Linear copolymers from N-isopropylacrylamide (NIPA), acrylic acid (AA) and diacetone acrylamide (DAA) have been prepared. The effect of composition, ionic strength and pH on their lower critical solution tempera...Linear copolymers from N-isopropylacrylamide (NIPA), acrylic acid (AA) and diacetone acrylamide (DAA) have been prepared. The effect of composition, ionic strength and pH on their lower critical solution temperature (LCST) has been investigated.展开更多
In this work, 16 kinds of [FeCl4]--based magnetic ionic liquids (ILs) with different cation structures have been designed and synthesized, and their structures are characterized by IR and Raman spectroscopy. Then th...In this work, 16 kinds of [FeCl4]--based magnetic ionic liquids (ILs) with different cation structures have been designed and synthesized, and their structures are characterized by IR and Raman spectroscopy. Then the lower critical solution temperature (LCST)-type phase behavior of these magnetic ILs in water is investigated as a function of concentration. It is shown that cat- ion structure, alkyl chain length and molar ratio of FeCl3/chloride IL have a significant influence on the LCST of the mixtures. The phase separation temperature can be tuned efficiently by these factors. Meanwhile, the LCST-type phase separation pro- cess is also investigated by dynamic light scattering. The results support the mechanism that the hydrogen bonds of the [Fefl4]- anion with water have been gradually disrupted to form ILs aggregates with increasing temperature. In addition, the stability of the ILs in water is also examined in some details. These LCST-type phase separation systems may have potential applications in extraction and separation techniques at room temperature.展开更多
Temperature-responsive polymers have garnered significant attention due to their ability to respond to external stimuli.In this work,dual temperature-responsive block copolymers are synthesized via reversible addition...Temperature-responsive polymers have garnered significant attention due to their ability to respond to external stimuli.In this work,dual temperature-responsive block copolymers are synthesized via reversible addition-fragmentation chain transfer polymerization(RAFT)polymerization utilizing zwitterionic monomer methacryloyl ethyl sulfobetaine(SBMA) and N-isopropyl acrylamide(NIPAAm) as monomers.The thermal responsive behaviors can be easily modulated by incorporating additional hydrophobic monomer benzyl acrylate(BN) or hydrophilic monomer acrylic acid(AA),adjusting concentration or pH,or varying the degree of polymerization of the block chain segments.The cloud points of the copolymers are determined by UV-Vis spectrophotometry,and these copolymers exhibit both controlled upper and lower critical solu bility temperatures(LCST and UCST) in aqueous solution.This study analyzes and summarizes the influencing factors of dual temperature responsive block copolymers by exploring the effects of various conditions on the phase transition temperature of temperature-sensitive polymers to explore the relationship between their properties and environment and structure to make them more selective in terms of temperature application range and regulation laws.It is very interesting that the introduction of poly-acrylic acid(PAA) segments in the middle of di-block copolymer PSBMA_(55)-b-PNIPAAm_(80) to form PSBMA_(55)-b-PAA_(x)-b-PNIPAAm_(80) results in a reversal of temperature-responsive behaviors from 'U'(LCST UCST) type,while the copolymer PSBMA_(55)-b-P(NIPAAm_(80)-co-AA_(x)) not.This work provides a clue for tuning the phase transition behavior of polymers for manufacture of extreme smart materials.展开更多
文摘Linear copolymers from N-isopropylacrylamide (NIPA), acrylic acid (AA) and diacetone acrylamide (DAA) have been prepared. The effect of composition, ionic strength and pH on their lower critical solution temperature (LCST) has been investigated.
基金supported by the National Natural Science Foundation of China (21473050, 21403060)Program for Innovative Research Team in Science and Technology in University of Henan Province (16IRTSTHN002)+1 种基金Plan for Scientific Innovation Talent of Henan Province of China (144200510004)the Natural Science Research Program of Henan Educational Committee (2010A150014)
文摘In this work, 16 kinds of [FeCl4]--based magnetic ionic liquids (ILs) with different cation structures have been designed and synthesized, and their structures are characterized by IR and Raman spectroscopy. Then the lower critical solution temperature (LCST)-type phase behavior of these magnetic ILs in water is investigated as a function of concentration. It is shown that cat- ion structure, alkyl chain length and molar ratio of FeCl3/chloride IL have a significant influence on the LCST of the mixtures. The phase separation temperature can be tuned efficiently by these factors. Meanwhile, the LCST-type phase separation pro- cess is also investigated by dynamic light scattering. The results support the mechanism that the hydrogen bonds of the [Fefl4]- anion with water have been gradually disrupted to form ILs aggregates with increasing temperature. In addition, the stability of the ILs in water is also examined in some details. These LCST-type phase separation systems may have potential applications in extraction and separation techniques at room temperature.
基金financially supported by the National Natural Science Foundation of China (No. 22271207)the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)。
文摘Temperature-responsive polymers have garnered significant attention due to their ability to respond to external stimuli.In this work,dual temperature-responsive block copolymers are synthesized via reversible addition-fragmentation chain transfer polymerization(RAFT)polymerization utilizing zwitterionic monomer methacryloyl ethyl sulfobetaine(SBMA) and N-isopropyl acrylamide(NIPAAm) as monomers.The thermal responsive behaviors can be easily modulated by incorporating additional hydrophobic monomer benzyl acrylate(BN) or hydrophilic monomer acrylic acid(AA),adjusting concentration or pH,or varying the degree of polymerization of the block chain segments.The cloud points of the copolymers are determined by UV-Vis spectrophotometry,and these copolymers exhibit both controlled upper and lower critical solu bility temperatures(LCST and UCST) in aqueous solution.This study analyzes and summarizes the influencing factors of dual temperature responsive block copolymers by exploring the effects of various conditions on the phase transition temperature of temperature-sensitive polymers to explore the relationship between their properties and environment and structure to make them more selective in terms of temperature application range and regulation laws.It is very interesting that the introduction of poly-acrylic acid(PAA) segments in the middle of di-block copolymer PSBMA_(55)-b-PNIPAAm_(80) to form PSBMA_(55)-b-PAA_(x)-b-PNIPAAm_(80) results in a reversal of temperature-responsive behaviors from 'U'(LCST UCST) type,while the copolymer PSBMA_(55)-b-P(NIPAAm_(80)-co-AA_(x)) not.This work provides a clue for tuning the phase transition behavior of polymers for manufacture of extreme smart materials.