期刊文献+
共找到247篇文章
< 1 2 13 >
每页显示 20 50 100
Influence of Fractal Dimension on Gas-Driven Two-Phase Flow in Fractal Porous Media:A VOF Model-Based Simulation
1
作者 Xiaolin Wang Richeng Liu +3 位作者 Kai Qiu Zhongzhong Liu Shisen Zhao Shuchen Li 《Computer Modeling in Engineering & Sciences》 2025年第7期289-307,共19页
Gas-liquid two-phase flow in fractal porous media is pivotal for engineering applications,yet it remains challenging to be accurately characterized due to complex microstructure-flow interactions.This study establishe... Gas-liquid two-phase flow in fractal porous media is pivotal for engineering applications,yet it remains challenging to be accurately characterized due to complex microstructure-flow interactions.This study establishes a pore-scale numerical framework integratingMonte Carlo-generated fractal porousmedia with Volume of Fluid(VOF)simulations to unravel the coupling among pore distribution characterized by fractal dimension(Df),flow dynamics,and displacement efficiency.A pore-scale model based on the computed tomography(CT)microstructure of Berea sandstone is established,and the simulation results are compared with experimental data.Good agreement is found in phase distribution,breakthrough behavior,and flow path morphology,confirming the reliability of the numerical simulation method.Ten fractal porous media models with Df ranging from 1.25~1.7 were constructed using a Monte-Carlo approach.The gas-liquid two-phase flow dynamics was characterized using the VOF solver across gas injection rates of 0.05-5m/s,inwhich the time-resolved two-phase distribution patternswere systematically recorded.The results reveal that smaller fractal dimensions(Df=1.25~1.45)accelerate fingering breakthrough(peak velocity is 1.73 m/s at Df=1.45)due to a bimodal pore size distribution dominated by narrow channels.Increasing Df amplifies vorticity generation by about 3 times(eddy viscosity is 0.033 Pa⋅s at Df=1.7)through reduced interfacial curvature,while tortuosity-driven pressure differentials transition from sharp increases(0.4~6.3 Pa at Df=1.25~1.3)to inertial plateaus(4.8 Pa at Df=1.7).A nonlinear increase in equilibrium gas volume fraction(fav=0.692 at Df=1.7)emerges from residual gas saturation and turbulence-enhanced dispersion.This behavior is further modulated by flow velocity,with fav peaking at 0.72 under capillary-dominated conditions(0.05 m/s),but decreasing to 0.65 in the inertial regime(0.5 m/s).The work quantitatively links fractal topology to multiphase flow regimes,demonstrating the critical role of Df in governing preferential pathways,energy dissipation,and phase distribution. 展开更多
关键词 Fractal porous media gas-liquid two-phase flow fractal dimension vortex evolution VOF model displacement efficiency
在线阅读 下载PDF
Dynamic characterization of viscoelasticity during polymer flooding:A two-phase numerical well test model and field study
2
作者 Yang Wang Shi-Long Yang +3 位作者 Hang Xie Yu Jiang Shi-Qing Cheng Jia Zhang 《Petroleum Science》 2025年第6期2493-2501,共9页
Polymer flooding is an important means of improving oil recovery and is widely used in Daqing,Xinjiang,and Shengli oilfields,China.Different from conventional injection media such as water and gas,viscoelastic polymer... Polymer flooding is an important means of improving oil recovery and is widely used in Daqing,Xinjiang,and Shengli oilfields,China.Different from conventional injection media such as water and gas,viscoelastic polymer solutions exhibit non-Newtonian and nonlinear flow behavior including shear thinning and shear thickening,polymer convection,diffusion,adsorption,retention,inaccessible pore volume,and reduced effective permeability.However,available well test model of polymer flooding wells generally simplifies these characteristics on pressure transient response,which may lead to inaccurate results.This work proposes a novel two-phase numerical well test model to better describe the polymer viscoelasticity and nonlinear flow behavior.Different influence factors that related to near-well blockage during polymer flooding process,including the degree of blockage(inner zone permeability),the extent of blockage(composite radius),and polymer flooding front radius are explored to investigate these impacts on bottom hole pressure responses.Results show that polymer viscoelasticity has a significant impact on the transitional flow segment of type curves,and the effects of near-well formation blockage and polymer concentration distribution on well test curves are very similar.Thus,to accurately interpret the degree of near-well blockage in injection wells,it is essential to first eliminate the influence of polymer viscoelasticity.Finally,a field case is comprehensively analyzed and discussed to illustrate the applicability of the proposed model. 展开更多
