The semi-molten smelting process of a mixture of saprolitic and limonitic laterite ores was systematically investigated and the effect of slag basicity was deeply analyzed.The results indicate that the slag system can...The semi-molten smelting process of a mixture of saprolitic and limonitic laterite ores was systematically investigated and the effect of slag basicity was deeply analyzed.The results indicate that the slag system can be located in the liquidus region of low melting-point diopside(CaMgSi_(2)O_(6))when slag basicity is kept at 0.3 and limonitic laterite mass fraction is not less than 10%.When the reduction temperature,C/O mass ratio,limonitic laterite mass fraction and slag basicity are kept at the optimum values of 1300℃,0.86,20%and 0.3,respectively,ferronickel products with grades 6.42%Ni and 86.99%Fe are prepared.The recovery rates of Ni and Fe reach 88.60%and 72.25%,respectively.展开更多
The growing demand for Ni and Co in the new energy sector necessitates efficient extraction methods for limonitic laterite ores.This study demonstrated the effectiveness of sodium sulfate(Na_(2)SO_(4))as an additive f...The growing demand for Ni and Co in the new energy sector necessitates efficient extraction methods for limonitic laterite ores.This study demonstrated the effectiveness of sodium sulfate(Na_(2)SO_(4))as an additive for enhancing the co-enrichment of Ni and Co during solid-state reduction.Na_(2)SO_(4)promoted the formation of two distinct liquid phases,low-melting-point FeS-FeO-Fe and NaAlSiO_(4)-NaFeSiO_(4),facilitating the migration and aggregation of Ni-Co-Fe alloy particles,leading to a high-grade alloy powder with 11.98wt%Ni and 0.88wt%Co and recoveries of 94.03%and 80.16%,respectively.Ni-Co-Fe particle growth was mainly driven by the FeS-FeO-Fe eutectic melt,aligned with a liquid-phase sintering mechanism.Pilot-scale rotary kiln experiments validated the industrial feasibility of this approach,which offers a promising solution for the sustainable extraction of these critical metals.展开更多
With the development of the new energy industry and the depletion of nickel sulfide ore resources,laterite nickel ore has become the main source of primary nickel,and nickel for power batteries has become a new growth...With the development of the new energy industry and the depletion of nickel sulfide ore resources,laterite nickel ore has become the main source of primary nickel,and nickel for power batteries has become a new growth point in consumption.This paper systematically summarizes the processes,parameters,products,recovery rates,environmental indicators,costs,advantages,disadvantages and the latest research progress of mainstream nickel extraction processes from laterite nickel ore.It also provides a comparative analysis of the environmental impact and economic efficiency of different nickel extraction processes.It is found that the current nickel extraction processes from laterite nickel ore globally for commercial production mainly include the RKEF process for producing ferronickel and the HPAL process for producing intermediate products.The former accounts for about 80%of laterite nickel ore production.Compared to each other,the investment cost per ton of nickel metal production capacity for the RKEF is about 43000$,with an operational cost of about 16000$per ton of nickel metal and a total nickel recovery rate of 77%–90%.Its products are mainly used in stainless steels.For the HPAL process,the investment cost per ton of nickel metal production capacity is about 56000$,with an operational cost of about 15000$per ton of nickel metal and a total nickel recovery rate of 83%–90%.Its products are mainly used in power batteries.The significant differences between the two lies in energy consumption and carbon emissions,with the RKEF being 2.18 and 2.37 times that of the HPAL,respectively.Although the use of clean energy can greatly reduce the operational cost and environmental impact of RKEF,if RKEF is converted to producing high Ni matte,its economic and environmental performance still cannot match that of the HPAL and oxygen-enriched side-blown processes.Therefore,it can be inferred that with the increasing demand for nickel in power batteries,HPAL and oxygen-enriched side blowing processes will play a greater role in laterite nickel extraction.展开更多
This study explores a hydrogen-assisted mineral phase transformation process with synergistic desulfurization for the efficient recovery of iron from the high-pressure acid leach(HPAL)tailings of laterite nickel ore.H...This study explores a hydrogen-assisted mineral phase transformation process with synergistic desulfurization for the efficient recovery of iron from the high-pressure acid leach(HPAL)tailings of laterite nickel ore.HPAL tailings containing 51.50wt%iron and 2.09wt%sulfur present environmental challenges due to their sulfur content.Pre-treatment at 950℃ for 15 min successfully reduced the sulfur content to 0.295wt%and increased the iron grade to 57.66wt%.Further hydrogen-assisted mineral phase transformation at 520℃ for 30 min,using 40vol%hydrogen and a gas flow rate of 600 mL·min^(-1),resulted in a product with an iron grade of 61.00wt%and 90.11%iron recovery.The overall desulfurization rate reached 85.83%when wet scrubbing and limestone were used to capture the sulfur.This study demonstrates the efficiency of this hydrogen-assisted process for sustainable iron recovery and sulfur removal from laterite nickel ore tailings,with potential for industrial applications.展开更多
