期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
基于LCNN的多传感器融合平地行走步态相位识别研究
1
作者 王奎淞 谷禹 +2 位作者 姚秋林 闫俊昊 颜兵兵 《电脑知识与技术》 2025年第11期35-38,共4页
针对康复医疗领域对人体步态识别的需求,文章提出了一种基于足底压力与肌电信号传感器的步态相位识别方法。该方法采用轻量化卷积神经网络(LCNN)模型,能够精确识别步态的支撑相和摆动相。通过采集足底压力和表面肌电信号(sEMG)数据,提... 针对康复医疗领域对人体步态识别的需求,文章提出了一种基于足底压力与肌电信号传感器的步态相位识别方法。该方法采用轻量化卷积神经网络(LCNN)模型,能够精确识别步态的支撑相和摆动相。通过采集足底压力和表面肌电信号(sEMG)数据,提取关键特征,以构建高效的步态识别模型。采用LCNN算法进行平地行走步态下的相位识别,平均识别率达85.0%。此外,文章方法的识别性能在与支持向量机(SVM)和BP神经网络方法的比较中得到了进一步验证。研究成果为步态识别技术在康复医疗领域的应用提供了有力的支持。 展开更多
关键词 步态相位识别 足底压力 表面肌电信号 lcnn 平地行走
在线阅读 下载PDF
基于GADF与SAM-LCNN机制的石化离心风机轴承故障诊断方法
2
作者 刘森 刘美 +2 位作者 韩惠子 崔坤 陈曦 《机电工程》 北大核心 2025年第1期72-81,共10页
针对石化离心风机轴承故障诊断方法精度不高、诊断速度慢和泛化性较差的问题,提出了一种基于格拉姆角差场(GADF)图像编码以及融合了空间注意力机制的轻量化卷积神经网络(SAM-LCNN)的石化离心风机轴承故障诊断方法。首先,使用格拉姆角差... 针对石化离心风机轴承故障诊断方法精度不高、诊断速度慢和泛化性较差的问题,提出了一种基于格拉姆角差场(GADF)图像编码以及融合了空间注意力机制的轻量化卷积神经网络(SAM-LCNN)的石化离心风机轴承故障诊断方法。首先,使用格拉姆角差场将轴承一维振动信号编码为二维图像;然后,构建了融合空间注意力机制的轻量化卷积神经网络;最后,将GADF转换所得二维图像作为融合空间注意力机制的轻量化卷积神经网络的输入,进行了特征提取与故障诊断,分别采用了广东石油化工学院的石化多级离心风机轴承故障数据集与凯斯西储大学轴承故障数据集,对该方法的有效性及优越性进行了验证。研究结果表明:两种数据集的测试集分类准确率分别为99.7%和98.5%;相较于卷积神经网络(CNN)、LeNet-5和MobileNetV2三种对比方法,该离心风机滚动轴承诊断方法具有诊断精度高、诊断速度快和泛化能力强等优点。该方法能够有效地对石化离心风机轴承故障振动信号进行分类,可为石化安全生产提供保障,同时也为其他机械设备故障诊断提供参考。 展开更多
关键词 离心风机 滚动轴承 图像编码 格拉姆角场 轻量化卷积神经网络 空间注意力机制
在线阅读 下载PDF
基于AOF-LCNN的语音回放攻击场景下的说话人识别算法
3
作者 李波 蔡晓东 +1 位作者 侯珍珍 陈思 《桂林电子科技大学学报》 2020年第1期13-17,共5页
针对语音回放攻击场景下的LCNN说话人识别系统中存在的过拟合问题,提出一种基于AOF-LCNN的神经网络。设计了一个新的DNN结构分类器作为后端分类网络,将该DNN结构级联在LCNN网络之后,形成一套新的端到端网络结构。由于LCNN结构中的MFM结... 针对语音回放攻击场景下的LCNN说话人识别系统中存在的过拟合问题,提出一种基于AOF-LCNN的神经网络。设计了一个新的DNN结构分类器作为后端分类网络,将该DNN结构级联在LCNN网络之后,形成一套新的端到端网络结构。由于LCNN结构中的MFM结构可能是造成过拟合的原因,在DNN后端结构中采用LeakyReLU作为激活函数,以抵消MFM的过拟合影响。在ASVspoof 2017数据集上的结果表明,该算法在Dev数据集和Eval数据集上分别达到了3.59%和13.79%的等错误率(EER),相对LCNN系统的等错误率分别降低了2.12%和3.51%。该算法一定程度上解决了过拟合的问题,提高了系统的鲁棒性,同时降低了系统的等错误率,从而提高识别性能。 展开更多
关键词 说话人识别 回放语音攻击 AOF-lcnn
在线阅读 下载PDF
A Neural ODE-Enhanced Deep Learning Framework for Accurate and Real-Time Epilepsy Detection
4
作者 Tawfeeq Shawly Ahmed A.Alsheikhy 《Computer Modeling in Engineering & Sciences》 2025年第6期3033-3064,共32页
Epilepsy is a long-term neurological condition marked by recurrent seizures,which result from abnormal electrical activity in the brain that disrupts its normal functioning.Traditional methods for detecting epilepsy t... Epilepsy is a long-term neurological condition marked by recurrent seizures,which result from abnormal electrical activity in the brain that disrupts its normal functioning.Traditional methods for detecting epilepsy through machine learning typically utilize discrete-time models,which inadequately represent the continuous dynamics of electroencephalogram(EEG)signals.To overcome this limitation,we