关键词 Polymer flooding two-phase flow Numerical well test model Viscoelastic characteristic Nonlinear flow Near-well blockage
原文传递
Modification of the bubble drag force model and prediction of gasliquid two-phase flow dynamics in blade-type multiphase pumps
3
作者 Yu-Qing Zhang Guang-Tai Shi +3 位作者 Man-Qi Tang Ye-Xiang Xiao Hai-Gang Wen Zong-Liu Huang 《Petroleum Science》 2025年第9期3770-3786,共17页
In multiphase pumps transporting gas-liquid two-phase flows,the high-speed rotation of the impeller induces complex deformations in bubble shapes within the flow domain,making the prediction of gasliquid two-phase dra... In multiphase pumps transporting gas-liquid two-phase flows,the high-speed rotation of the impeller induces complex deformations in bubble shapes within the flow domain,making the prediction of gasliquid two-phase drag forces highly challenging in numerical simulations.To achieve precise prediction of the drag forces on irregular bubbles within multiphase pumps,this study modifies the existing bubble drag force model and applies the revised model to the prediction of gas-liquid two-phase flow within multiphase pumps.The research findings indicate that the modified drag force model significantly enhances the accuracy of predicting flow characteristics within the pump,particularly under high gas volume fraction conditions.The simulation results for gas phase distribution and vorticity exhibit strong agreement with experimental data.The modified drag model better captures the accumulation of the gas phase at the suction side of the impeller outlet.It also accurately predicts the vortex characteristics induced by bubble backflow from the trailing edges of the diffuser.Additionally,the adjustment of the drag coefficient enhances the model’s ability to represent local flow field characteristics,thereby optimizing the performance simulation methods of multiphase pumps.Compared to traditional drag force models,the modified model reduces prediction errors in head and efficiency by 36.4%and 27.5%,respectively.These results provide important theoretical foundations and model support for improving the accuracy of gas-liquid two-phase flow simulations and optimizing the design of multiphase pumps under high gas volume fraction conditions. 展开更多
关键词 Bubble drag force Gas-liquid two-phase flow Blade-type multiphase pump Population balance model(PBM)
原文传递
A Review of Pressure Drop Characteristics and Optimization Measures of Two-Phase Flow with Low Boiling Point Working Fluids in Microchannels
4
作者 Zongyu Jie Chao Dang Qingliang Meng 《Frontiers in Heat and Mass Transfer》 2025年第4期1053-1089,共37页
With the increasing miniaturization of systems and surging demand for power density,accurate prediction and control of two-phase flow pressure drop have become a core challenge restricting the performance of microchan... With the increasing miniaturization of systems and surging demand for power density,accurate prediction and control of two-phase flow pressure drop have become a core challenge restricting the performance of microchannel heat exchangers.Pressure drop,a critical hydraulic characteristic,serves as both a natural constraint for cooling systems and determines the power required to pump the working fluid through microchannels.This paper reviews the characteristics,prediction models,and optimization measures of two-phase flow pressure drop for low-boiling-point working fluids in microchannels.It systematically analyzes key influencing factors such as fluid physical properties,operating conditions,channel geometry,and flow patterns,and discusses the complex mechanisms of pressure drop under the coupling effect of multi-physical fields.Mainstream prediction models are reviewed:the homogeneous flow model simplifies calculations but shows large deviations at low quality;the separated flow model considers interphase interactions and can be applied to micro-scales after modification;the flow-pattern-based model performs zoned modeling but relies on subjective classification;machine learning improves prediction accuracy but faces the“black-box”problem.In terms of optimization,channel designs are improved through porous structures and micro-rib arrays,and flow rate distribution is optimized using splitters to balance pressure drop and heat transfer performance.This study provides theoretical support for microchannel thermal management in high-power-density devices. 展开更多
