To study the development of imbibition such as the imbibition front and phase distribution in shale,the Lattice Boltzmann Method(LBM)is used to study the imbibition processes in the pore-throat network of shale.Throug...To study the development of imbibition such as the imbibition front and phase distribution in shale,the Lattice Boltzmann Method(LBM)is used to study the imbibition processes in the pore-throat network of shale.Through dimensional analysis,four dimensionless parameters affecting the imbibition process were determined.A color gradient model of LBM was used in computation based on a real core pore size distribution.The numerical results show that the four factors have great effects on imbibition.The impact of each factor is not monotonous.The imbibition process is the comprehensive effect of all aspects.The imbibition front becomes more and more non-uniform with time in a heterogeneous pore-throat network.Some non-wetting phases(oil here)cannot be displaced out.The displacement efficiency and velocity do not change monotonously with any factor.The development of the average imbibition length with time is not smooth and not linear in a heterogeneous pore-throat network.Two fitting relations between the four dimensionless parameters and the imbibition velocity and efficiency are obtained,respectively.展开更多
This study aims to optimize the use of lacquer residue biomass(LBM).We investigated the ability of LBM to remove Pb^(2+)heavy metal ions and the typical cationic dye methylene blue(MB)and anionic dye Congo red(CR)by s...This study aims to optimize the use of lacquer residue biomass(LBM).We investigated the ability of LBM to remove Pb^(2+)heavy metal ions and the typical cationic dye methylene blue(MB)and anionic dye Congo red(CR)by simultaneous adsorption from composite systems,as well as the relevant factors.Scanning electron microscopy(SEM),X-ray diffraction(XRD),and Fourier transform infrared spectroscopy(FTIR)were used to characterize adsorption behavior.The adsorption kinetics of Pb^(2+)-MB/CR composite systems can be effectively characterized by the pseudo-second-order kinetic model(R^(2)>0.97).In the Pb^(2+)-MB composite system,adsorption was antagonistic with similar adsorption sites.However,in the Pb^(2+)-CR composite system,we found that adsorption was synergistic with different adsorption sites,which led to a higher simultaneous adsorption capacity for a higher initial Pb^(2+)-CR concentration,unlike the Pb^(2+)-MB system.In both composite systems,an appropriate increase in LBM dosage and system temperature within a certain range was conducive to simultaneous adsorption and removal of Pb^(2+)-MB/CR composite systems.The optimal solid-liquid ratio and temperature were 1:75 and 30℃,respectively.The adsorption and removal rates of Pb^(2+)and MB were 99.98%and 90.49%,respectively,and those of Pb^(2+)and CR were 93.99%and 77.39%,respectively,in(50,50)mg/L of Pb^(2+)-MB/CR composite systems under these conditions.Adsorption removal of Pb^(2+)and MB improved with higher pH levels,and worsened with the increase of ionic strength in the solution,while the removal rate of CR showed an opposite trend.The coexisting anion and cation types had limited influence on the simultaneous adsorption removal of Pb^(2+),MB,and CR.The results of desorption showed that LBM can be utilized as a disposable material for simultaneously treating Pb^(2+)-MB/CR composite systems.The simultaneous adsorption mechanisms of Pb^(2+)-MB/CR mainly involved hydrogen bonding,π-πbonding interaction,and electrostatic interaction.展开更多
基金supported by the National Natural Science Foundation of China(12072347)the Excellent Training Plan of the Institute of Mechanics,Chinese Academy of SciencesCNPC New Energy Key Project(2021DJ4902).
文摘To study the development of imbibition such as the imbibition front and phase distribution in shale,the Lattice Boltzmann Method(LBM)is used to study the imbibition processes in the pore-throat network of shale.Through dimensional analysis,four dimensionless parameters affecting the imbibition process were determined.A color gradient model of LBM was used in computation based on a real core pore size distribution.The numerical results show that the four factors have great effects on imbibition.The impact of each factor is not monotonous.The imbibition process is the comprehensive effect of all aspects.The imbibition front becomes more and more non-uniform with time in a heterogeneous pore-throat network.Some non-wetting phases(oil here)cannot be displaced out.The displacement efficiency and velocity do not change monotonously with any factor.The development of the average imbibition length with time is not smooth and not linear in a heterogeneous pore-throat network.Two fitting relations between the four dimensionless parameters and the imbibition velocity and efficiency are obtained,respectively.
基金National Key Research and Development Program of China(Nos.2023YFD1702003 and 2023YFC3709001).
文摘This study aims to optimize the use of lacquer residue biomass(LBM).We investigated the ability of LBM to remove Pb^(2+)heavy metal ions and the typical cationic dye methylene blue(MB)and anionic dye Congo red(CR)by simultaneous adsorption from composite systems,as well as the relevant factors.Scanning electron microscopy(SEM),X-ray diffraction(XRD),and Fourier transform infrared spectroscopy(FTIR)were used to characterize adsorption behavior.The adsorption kinetics of Pb^(2+)-MB/CR composite systems can be effectively characterized by the pseudo-second-order kinetic model(R^(2)>0.97).In the Pb^(2+)-MB composite system,adsorption was antagonistic with similar adsorption sites.However,in the Pb^(2+)-CR composite system,we found that adsorption was synergistic with different adsorption sites,which led to a higher simultaneous adsorption capacity for a higher initial Pb^(2+)-CR concentration,unlike the Pb^(2+)-MB system.In both composite systems,an appropriate increase in LBM dosage and system temperature within a certain range was conducive to simultaneous adsorption and removal of Pb^(2+)-MB/CR composite systems.The optimal solid-liquid ratio and temperature were 1:75 and 30℃,respectively.The adsorption and removal rates of Pb^(2+)and MB were 99.98%and 90.49%,respectively,and those of Pb^(2+)and CR were 93.99%and 77.39%,respectively,in(50,50)mg/L of Pb^(2+)-MB/CR composite systems under these conditions.Adsorption removal of Pb^(2+)and MB improved with higher pH levels,and worsened with the increase of ionic strength in the solution,while the removal rate of CR showed an opposite trend.The coexisting anion and cation types had limited influence on the simultaneous adsorption removal of Pb^(2+),MB,and CR.The results of desorption showed that LBM can be utilized as a disposable material for simultaneously treating Pb^(2+)-MB/CR composite systems.The simultaneous adsorption mechanisms of Pb^(2+)-MB/CR mainly involved hydrogen bonding,π-πbonding interaction,and electrostatic interaction.