introduce an innovative approach that employs Neural Ordinary Differential Equations(NODEs)to model EEG signals as continuous-time systems.This allows for effective management of irregular sampling and intricate temporal patterns.In contrast to conventional techniques,such as Convolutional Neural Networks(CNNs)and Recurrent Neural Networks(RNNs),which necessitate fixedlength inputs and often struggle with long-term dependencies,our framework incorporates:(1)a NODE block to capture continuous-time EEG dynamics,(2)a feature extraction module tailored for seizure-specific patterns,and(3)an attention-based fusion mechanism to enhance interpretability in classification.When evaluated on three publicly accessible EEG datasets,including those from Boston Children’s Hospital and the Massachusetts Institute of Technology(CHB-MIT)and the Temple University Hospital(TUH)EEG Corpus,the model demonstrated an average accuracy of 98.2%,a sensitivity of 97.8%,a specificity of 98.3%,and an F1-score of 97.9%.Additionally,the inference latency was reduced by approximately 30%compared to standard CNN and Long Short-Term Memory(LSTM)architectures,making it well-suited for real-time applications.The method’s resilience to noise and its adaptability to irregular sampling enhance its potential for clinical use in real-time settings. 展开更多
关键词 NODES epilepsy diagnosis lcnn EEG ordinary differential equations continuous-time modeling temporal dynamics
暂未订购
基于集成学习的室性早博识别方法 被引量:8
5
作者 周飞燕 金林鹏 董军 《电子学报》 EI CAS CSCD 北大核心 2017年第2期501-507,共7页
本文提出了一种集成学习方法以提升室性早搏的识别性能.MIT-BIH两个通道的数据分别经过卷积神经网络进行室性早搏心拍分类,然后按照融合规则对分类结果进行融合决策,其准确率、灵敏度和特异性分别为99.91%、98.76%、99.97%,优于已有算... 本文提出了一种集成学习方法以提升室性早搏的识别性能.MIT-BIH两个通道的数据分别经过卷积神经网络进行室性早搏心拍分类,然后按照融合规则对分类结果进行融合决策,其准确率、灵敏度和特异性分别为99.91%、98.76%、99.97%,优于已有算法的室性早搏心拍分类结果.此外,面向临床应用,本文还利用卷积神经网络和诊断规则相结合的方法实现了病人间室性早搏识别实验,在有14万多条记录的数据集上,取得的准确率、灵敏度及特异性分别为97.87%、87.94%、98.02%,验证了该算法的有效性. 展开更多
关键词 室性早搏 卷积神经网络 诊断规则
在线阅读 下载PDF
基于NSGA-Ⅱ的自适应多尺度特征通道分组优化算法 被引量:1
6
作者 王彬 向甜 +1 位作者 吕艺东 王晓帆 《计算机应用》 CSCD 北大核心 2023年第5期1401-1408,共8页
针对轻量型卷积神经网络(LCNN)的精确度和复杂度均衡优化问题,提出基于快速非支配排序遗传算法(NSGA-Ⅱ)的自适应多尺度特征通道分组优化算法对LCNN特征通道分组结构进行优化。首先,将LCNN中的特征融合层结构的复杂度最小化和精确度最... 针对轻量型卷积神经网络(LCNN)的精确度和复杂度均衡优化问题,提出基于快速非支配排序遗传算法(NSGA-Ⅱ)的自适应多尺度特征通道分组优化算法对LCNN特征通道分组结构进行优化。首先,将LCNN中的特征融合层结构的复杂度最小化和精确度最大化作为两个优化目标,进行双目标函数建模及理论分析;然后,设计基于NSGA-Ⅱ的LCNN结构优化框架,并在原始LCNN结构的深度卷积层之上增加基于NSGA-Ⅱ的自适应分组层,构建基于NSGA-Ⅱ的自适应多尺度的特征融合网络NSGA2-AMFFNetwork。在图像分类数据集上的实验结果显示,与手工设计的网络结构M_blockNet_v1相比,NSGA2-AMFFNetwork的平均精确度提升了1.2202个百分点,运行时间降低了41.07%。这表明所提优化算法能较好平衡LCNN的复杂度和精确度,同时还可为领域知识不足的普通用户提供更多性能表现均衡的网络结构选择方案。 展开更多
关键词 轻量型卷积神经网络 特征提取通道分组优化 双目标函数建模 快速非支配排序遗传算法 图像分类 进化算法
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部