Constructed Wetlands (CWs) are currently one of the most promising techniques for wastewater treatment, having demonstrated their effectiveness. However, the choice of substrate particle size is critical to the smooth...Constructed Wetlands (CWs) are currently one of the most promising techniques for wastewater treatment, having demonstrated their effectiveness. However, the choice of substrate particle size is critical to the smooth operation of the process, as hydrodynamic constraints require a coarse particle size, whereas wastewater treatment recommends a fine particle size. This study investigates the suitability of laterite and shale as substrates of different sizes (1 - 3, 3 - 5 and 5 - 8 mm) in CWs for domestic wastewater treatment. The study was carried out in an experimental pilot plant consisting of 12 parallelepiped beds (C × C = 0.4 × 0.4 m2;H = 0.6 m) filled from bottom to top with 0.1 m of gravel and 0.4 m of shale or laterite of different grain sizes with two replications. During the six months of operation, plant biomass and stem diameter of Pennisetum purpureum used as vegetation in the CWs were determined. Raw and treated water were also sampled and analyzed for pollutants, including chemical oxygen demand (COD), biochemical oxygen demand (BOD5), total Kjedahl nitrogen (TKN), total phosphorus (TP), and total suspended solids (TSS), using International Organization for Standardization (ISO) analytical methods. P. purpureum developed much better in the CW beds lined with shale;plant biomass ranged from 13.8 to 14.7 kg/m2 and from 11.2 to 12.5 kg/m2 in the beds lined with shale and laterite, respectively, as did stump diameter, which ranged from 15.5 to 16.1 cm and from 11.10 to 12.7 cm, respectively. However, the highest values for biomass and stump diameter for each material were obtained in the beds lined with 1 - 3 mm geomaterials. Pollutant removal efficiencies were highest in the CWs lined with laterite and shale of 1 - 3 mm grain size (76.9% - 83% COD, 78% - 84.7% BOD5, 55.5% - 72.2% TKN, 58.4% - 72.4% TP, 78.1% - 80.2% TSS), with the highest values recorded in the shale-lined beds. However, the 3 - 5 mm grain size of both materials provided quality filtrates (140 - 174 mg/L COD, 78.5 - 94.8 mg/L BOD5, 4.6 - 5.7 mg/L TP) in line with local wastewater discharge levels. This size of geomaterials appears to be suitable for optimization purposes, although further work with these materials, such as increasing the depth of the wetland, is required to improve the level of NTK and TSS discharge.展开更多
Nickel laterite ore is an important nickel-bearing mineral.Research on pre-heating and hydrogen pre-reduction in the pyrometallurgical process of nickel laterite ore is very limited,especially when using fluidized bed...Nickel laterite ore is an important nickel-bearing mineral.Research on pre-heating and hydrogen pre-reduction in the pyrometallurgical process of nickel laterite ore is very limited,especially when using fluidized bed roasting.This study systematically explores the mechanisms of fluidized bed pre-heating treatment and hydrogen pre-reduction in the roasting process of saprolitic nickel laterite ore.According to single-factor experiment results,the appropriate pre-heating and pre-reduction conditions were a pre-heating temperature of 700℃,a pre-heating time of 30 min,a pre-reduction temperature of 700℃,a pre-reduction time of 30 min,and a hydrogen concentration of 80%.Then,the nickel metallization rate and iron metallization rate reached 90.56%and 41.31%,respectively.Various analytical and testing methods were employed to study the changes in phase composition,magnetism,surface element valence states,and microstructure of nickel laterite ore during fluidized pre-heating and pre-reduction.The study shows that hydrogen can achieve nickel reduction at relatively low temperatures.It was also found that pre-heating treatment of nickel laterite ore is beneficial.Pre-heating opens up the mineral structures of serpentine and limonite,allowing the reducing gas and nickel to interact quickly during the reduction process,enhancing the pre-reduction process.展开更多
