真,并在实验室搭建光链路,仿真和离线实验结果表明该系统...提出了一种基于OFDM信号子载波信噪比的LDPC-OOFDM-PON系统纠错码方案。该方案通过对性能差的子载波采取不同码率的编码,改善了系统的总误码性能。采用Mat l ab软件对系统进行仿真,并在实验室搭建光链路,仿真和离线实验结果表明该系统切实可行。展开更多
This work investigates the performance of various forward error correction codes, by which the MIMO-OFDM system is deployed. To ensure fair investigation, the performance of four modulations, namely, binary phase shif...This work investigates the performance of various forward error correction codes, by which the MIMO-OFDM system is deployed. To ensure fair investigation, the performance of four modulations, namely, binary phase shift keying(BPSK), quadrature phase shift keying(QPSK), quadrature amplitude modulation(QAM)-16 and QAM-64 with four error correction codes(convolutional code(CC), Reed-Solomon code(RSC)+CC, low density parity check(LDPC)+CC, Turbo+CC) is studied under three channel models(additive white Guassian noise(AWGN), Rayleigh, Rician) and three different antenna configurations(2×2, 2×4, 4×4). The bit error rate(BER) and the peak signal to noise ratio(PSNR) are taken as the measures of performance. The binary data and the color image data are transmitted and the graphs are plotted for various modulations with different channels and error correction codes. Analysis on the performance measures confirm that the Turbo + CC code in 4×4 configurations exhibits better performance.展开更多
Space-Time Block Coded(STBC)Orthogonal Frequency Division Multiplexing(OFDM)satisfies higher data-rate requirements while maintaining signal quality in a multipath fading channel.However,conventional STBCs,including O...Space-Time Block Coded(STBC)Orthogonal Frequency Division Multiplexing(OFDM)satisfies higher data-rate requirements while maintaining signal quality in a multipath fading channel.However,conventional STBCs,including Orthogonal STBCs(OSTBCs),Non-Orthogonal(NOSTBCs),and Quasi-Orthogonal STBCs(QOSTBCs),do not provide both maximal diversity order and unity code rate simultaneously for more than two transmit antennas.This paper targets this problem and applies Maximum Rank Distance(MRD)codes in designing STBCOFDM systems.By following the direct-matrix construction method,we can construct binary extended finite field MRD-STBCs for any number of transmitting antennas.Work uses MRD-STBCs built over Phase-Shift Keying(PSK)modulation to develop an MRD-based STBC-OFDM system.The MRD-based STBC-OFDM system sacrifices minor error performance compared to traditional OSTBC-OFDM but shows improved results against NOSTBC and QOSTBC-OFDM.It also provides 25%higher data-rates than OSTBC-OFDM in configurations that use more than two transmit antennas.The tradeoffs are minor increases in computational complexity and processing delays.展开更多
由于可见光通信中可能会受到很多噪声干扰,信道编码受到了广泛的重视,它是重要的通信纠错方法,为改善可见光通信的信道译码性能,提高信息传输效率,降低译码复杂度,采用一种将RS码与LDPC码级联的方案。RS码具有很强的处理突发错误的能力,...由于可见光通信中可能会受到很多噪声干扰,信道编码受到了广泛的重视,它是重要的通信纠错方法,为改善可见光通信的信道译码性能,提高信息传输效率,降低译码复杂度,采用一种将RS码与LDPC码级联的方案。RS码具有很强的处理突发错误的能力,LDPC码具有接近香浓极限的良好性能。该方案实现简单,复杂度低。经仿真结果表明,该方法与未编码时相比,误码率低,纠错能力有明显提升,而且比较级联码中LDPC码不同码长的性能,误码率为10-3时,编码增益提高2 d B左右,适合可见光通信的实际应用的要求。展开更多
基金supported by Beijing Natural Science Foundation(4102050)the National Natural Science of Foundation of China(NSFC)-Korea Science and Engineering Foundation (KOSF) Joint Research Project of China and Korea (60811140343)
文摘The application of protograph low density parity check (LDPC) codes involves the encoding complexity problem. Since the generator matrices are dense, and if the positions of "1" s are irregularity, the encoder needs to store every "1" of the generator matrices by using huge chip area. In order to solve this problem, we need to design the protograph LDPC codes with circular generator matrices. A theorem concerning the circulating property of generator matrices of nonsingular protograph LDPC codes is proposed. The circulating property of generator matrix of nonsingular protograph LDPC codes can be obtained from the corresponding quasi-cyclic parity check matrix. This paper gives a scheme of constructing protograph LDPC codes with circulating generator matrices, and it reveals that the fast encoding algorithm of protograph LDPC codes has lower encoding complexity under the condition of the proposed theorem. Simulation results in ad- ditive white Gaussian noise (AWGN) channels show that the bit error rate (BER) performance of the designed codes based on the proposed theorem is much better than that of GB20600 LDPC codes and Tanner LDPC codes.