关键词 Pressure drop two-phase flow microchannels bubble shape prediction model
在线阅读 下载PDF
Pore-scale gas–water two-phase flow and relative permeability characteristics of disassociated hydrate reservoir
5
作者 Yu-Xuan Xia Derek Elsworth +3 位作者 Sai Xu Xuan-Zhe Xia Jian-Chao Cai Cheng Lu 《Petroleum Science》 2025年第8期3344-3356,共13页
Clayey-silt natural gas hydrate reservoirs in the South China Sea exhibit loose and unconsolidated structures, heterogeneous pore structures, high clay mineral contents, and strong hydrophilicity. These characteristic... Clayey-silt natural gas hydrate reservoirs in the South China Sea exhibit loose and unconsolidated structures, heterogeneous pore structures, high clay mineral contents, and strong hydrophilicity. These characteristics complicate the gas-water two-phase flow process in porous media following hydrate decomposition, posing challenges for efficient development. This study examines the transport response of clayey-silt reservoir samples from the Shenhu area using gas-water two-phase flow experiments and CT scanning to explore changes in pore structure, gas-water distribution, and relative permeability under varying flow conditions. The results indicate that pore heterogeneity significantly influences flow characteristics. Gas preferentially displaces water in larger pores, forming fracture-like pores, which serve as preferential flow channels for gas migration. The preferential flow channels enhance gas-phase permeability up to 19 times that of the water phase when fluid pressures exceed total stresses. However,small pores retain liquid, leading to a high residual water saturation of 0.561. CT imaging reveals that these hydro-fractures improve gas permeability but also confine gas flow to specific channels. Pore network analysis shows that gas injection expands the pore-throat network, enhancing connectivity and forming fracture-like pores. Residual water remains trapped in smaller pores and throats, while structural changes, including new fractures, improve gas flow pathways and overall connectivity. Relative permeability curves demonstrate a narrow gas-water cocurrent-flow zone, a right-shifted iso-permeability point and high reservoir capillary pressure, indicating a strong "water-blocking" effect. The findings suggest that optimizing reservoir stimulation techniques to enhance fracture formation, reduce residual water saturation, and improve gas flow capacity is critical for efficient hydrate reservoir development. 展开更多
关键词 Clayey-silt reservoir Gasewater two-phase flow CT scanning Relative permeability Pore network model
原文传递
Optimizing Two-Phase Flow Heat Transfer:DCS Hybrid Modeling and Automation in Coal-Fired Power Plant Boilers
6
作者 Ming Yan Caijiang Lu +3 位作者 Pan Shi Meiling Zhang Jiawei Zhang Liang Wang 《Frontiers in Heat and Mass Transfer》 EI 2024年第2期615-631,共17页
In response to escalating challenges in energy conservation and emission reduction,this study delves into the complexities of heat transfer in two-phase flows and adjustments to combustion processes within coal-fired ... In response to escalating challenges in energy conservation and emission reduction,this study delves into the complexities of heat transfer in two-phase flows and adjustments to combustion processes within coal-fired boilers.Utilizing a fusion of hybrid modeling and automation technologies,we develop soft measurement models for key combustion parameters,such as the net calorific value of coal,flue gas oxygen content,and fly ash carbon content,within theDistributedControl System(DCS).Validated with performance test data,thesemodels exhibit controlled root mean square error(RMSE)and maximum absolute error(MAXE)values,both within the range of 0.203.Integrated into their respective automatic control systems,thesemodels optimize two-phase flow heat transfer,finetune combustion conditions,and mitigate incomplete combustion.Furthermore,this paper conducts an in-depth exploration of the generationmechanismof nitrogen oxides(NO_(x))and low oxygen emission reduction technology in coal-fired boilers,demonstrating a substantial reduction in furnace exit NO_(x) generation by 30%to 40%and the power supply coal consumption decreased by 1.62 g/(kW h).The research outcomes highlight the model’s rapid responsiveness,enabling prompt reflection of transient variations in various economic indicator parameters.This provides a more effective means for real-time monitoring of crucial variables in coal-fired boilers and facilitates timely combustion adjustments,underscoring notable achievements in boiler combustion.The research not only provides valuable and practical insights into the intricacies of two-phase flow heat transfer and heat exchange but also establishes a pioneering methodology for tackling industry challenges. 展开更多