The rotary kiln and electric furnace melting process is the primary pyrometallurgical method for producing Fe-Ni alloy from nickel laterite.During the drying and preheating stages in the rotary kilns,nickel laterite b...The rotary kiln and electric furnace melting process is the primary pyrometallurgical method for producing Fe-Ni alloy from nickel laterite.During the drying and preheating stages in the rotary kilns,nickel laterite briquettes tend to generate significant amounts of powder because of insufficient heating.These fine powders not only contribute to ring formation within the kiln but also impair the gas permeability of electric furnaces,thereby increasing their power consumption.Replacing the rotary kiln with a traveling grate can significantly improve the strength of reduced briquettes and enhance the discharge temperature.Under a reduction temperature of 1000℃ for 10 min,using green briquettes containing 8 wt.% coal processed through a traveling grate,the reduced briquettes achieved cold compressive strength of 449.7 N/briquette,dropping strength of 88.00%,tumbler strength of 83.49%,Ni metallization degree of 84.80% and Fe metallization degree of 11.16%.Increasing the charging temperature is beneficial to improving the recovery rates of Ni and Fe.Furthermore,an Fe-Ni alloy containing 87.90%Fe and 7.32%Ni was obtained at a smelting temperature of 1575℃ for 45 min with a charging temperature of 1000℃,achieving Ni and Fe recovery rates of 94.91% and 78.67%,respectively.展开更多
The loss pathways of Ni and Co during Al and Sc enrichment were analyzed in the HNO_(3) leach liquor of saprolitic laterite ore.Although over 99%of Al and Sc can be enriched,about 40%of Ni and Co are also lost.The ads...The loss pathways of Ni and Co during Al and Sc enrichment were analyzed in the HNO_(3) leach liquor of saprolitic laterite ore.Although over 99%of Al and Sc can be enriched,about 40%of Ni and Co are also lost.The adsorption of Al-Sc precipitate is an important cause of Ni and Co loss.Subsequently,the precipitation behavior of metal ions in the different nitrate solutions was studied.The results confirm that Ni^(2+)and Co^(2+)do not hydrolyze to form their respective hydroxides.Ni^(2+),Co^(2+)and Mg^(2+)can form composite hydroxides with precipitated Al(OH)3,decreasing the pH at which Ni^(2+)and Co^(2+)begin to precipitate,causing their co-precipitation loss.A high Mg^(2+)concentration enhances the formation of these composite hydroxides.Finally,titration curves for different nitrate systems were determined,further demonstrating the formation of Me-Al composite hydroxides and revealing a formation trend of Mg-Al>Co-Al>Ni-Al.展开更多
The demand for Ni and Co has surged due to the rapid expansion of the electric vehicle industry.Thus,developing efficient and eco-friendly metallurgical routes for extracting these metals has become imperative.This st...The demand for Ni and Co has surged due to the rapid expansion of the electric vehicle industry.Thus,developing efficient and eco-friendly metallurgical routes for extracting these metals has become imperative.This study introduces a sustainable and effective method for extracting Ni and Co from Ni–Co–Fe alloy powder obtained from limonitic laterite ores through selective reduction and magnetic separation.The leaching efficiency for Ni,Co,and Fe was 89.4%,94.8%,and 96.5%,respectively,under the following conditions for leaching:3 mol/L H_(2)SO_(4),85℃,10 m L/g liquid–solid ratio,and 90 min leaching time.The incorporation of H_(2)O_(2)enhanced the leaching efficiency for Ni,Co,and Fe.The redox potential of the solution plays a crucial role in acid dissolution,and H_(2)O_(2)enhances Ni and Co dissolution.Phosphate precipitation facilitated the removal of Fe from the leachate,affording a 96.1%Fe removal ratio and 2.29%Ni loss.展开更多
Nickel is a strategic resource in social life and defense technology,playing an essential role in many fields,such as alloys and batteries.With the decrease in nickel sulfide,it is of great significance to extract nic...Nickel is a strategic resource in social life and defense technology,playing an essential role in many fields,such as alloys and batteries.With the decrease in nickel sulfide,it is of great significance to extract nickel from laterite.The limonitic laterite is a kind of rich nickel-cobalt-scandium resource.At present,there are few reviews on the extraction of limonitic laterite.This study reviews the hydrometallurgical processes for limonitic laterite ores and the methods of recovering valuable elements.The mineralogical characteristics are analyzed,and the typical mineral compositions are summarized.The main hydrometallurgical processes are compared and discussed,including reduction roasting-ammonia leaching,sulfuric acid pressure leaching,nitric acid pressure leaching,and the atmospheric nitric acid leaching(DNi process).The methods of recovering nickel,cobalt,scandium,and iron are emphatically outlined.Finally,reasonable suggestions are proposed for comprehensive utilization.This study can provide a reference for industrial development and diversified applications.展开更多