基金supported by the Program for Innovation Team Building at Institutions of Higher Education in Chongqing(No.J2013-46)the National Natural Science Foundation of China(Nos.61472464 and 61471075)+1 种基金the Natural Science Foundation of Chongqing Science and Technology Commission(Nos.cstc2015jcyj A0554 and cstc2013jcyj A40017)the Program for Postgraduate Science Research and Innovation of Chongqing University of Posts and Telecommunications(Chongqing Municipal Education Commission)(No.CYS14144)
文摘According to the requirements of the increasing development for optical transmission systems,a novel construction method of quasi-cyclic low-density parity-check(QC-LDPC) codes based on the subgroup of the finite field multiplicative group is proposed.Furthermore,this construction method can effectively avoid the girth-4 phenomena and has the advantages such as simpler construction,easier implementation,lower encoding/decoding complexity,better girth properties and more flexible adjustment for the code length and code rate.The simulation results show that the error correction performance of the QC-LDPC(3 780,3 540) code with the code rate of 93.7% constructed by this proposed method is excellent,its net coding gain is respectively 0.3dB,0.55dB,1.4dB and 1.98dB higher than those of the QC-LDPC(5 334,4 962) code constructed by the method based on the inverse element characteristics in the finite field multiplicative group,the SCG-LDPC(3 969,3 720) code constructed by the systematically constructed Gallager(SCG) random construction method,the LDPC(32 640,30 592) code in ITU-T G.975.1 and the classic RS(255,239) code which is widely used in optical transmission systems in ITU-T G.975 at the bit error rate(BER) of 10-7.Therefore,the constructed QC-LDPC(3 780,3 540) code is more suitable for optical transmission systems.
基金Supported by the National Natural Science Foundation of China(No.61271230,61472190)the Open Research Fund of National Mobile Communications Research Laboratory,Southeast University(No.2013D02)the Open Research Fund of National Key Laboratory of Electromagnetic Environment,China Research Institute of Radiowave Propagation(No.201500013)
文摘The pilotless frame synchronization approach and implementations of LDPC code are the crucial issue of LDPC decoder. The Maximum-A-Posteriori probability( MAP) decoder has a perfect frame synchronization error rate( FSER) performance. In this paper,a theoretical derivation of the FSER performance of pilotless frame synchronization for LDPC code is presented. The FSER performance by theoretical analysis coincides well with that by simulation in additive white Gaussian channel and Rician fading channel. So it is estimated the FSER performance of an LDPC code by theoretical analysis can be used instead of the simulations which are much more time-consuming.
文摘This work investigates the performance of various forward error correction codes, by which the MIMO-OFDM system is deployed. To ensure fair investigation, the performance of four modulations, namely, binary phase shift keying(BPSK), quadrature phase shift keying(QPSK), quadrature amplitude modulation(QAM)-16 and QAM-64 with four error correction codes(convolutional code(CC), Reed-Solomon code(RSC)+CC, low density parity check(LDPC)+CC, Turbo+CC) is studied under three channel models(additive white Guassian noise(AWGN), Rayleigh, Rician) and three different antenna configurations(2×2, 2×4, 4×4). The bit error rate(BER) and the peak signal to noise ratio(PSNR) are taken as the measures of performance. The binary data and the color image data are transmitted and the graphs are plotted for various modulations with different channels and error correction codes. Analysis on the performance measures confirm that the Turbo + CC code in 4×4 configurations exhibits better performance.
基金supported by the Excellent Foreign Student scholarship program,Sirindhorn International Institute of Technology.
文摘Space-Time Block Coded(STBC)Orthogonal Frequency Division Multiplexing(OFDM)satisfies higher data-rate requirements while maintaining signal quality in a multipath fading channel.However,conventional STBCs,including Orthogonal STBCs(OSTBCs),Non-Orthogonal(NOSTBCs),and Quasi-Orthogonal STBCs(QOSTBCs),do not provide both maximal diversity order and unity code rate simultaneously for more than two transmit antennas.This paper targets this problem and applies Maximum Rank Distance(MRD)codes in designing STBCOFDM systems.By following the direct-matrix construction method,we can construct binary extended finite field MRD-STBCs for any number of transmitting antennas.Work uses MRD-STBCs built over Phase-Shift Keying(PSK)modulation to develop an MRD-based STBC-OFDM system.The MRD-based STBC-OFDM system sacrifices minor error performance compared to traditional OSTBC-OFDM but shows improved results against NOSTBC and QOSTBC-OFDM.It also provides 25%higher data-rates than OSTBC-OFDM in configurations that use more than two transmit antennas.The tradeoffs are minor increases in computational complexity and processing delays.
文摘由于可见光通信中可能会受到很多噪声干扰,信道编码受到了广泛的重视,它是重要的通信纠错方法,为改善可见光通信的信道译码性能,提高信息传输效率,降低译码复杂度,采用一种将RS码与LDPC码级联的方案。RS码具有很强的处理突发错误的能力,LDPC码具有接近香浓极限的良好性能。该方案实现简单,复杂度低。经仿真结果表明,该方法与未编码时相比,误码率低,纠错能力有明显提升,而且比较级联码中LDPC码不同码长的性能,误码率为10-3时,编码增益提高2 d B左右,适合可见光通信的实际应用的要求。