期刊导航
期刊开放获取
vip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
采用改进YOLOv5s检测牧区牲畜
被引量:
3
1
作者
苏宇
肖志云
鲍鹏飞
《农业工程学报》
EI
CAS
CSCD
北大核心
2023年第24期165-176,共12页
畜牧业自动化管理面临的一个关键挑战是如何准确地检测大规模放牧养殖牲畜的种群,确定其数量和实时更新群体信息。牲畜规模化、自动化检测受环境场地等因素影响,当前目标检测算法经常出现漏检、误检等情况。该研究基于YOLOV5s目标检测...
畜牧业自动化管理面临的一个关键挑战是如何准确地检测大规模放牧养殖牲畜的种群,确定其数量和实时更新群体信息。牲畜规模化、自动化检测受环境场地等因素影响,当前目标检测算法经常出现漏检、误检等情况。该研究基于YOLOV5s目标检测网络设计了一种牲畜检测算法LDHorNet(livestock detect hor net),参考HorNet的递归门控卷积设计了HorNB模块对网络模型进行改进,以提高检测算法的空间交互能力和检测精度。然后在网络结构中嵌入CBAM(convolutional block attention module)注意力机制,以提高小目标的检测精度和注意力权重,并利用Repulsion损失函数提高目标检测网络的召回率和预测精度。试验结果表明,所提出的LDHorNet算法的精准率、召回率分别为95.24%、88.87%,平均精准率均值mAP_0.5、mAP_0.5:0.95分别为94.11%、77.01%,比YOLOv5s、YOLOv8s、YOLOv7-Tiny精准率分别提高了2.83、2.93和9.79个百分点,召回率分别提高了6.66和4.95、13.42个百分点,平均精准率均值mAP_0.5:0.95分别提高12.46、5.26和20.97个百分点。该算法对于小目标和遮挡场景下的牲畜检测效果优于原算法与对比算法,表现出良好的鲁棒性,具有广泛的应用前景。
展开更多
关键词
目标检测
深度学习
牧区
牲畜检测
ldhornet
注意力机制
损失函数
在线阅读
下载PDF
职称材料
题名
采用改进YOLOv5s检测牧区牲畜
被引量:
3
1
作者
苏宇
肖志云
鲍鹏飞
机构
内蒙古工业大学电力学院
内蒙古自治区机电控制重点实验室
内蒙古自治区高等学校智慧能源技术与装备工程研究中心
出处
《农业工程学报》
EI
CAS
CSCD
北大核心
2023年第24期165-176,共12页
基金
国家自然科学基金资助项目(61661042)
内蒙古自治区自然科学基金项目(2021MS06020)
内蒙古自治区科技计划项目(2021GG0345)。
文摘
畜牧业自动化管理面临的一个关键挑战是如何准确地检测大规模放牧养殖牲畜的种群,确定其数量和实时更新群体信息。牲畜规模化、自动化检测受环境场地等因素影响,当前目标检测算法经常出现漏检、误检等情况。该研究基于YOLOV5s目标检测网络设计了一种牲畜检测算法LDHorNet(livestock detect hor net),参考HorNet的递归门控卷积设计了HorNB模块对网络模型进行改进,以提高检测算法的空间交互能力和检测精度。然后在网络结构中嵌入CBAM(convolutional block attention module)注意力机制,以提高小目标的检测精度和注意力权重,并利用Repulsion损失函数提高目标检测网络的召回率和预测精度。试验结果表明,所提出的LDHorNet算法的精准率、召回率分别为95.24%、88.87%,平均精准率均值mAP_0.5、mAP_0.5:0.95分别为94.11%、77.01%,比YOLOv5s、YOLOv8s、YOLOv7-Tiny精准率分别提高了2.83、2.93和9.79个百分点,召回率分别提高了6.66和4.95、13.42个百分点,平均精准率均值mAP_0.5:0.95分别提高12.46、5.26和20.97个百分点。该算法对于小目标和遮挡场景下的牲畜检测效果优于原算法与对比算法,表现出良好的鲁棒性,具有广泛的应用前景。
关键词
目标检测
深度学习
牧区
牲畜检测
ldhornet
注意力机制
损失函数
Keywords
target detection
deep learning
pastoral areas
livestock detection
ldhornet
attention mechanism
loss function
分类号
TP391.4 [自动化与计算机技术—计算机应用技术]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
采用改进YOLOv5s检测牧区牲畜
苏宇
肖志云
鲍鹏飞
《农业工程学报》
EI
CAS
CSCD
北大核心
2023
3
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部