利用变量节点符号可靠度在迭代过程中的分布特征,提出了一种基于可靠度差值特征的自适应判决多元低密度奇偶校验(Low Density Parity Check, LDPC)译码算法。整个迭代过程划分为两个阶段,针对不同阶段节点可靠度的差值特征分别采用不同...利用变量节点符号可靠度在迭代过程中的分布特征,提出了一种基于可靠度差值特征的自适应判决多元低密度奇偶校验(Low Density Parity Check, LDPC)译码算法。整个迭代过程划分为两个阶段,针对不同阶段节点可靠度的差值特征分别采用不同的判决策略:前期阶段,采用传统的基于最大可靠度的判决策略;后期阶段,根据最大、次大可靠度之间的差值特征,设计自适应的码元符号判决策略。仿真结果表明,所提算法在相当的译码复杂度前提下,能获得0.15~0.4 dB的性能增益。同时,对于列重较小的LDPC码,具有更低的译码错误平层。展开更多
This paper presents a simple yet effective decoding for general quasi-cyclic low-density parity-check (QC-LDPC) codes, which not only achieves high hardware utility efficiency (HUE), but also brings about great me...This paper presents a simple yet effective decoding for general quasi-cyclic low-density parity-check (QC-LDPC) codes, which not only achieves high hardware utility efficiency (HUE), but also brings about great memory block reduction without any performance degradation. The main idea is to split the check matrix into several row blocks, then to perform the improved mes- sage passing computations sequentially block by block. As the decoding algorithm improves, the sequential tie between the two-phase computations is broken, so that the two-phase computations can be overlapped which bring in high HUE. Two over- lapping schemes are also presented, each of which suits a different situation. In addition, an efficient memory arrangement scheme is proposed to reduce the great memory block requirement of the LDPC decoder. As an example, for the 0.4 rate LDPC code selected from Chinese Digital TV Terrestrial Broadcasting (DTTB), our decoding saves over 80% memory blocks com- pared with the conventional decoding, and the decoder achieves 0.97 HUE. Finally, the 0.4 rate LDPC decoder is implemented on an FPGA device EP2S30 (speed grade -5). Using 8 row processing units, the decoder can achieve a maximum net throughput of 28.5 Mbps at 20 iterations.展开更多
In this paper,a family of rate-compatible(RC) low-density parity-check(LDPC) convolutional codes can be obtained from RC-LDPC block codes by graph extension method.The resulted RC-LDPC convolutional codes,which are de...In this paper,a family of rate-compatible(RC) low-density parity-check(LDPC) convolutional codes can be obtained from RC-LDPC block codes by graph extension method.The resulted RC-LDPC convolutional codes,which are derived by permuting the matrices of the corresponding RC-LDPC block codes,are systematic and have maximum encoding memory.Simulation results show that the proposed RC-LDPC convolutional codes with belief propagation(BP) decoding collectively offer a steady improvement on performance compared with the block counterparts over the binary-input additive white Gaussian noise channels(BI-AWGNCs).展开更多
光纤通信具有容量大、距离远、抗干扰能力强等优点,是实现高速率、大容量信息传输的技术。低密度奇偶校验(Low Density Parity Check,LDPC)码由于具有良好的纠错性能,可以有效提升光纤通信系统的传输可靠性。为进一步提升该方法的健壮性...光纤通信具有容量大、距离远、抗干扰能力强等优点,是实现高速率、大容量信息传输的技术。低密度奇偶校验(Low Density Parity Check,LDPC)码由于具有良好的纠错性能,可以有效提升光纤通信系统的传输可靠性。为进一步提升该方法的健壮性,文章研究LDPC码的优化设计方法。先深入探讨LDPC码的基本原理及其在光纤通信中的应用,接着提出一种基于密度进化和有限字长效应分析的LDPC码优化方法,并通过光学特性仿真OptSim工具进行了验证。实验结果表明,优化后的LDPC码在不同码长下的误码率均取得了显著降低,特别是在长码字情况下,其纠错性能显著提升。展开更多
基金Science and Technology on Avionics Integration Laboratory and Aeronautical Science Foundation of China (20115551022)
文摘This paper presents a simple yet effective decoding for general quasi-cyclic low-density parity-check (QC-LDPC) codes, which not only achieves high hardware utility efficiency (HUE), but also brings about great memory block reduction without any performance degradation. The main idea is to split the check matrix into several row blocks, then to perform the improved mes- sage passing computations sequentially block by block. As the decoding algorithm improves, the sequential tie between the two-phase computations is broken, so that the two-phase computations can be overlapped which bring in high HUE. Two over- lapping schemes are also presented, each of which suits a different situation. In addition, an efficient memory arrangement scheme is proposed to reduce the great memory block requirement of the LDPC decoder. As an example, for the 0.4 rate LDPC code selected from Chinese Digital TV Terrestrial Broadcasting (DTTB), our decoding saves over 80% memory blocks com- pared with the conventional decoding, and the decoder achieves 0.97 HUE. Finally, the 0.4 rate LDPC decoder is implemented on an FPGA device EP2S30 (speed grade -5). Using 8 row processing units, the decoder can achieve a maximum net throughput of 28.5 Mbps at 20 iterations.
基金the National Natural Science Foundation of China(Nos.61401164,61471131 and 61201145)the Natural Science Foundation of Guangdong Province(No.2014A030310308)
文摘In this paper,a family of rate-compatible(RC) low-density parity-check(LDPC) convolutional codes can be obtained from RC-LDPC block codes by graph extension method.The resulted RC-LDPC convolutional codes,which are derived by permuting the matrices of the corresponding RC-LDPC block codes,are systematic and have maximum encoding memory.Simulation results show that the proposed RC-LDPC convolutional codes with belief propagation(BP) decoding collectively offer a steady improvement on performance compared with the block counterparts over the binary-input additive white Gaussian noise channels(BI-AWGNCs).
文摘光纤通信具有容量大、距离远、抗干扰能力强等优点,是实现高速率、大容量信息传输的技术。低密度奇偶校验(Low Density Parity Check,LDPC)码由于具有良好的纠错性能,可以有效提升光纤通信系统的传输可靠性。为进一步提升该方法的健壮性,文章研究LDPC码的优化设计方法。先深入探讨LDPC码的基本原理及其在光纤通信中的应用,接着提出一种基于密度进化和有限字长效应分析的LDPC码优化方法,并通过光学特性仿真OptSim工具进行了验证。实验结果表明,优化后的LDPC码在不同码长下的误码率均取得了显著降低,特别是在长码字情况下,其纠错性能显著提升。