关键词 two-phase flow coal-fired boiler oxygen content of flue gas carbon content in fly ash hybrid modeling automation control
在线阅读 下载PDF
The numerical simulation for a 3D two-phase anisotropic medium based on BISQ model 被引量:3
7
作者 王者江 何樵登 王德利 《Applied Geophysics》 SCIE CSCD 2008年第1期24-34,共11页
Biot-flow and squirt-flow are the two most important fluid flow mechanisms in porous media containing fluids. Based on the BISQ (Biot-Squirt) model where the two mechanisms are treated simultaneously, the elastic wa... Biot-flow and squirt-flow are the two most important fluid flow mechanisms in porous media containing fluids. Based on the BISQ (Biot-Squirt) model where the two mechanisms are treated simultaneously, the elastic wave-field simulation in the porous medium is limited to two-dimensions and two-components (2D2C) or two-dimensions and three-components (2D3C). There is no previous report on wave simulation in three- dimensions and three-components. Only through three dimensional numerical simulations can we have an overall understanding of wave field coupling relations and the spatial distribution characteristics between the solid and fluid phases in the dual-phase anisotropic medium. In this paper, based on the BISQ equation, we present elastic wave propagation in a three dimensional dual-phase anisotropic medium simulated by the staggered-grid high-order finite-difference method. We analyze the resulting wave fields and show that the results are an improvement. 展开更多
关键词 BISQ model three-dimension numerical simulation staggered grid two-phase anisotropic medium.
在线阅读 下载PDF
Finite-difference numerical modeling with even-order accuracy in two-phase anisotropic media 被引量:4
8
作者 刘洋 魏修 《Applied Geophysics》 SCIE CSCD 2008年第2期107-114,共8页
To improve the accuracy of the conventional finite-difference method, finitedifference numerical modeling methods of any even-order accuracy are recommended. We introduce any even-order accuracy difference schemes of ... To improve the accuracy of the conventional finite-difference method, finitedifference numerical modeling methods of any even-order accuracy are recommended. We introduce any even-order accuracy difference schemes of any-order derivatives derived from Taylor series expansion. Then, a finite-difference numerical modeling method with any evenorder accuracy is utilized to simulate seismic wave propagation in two-phase anisotropic media. Results indicate that modeling accuracy improves with the increase of difference accuracy order number. It is essential to find the optimal order number, grid size, and time step to balance modeling precision and computational complexity. Four kinds of waves, static mode in the source point, SV wave cusps, reflection and transmission waves are observed in two-phase anisotropic media through modeling. 展开更多
关键词 two-phase anisotropy FINITE-DIFFERENCE any even-order accuracy numerical modeling wave equations
在线阅读 下载PDF
AVO forwarding modeling in two-phase media: multiconstrained matrix mineral modulus inversion
9
作者 林凯 贺振华 +3 位作者 熊晓军 贺锡雷 曹俊兴 薛雅娟 《Applied Geophysics》 SCIE CSCD 2014年第4期395-404,509,共11页
AVO forward modeling is based on two-phase medium theory and is considered an effective method for describing reservoir rocks and fluids. However, the method depends on the input matrix mineral bulk modulus and the ra... AVO forward modeling is based on two-phase medium theory and is considered an effective method for describing reservoir rocks and fluids. However, the method depends on the input matrix mineral bulk modulus and the rationality of the two-phase medium model. We used the matrix mineral bulk modulus inversion method and multiple constraints to obtain a two-phase medium model with physical meaning. The proposed method guarantees the reliability of the obtained AVO characteristicsin two-phase media. By the comparative analysis of different lithology of the core sample, the advantages and accuracy of the inversion method can be illustrated. Also, the inversion method can be applied in LH area, and the AVO characteristics can be obtained when the porosity, fluid saturation, and other important lithology parameters are changed. In particular, the reflection coefficient amplitude difference between the fast P wave and S wave as a function of porosity at the same incidence angle, and the difference in the incidence angle threshold can be used to decipher porosity. 展开更多