Fluidized reduction roasting is an efficient metallurgical technique.However,its application to nickel laterite ore has rarely been reported.In this paper,the effects of reduction temperature,reduction time,CO concent...Fluidized reduction roasting is an efficient metallurgical technique.However,its application to nickel laterite ore has rarely been reported.In this paper,the effects of reduction temperature,reduction time,CO concentration,and material particle size on the roasting characteristics of ferronickel fluidization reduction were investigated.Combined with X-ray diffraction,scanning electron microscopy-energy dispersive spectrometry(SEM-EDS)characterization,the mineral phases and microscopic morphology of nickel laterite ore and its roasted ores were analyzed in depth.The results indicated that under the condition of a CO/CO_(2)ratio of 1:1,a reduction temperature of 800℃,and a reduction roasting time of 60 min,a nickel-iron concentrate with a nickel grade of 2.10%and an iron content of 45.96%was produced from a raw material with a nickel grade of 1.45%,achieving a remarkable nickel recovery rate of 46.26%.XRD and SEM-EDS analysis indicated that nickel in the concentrate mainly exists in the form of[Fe,Ni],while the unrecovered nickel in the tailings is primarily present in the form of[Fe,Ni]and Ni_(2)SiO_(4)in forsterite.This study established a theoretical foundation for further exploration of fluidized reduction roasting technology.展开更多
This work studies the variability of the relationship between relative permittivity and compaction parameters as a function of certain geotechnical properties for different laterite types. This study allows to purpose...This work studies the variability of the relationship between relative permittivity and compaction parameters as a function of certain geotechnical properties for different laterite types. This study allows to purpose the dielectric permittivity as a third compaction parameter allowing to obtain a non destructive control méthod. Preliminary studies on Diack laterite had shown a good correlation. Additional investigations are carried out to verify the possibility of generalizing this correlation to three new laterite careers: Ngoudiane, Yéba and Fandene. To proceed, particle size analysis, Atterberg limits, specific weight tests and compaction according to the modified Proctor test were performed on laterite samples. Using the radar method, experimental permittivities are determined for laterite samples by the point method of propagation times and confirmed by the diffraction hyperbole method. The geotechnical and radar data obtained allowed correlations between permittivity and water content on the one hand and between permittivity and dry density on the other. The results show that the maximum dry density as a function of permittivity corresponds with the optimum Proctor, which confirms the results previously obtained on Diack laterite.展开更多
In tropical regions,heavy rainfall induces erosion and shallow landslides on road embankments.Cement-based stabilization methods,common in these regions,contribute to climate change due to their high carbon footprint....In tropical regions,heavy rainfall induces erosion and shallow landslides on road embankments.Cement-based stabilization methods,common in these regions,contribute to climate change due to their high carbon footprint.This study explored the potential application of coir fiber-reinforced laterite soil-bottom ash mixtures as embankment materials in the tropics.The objective is to enhance engineered embankment slopes'erosion resistance and stability while offering reuse options for industrial byproducts.This study examined various mix designs for unconfined compressive strength(UCS)and permeability,utilizing 30%bottom ash(BA)and 1%coir fiber(CF)with varying sizes ranging from 10 to 40 mm,6%lime,and laterite soil(LS),followed by microstructural analyses.The results demonstrate that the compressive strength increases as the CF length increases to 25 mm.In contrast,permeability increases continuously with increasing CF length.Lime-treated mixtures exhibit superior short-and long-term strength and reduce permeability owing to the formation of cementitious materials,as confirmed by microstructural analyses.A lab-scale slope box was constructed to evaluate the surface erosion of the stabilized laterite soil embankment.Based on the rainfall simulation results,the LS-BA-CF mixtures show better resistance to erosion and deformation compared to untreated LS,especially when lime is added to the top layer.This study provides insights into a sustainable and cost-effective approach for slope stabilization using BA and CF,offering a promising solution for tropical regions susceptible to surface erosion and landslides.展开更多