关键词 Matrix mineral bulk modulus two-phase media AVO forward modeling
在线阅读 下载PDF
Numerical investigation on characteristics of interfacial wave of liquid film in gas-liquid two-phase flow using OpenFOAM 被引量:1
10
作者 Xiaoqi MA Yueshe WANG Jiaming TIAN 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第2期233-248,共16页
Liquid film cooling as an advanced cooling technology is widely used in space vehicles.Stable operation of liquid film along the rocket combustion inner wall is crucial for thermal protection of rocket engines.The sta... Liquid film cooling as an advanced cooling technology is widely used in space vehicles.Stable operation of liquid film along the rocket combustion inner wall is crucial for thermal protection of rocket engines.The stability of liquid film is mainly determined by the characteristics of interfacial wave,which is rarely investigated right now.How to improve the stability of thin film has become a hot spot.In view of this,an advanced model based on the conventional Volume of Fluid(VOF)model is adopted to investigate the characteristics of interfacial wave in gas-liquid flow by using OpenFOAM,and the mechanism of formation and development of wave is revealed intuitively through numerical study.The effects from gas velocity,surface tension and dynamic viscosity of liquid(three factors)on the wave are studied respectively.It can be found that the gas velocity is critical to the formation and development of wave,and four modes of droplets generation are illustrated in this paper.Besides,a gas vortex near the gas-liquid interface can induce formation of wave easily,so changing the gas vortex state can regulate formation and development of wave.What’s more,the change rules of three factors influencing on the interfacial wave are obtained,and the surface tension has a negative effect on the formation and development of wave only when the surface tension coefficient is above the critical value,whereas the dynamic viscosity has a positive effect in this process.Lastly,the maximum height and maximum slope angle of wave will level off as the gas velocity increases.Meanwhile,the maximum slope angle of wave is usually no more than 38°,no matter what happens to the three factors. 展开更多
关键词 Interfacial wave GAS-LIQUID two-phase flow VOF model OPENFOAM
原文传递
Numerical Investigation on Dynamic Response Characteristics of Fluid-Structure Interaction of Gas-Liquid Two-Phase Flow in Horizontal Pipe 被引量:1
11
作者 王志伟 何炎平 +4 位作者 李铭志 仇明 黄超 刘亚东 王梓 《Journal of Shanghai Jiaotong university(Science)》 EI 2024年第2期237-244,共8页
Fluid-structure interaction(FSI)of gas-liquid two-phase fow in the horizontal pipe is investigated numerically in the present study.The volume of fluid model and standard k-e turbulence model are integrated to simulat... Fluid-structure interaction(FSI)of gas-liquid two-phase fow in the horizontal pipe is investigated numerically in the present study.The volume of fluid model and standard k-e turbulence model are integrated to simulate the typical gas-liquid two-phase fow patterns.First,validation of the numerical model is conducted and the typical fow patterns are consistent with the Baker chart.Then,the FSI framework is established to investigate the dynamic responses of the interaction between the horizontal pipe and gas-liquid two-phase fow.The results show that the dynamic response under stratified fow condition is relatively flat and the maximum pipe deformation and equivalent stress are 1.8 mm and 7.5 MPa respectively.Meanwhile,the dynamic responses induced by slug fow,wave fow and annular fow show obvious periodic fuctuations.Furthermore,the dynamic response characteristics under slug flow condition are maximum;the maximum pipe deformation and equivalent stress can reach 4mm and 17.5 MPa,respectively.The principal direction of total deformation is different under various flow patterns.Therefore,the periodic equivalent stress will form the cyclic impact on the pipe wall and affect the fatigue life of the horizontal pipe.The present study may serve as a reference for FSI simulation under gas-liquid two-phase transport conditions. 展开更多
关键词 gas-liquid two-phase flow volume of fluid model fluid-structure interaction(FSI) dynamic response characteristics
原文传递
A USM-Θ two-phase turbulence model for simulating dense gas-particle flows 被引量:10
12
作者 Yong Yu Lixing Zhou +1 位作者 Baoguo Wang Feipeng Cai 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2005年第3期228-234,共7页
A second-order moment two-phase turbulence model for simulating dense gas-particle flows (USM-Θ model), combining the unified second-order moment twophase turbulence model for dilute gas-particle flows with the kin... A second-order moment two-phase turbulence model for simulating dense gas-particle flows (USM-Θ model), combining the unified second-order moment twophase turbulence model for dilute gas-particle flows with the kinetic theory of particle collision, is proposed. The interaction between gas and particle turbulence is simulated using the transport equation of two-phase velocity correlation with a two-time-scale dissipation closure. The proposed model is applied to simulate dense gas-particle flows in a horizontal channel and a downer. Simulation results and their comparison with experimental results show that the model accounting for both anisotropic particle turbulence and particle-particle collision is obviously better than models accounting for only particle turbulence or only particle-particle collision. The USM-Θ model is also better than the k-ε-kp-Θ model and the k-ε-kp-εp-Θ model in that the first model can simulate the redistribution of anisotropic particle Reynolds stress components due to inter-particle collision, whereas the second and third models cannot. 展开更多
关键词 TURBULENCE two-phase flow Second-ordermoment model
在线阅读 下载PDF
Coupled Model of Two-phase Debris Flow,Sediment Transport and Morphological Evolution 被引量:5
13
作者 HE Siming OUYANG Chaojun +1 位作者 LIU Wei WANG Dongpo 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2016年第6期2206-2215,共10页
The volume fraction of the solid and liquid phase of debris flows, which evolves simultaneously across terrains, largely determines the dynamic property of debris flows. The entrainment process significantly influence... The volume fraction of the solid and liquid phase of debris flows, which evolves simultaneously across terrains, largely determines the dynamic property of debris flows. The entrainment process significantly influences the amplitude of the volume fraction. In this paper, we present a depth-averaged two-phase debris-flow model describing the simultaneous evolution of the phase velocity and depth, the solid and fluid volume fractions and the bed morphological evolution. The model employs the Mohr–Coulomb plasticity for the solid stress, and the fluid stress is modeled as a Newtonian viscous stress. The interfacial momentum transfer includes viscous drag and buoyancy. A new extended entrainment rate formula that satisfies the boundary momentum jump condition (Iverson and Ouyang, 2015) is presented. In this formula, the basal traction stress is a function of the solid volume fraction and can take advantage of both the Coulomb and velocity-dependent friction models. A finite volume method using Roe’s Riemann approximation is suggested to solve the equations. Three computational cases are conducted and compared with experiments or previous results. The results show that the current computational model and framework are robust and suitable for capturing the characteristics of debris flows. 展开更多
关键词 debris flows two-phase model sediment transport entrainment rate finite volume method
在线阅读 下载PDF
REVIEW ON MATHEMATICAL ANALYSIS OF SOME TWO-PHASE FLOW MODELS 被引量:3
14
作者 Huanyao WEN Lei YAO Changjiang ZHU 《Acta Mathematica Scientia》 SCIE CSCD 2018年第5期1617-1636,共20页
The two-phase flow models are commonly used in industrial applications, such as nuclear, power, chemical-process, oil-and-gas, cryogenics, bio-medical, micro-technology and so on. This is a survey paper on the study o... The two-phase flow models are commonly used in industrial applications, such as nuclear, power, chemical-process, oil-and-gas, cryogenics, bio-medical, micro-technology and so on. This is a survey paper on the study of compressible nonconservative two-fluid model, drift-flux model and viscous liquid-gas two-phase flow model. We give the research developments of these three two-phase flow models, respectively. In the last part, we give some open problems about the above models. 展开更多
关键词 compressible nonconservative two-fluid model drift-flux model viscous liquid-gas two-phase flow model WELL-POSEDNESS
在线阅读 下载PDF
Comparison of a Full Second-Order Moment Model and an Algebraic Stress Two-Phase Turbulence Model for Simulating Bubble-Liquid Flows in a Bubble Column 被引量:3
15
作者 周力行 杨玟 +2 位作者 廉春英 L.S.Fan D.J.Lee 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2002年第2期142-148,共7页
A full second-order moment (FSM) model and an algebraic stress (ASM) two-phase turbulence modelare proposed and applied to predict turbulent bubble-liquid flows in a 2D rectangular bubble column. Predictiongives the b... A full second-order moment (FSM) model and an algebraic stress (ASM) two-phase turbulence modelare proposed and applied to predict turbulent bubble-liquid flows in a 2D rectangular bubble column. Predictiongives the bubble and liquid velocities, bubble volume fraction, bubble and liquid Reynolds stresses and bubble-liquidvelocity correlation. For predicted two-phase velocities and bubble volume fraction there is only slight differencebetween these two models, and the simulation results using both two models are in good agreement with the particleimage velocimetry (PIV) measurements. Although the predicted two-phase Reynolds stresses using the FSM are insomewhat better agreement with the PIV measurements than those predicted using the ASM, the Reynolds stressespredicted using both two models are in general agreement with the experiments. Therefore, it is suggested to usethe ASM two-phase turbulence model in engineering application for saving the computation time. 展开更多
关键词 second-order moment model two-phase turbulence bubble-liquid flow bubble column
在线阅读 下载PDF
IMPROVED SUBGRID SCALE MODEL FOR DENSE TURBULENT SOLID-LIQUID TWO-PHASE FLOWS 被引量:2
16
作者 唐学林 钱忠东 吴玉林 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2004年第4期354-365,共12页
The dense solid-phase governing equations for two-phase flows are obtained by using the kinetic theory of gas molecules.Assuming that the solid-phase velocity distributions obey the Maxwell equations,the collision ter... The dense solid-phase governing equations for two-phase flows are obtained by using the kinetic theory of gas molecules.Assuming that the solid-phase velocity distributions obey the Maxwell equations,the collision term for particles under dense two-phase flow conditions is also derived. In comparison with the governing equations of a dilute two-phase flow,the solid-particle's governing equations are developed for a dense turbulent solid-liquid flow by adopting some relevant terms from the dilute two-phase governing equations.Based on Cauchy-Helmholtz theorem and Smagorinsky model, a second-order dynamic sub-grid-scale(SGS)model,in which the sub-grid-scale stress is a function of both the strain-rate tensor and the rotation-rate tensor,is proposed to model the two-phase governing equations by applying dimension analyses.Applying the SIMPLEC algorithm and staggering grid system to the two-phase discretized governing equations and employing the slip boundary conditions on the walls,the velocity and pressure fields,and the volumetric concentration are calculated.The simulation results are in a fairly good agreement with experimental data in two operating cases in a conduit with a rectangular cross-section and these comparisons imply that these models are practical. 展开更多
关键词 kinetic theory turbulent two-phase flow dynamic sub-grid-scale model CONDUIT
在线阅读 下载PDF
GLOBAL EXISTENCE OF CLASSICAL SOLUTION FOR A VISCOUS LIQUID-GAS TWO-PHASE MODEL WITH MASS-DEPENDENT VISCOSITY AND VACUUM 被引量:2
17
作者 王振 张卉 《Acta Mathematica Scientia》 SCIE CSCD 2014年第1期39-52,共14页
In this work, we obtain the global existence and uniqueness of classical solu-tions to a viscous liquid-gas two-phase model with mass-dependent viscosity and vacuum in one dimension, where the initial vacuum is allowe... In this work, we obtain the global existence and uniqueness of classical solu-tions to a viscous liquid-gas two-phase model with mass-dependent viscosity and vacuum in one dimension, where the initial vacuum is allowed. We get the upper and lower bounds of gas and liquid masses n and m by the continuity methods which we use to study the compressible Navier-Stokes equations. 展开更多
关键词 viscous liquid-gas two-phase model global classical solution VACUUM mass-dependent viscosity
在线阅读 下载PDF
Two-phase nonlocal integral models with a bi-Helmholtz averaging kernel for nanorods 被引量:2
18
作者 Pei ZHANG Hai QING 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2021年第10期1379-1396,共18页
In this work,the static tensile and free vibration of nanorods are studied via both the strain-driven(Strain D)and stress-driven(Stress D)two-phase nonlocal models with a bi-Helmholtz averaging kernel.Merely adjusting... In this work,the static tensile and free vibration of nanorods are studied via both the strain-driven(Strain D)and stress-driven(Stress D)two-phase nonlocal models with a bi-Helmholtz averaging kernel.Merely adjusting the limits of integration,the integral constitutive equation of the Fredholm type is converted to that of the Volterra type and then solved directly via the Laplace transform technique.The unknown constants can be uniquely determined through the standard boundary conditions and two constrained conditions accompanying the Laplace transform process.In the numerical examples,the bi-Helmholtz kernel-based Strain D(or Stress D)two-phase model shows consistently softening(or stiffening)effects on both the tension and the free vibration of nanorods with different boundary edges.The effects of the two nonlocal parameters of the bi-Helmholtz kernel-based two-phase nonlocal models are studied and compared with those of the Helmholtz kernel-based models. 展开更多
关键词 two-phase nonlocal integral model bi-Helmholtz kernel tensile analysis free vibration exact solution Laplace transform
在线阅读 下载PDF
Comparative numerical study of single and two-phase models of nanofluid heat transfer in wavy channel 被引量:3
19
作者 M.M.RASHIDI A.HOSSEINI +2 位作者 I.POP S.KUMAR N.FREIDOONIMEHR 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2014年第7期831-848,共18页
The main purpose of this study is to survey numerically comparison of two- phase and single phase of heat transfer and flow field of copper-water nanofluid in a wavy channel. The computational fluid dynamics (CFD) p... The main purpose of this study is to survey numerically comparison of two- phase and single phase of heat transfer and flow field of copper-water nanofluid in a wavy channel. The computational fluid dynamics (CFD) prediction is used for heat transfer and flow prediction of the single phase and three different two-phase models (mixture, volume of fluid (VOF), and Eulerian). The heat transfer coefficient, temperature, and velocity distributions are investigated. The results show that the differences between the temperature fie].d in the single phase and two-phase models are greater than those in the hydrodynamic tleld. Also, it is found that the heat transfer coefficient predicted by the single phase model is enhanced by increasing the volume fraction of nanoparticles for all Reynolds numbers; while for the two-phase models, when the Reynolds number is low, increasing the volume fraction of nanoparticles will enhance the heat transfer coefficient in the front and the middle of the wavy channel, but gradually decrease along the wavy channel. 展开更多
关键词 NANOFLUID two-phase model wavy channel semi implicit method for pres-sure linked equation (SIMPLE) method
在线阅读 下载PDF
THE STUDY ON THREE-DIMENSIONAL MATHEMATICAL MODEL OF RIVER BED EROSION FOR WATER-SEDIMENT TWO-PHASE FLOW 被引量:1
20
作者 方红卫 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 1996年第1期85-91,共7页
Based on the tensor analysis of water-sediment two-phase how, the basic model equations for clear water flow and sediment-laden flow are deduced in the general curve coordinates for natural water variable-density turb... Based on the tensor analysis of water-sediment two-phase how, the basic model equations for clear water flow and sediment-laden flow are deduced in the general curve coordinates for natural water variable-density turbulent how. Furthermore, corresponding boundary conditions are also presented in connection with the composition and movement of non-uniform bed material. The theoretical results are applied to the calculation of the float open caisson in the construction period and good results are obtained. 展开更多
关键词 flow mathematical model sediment-laden flow mathematical model water-sediment two-phase flow float open caisson
在线阅读 下载PDF
上一页 1 2 13 下一页 到第
使用帮助 返回顶部