The leaching behavior of metals from a nickeliferous limonitic laterite ore was investigated by high pressure acid leaching process for the extraction of nickel and cobalt.The effects of sulfuric acid added,leaching t...The leaching behavior of metals from a nickeliferous limonitic laterite ore was investigated by high pressure acid leaching process for the extraction of nickel and cobalt.The effects of sulfuric acid added,leaching temperature,leaching time and liquid/solid(L/S) ratio on metals extraction were examined.More than 97% Ni,96% Co,93% Mn,95% Mg and less than 1% Fe are extracted under optimum conditions.Analysis of the high pressure acid leaching residue by chemical and XRD analysis indicates that the residual iron and sulfur are mainly present in phases of hematite and alunite,respectively.The high pressure leaching process provides a simple and efficient way for the high recovery of nickel and cobalt from laterite ore,leaving residue as a suitable iron resource.展开更多
To acquire understanding of Ni enrichment from laterite ore,the mineralogy and crystal chemistry of a low grade limonite type nickel laterite ore sample assaying 0.97% Ni from Indonesia were studied using optical micr...To acquire understanding of Ni enrichment from laterite ore,the mineralogy and crystal chemistry of a low grade limonite type nickel laterite ore sample assaying 0.97% Ni from Indonesia were studied using optical microscopy,X-ray diffraction(XRD),scanning electron microscopy(SEM) and electron probe microanalysis(EPMA).According to EPMA results,the mineral includes 80% goethite((Fe,Ni,Al)O(OH)) with 0.87% Ni,15% silicate minerals with lizardite((Mg,Fe,Ni)3Si2O5(OH)) and olivine((Mg,Fe,Ni)2SiO4),and 1.19% Ni,and other minor phases,such as hematite,maghemite,chromite and quartz,and no Ni was detected.The mineralogy of the laterite ore indicates that due to the complicated association of the various phases and the variable distribution of Ni,this refractory laterite ore can not be upgraded by traditional physical beneficiation processes.展开更多
A low-grade nickel laterite ore was reduced at different reduction temperatures. The morphology of metallic particles was investigated by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS)...A low-grade nickel laterite ore was reduced at different reduction temperatures. The morphology of metallic particles was investigated by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). Experimental results indicate that the metallic nickel and iron gradually assemble and grow into larger spherical particles with increasing temperature and prolonging time. After reduction, the nickel laterite ore obviously changes into two parts of Fe-Ni metallic particles and slag matrix. An obvious relationship is found between the reduction of iron magnesium olivine and its crystal chemical properties. The nickel and iron oxides are reduced to metallic by reductant, and the lattice of olivine is destroyed. The entire reduction process is comprised of oxide reduction and metallic phase growth.展开更多
A novel process was proposed for the activation pretreatment of limonitic laterite ores by Na2CO3 roasting. Dechromization and dealumination kinetics of the laterite ores and the effect of particle size, Na2CO3-ore ma...A novel process was proposed for the activation pretreatment of limonitic laterite ores by Na2CO3 roasting. Dechromization and dealumination kinetics of the laterite ores and the effect of particle size, Na2CO3-ore mass ratio, and roasting temperature on Cr and Al extraction were studied. Experimental results indicate that the extraction rates of Cr and Al are up to 99%and 82%, respectively, under the optimal particle size of 44–74μm, Na2CO3-to-ore mass ratio of 0.6:1, and temperature of 1000 ℃. Dechromization within the range of 600–800 oC is controlled by the diffusion through the product layer with an apparent activation energy of 3.9 kJ/mol, and that it is controlled by the chemical reaction at the surface within the range of 900–1100 ℃ with an apparent activation energy of 54.3 kJ/mol. Besides, the Avrami diffusion controlled model with on apparent activation energy of 16.4 kJ/mol is most applicable for dealumination. Furthermore, 96.8%Ni and 95.6%Co could be extracted from the alkali-roasting residues in the subsequent pressure acid leaching process.展开更多
As the sulfide ore deposits become less economical and environmental viable as a source of nickel,increasing attention is being paid to the laterite ores.But in the pyrometallurgical process of laterite,more efforts s...As the sulfide ore deposits become less economical and environmental viable as a source of nickel,increasing attention is being paid to the laterite ores.But in the pyrometallurgical process of laterite,more efforts should be paid to control the reduction of iron oxide in order to get high nickel-content nickeliferous product.For these reasons,equilibrium condition of iron oxide when laterite ore was selectively reduced by CO2/CO,H2O/H2 and CO2/H2 was studied from the perspective of iron activity with an assumption that the activities of Fe O and Fe3O4 equal 1 in this work,and it well accounts for the inescapability of Fe metallization.Activity coefficient of iron in Ni-Fe binary solid alloy was calculated by Miedema model based on the known thermodynamics datum filed.According to Raoult's law,the relationship among the Fe/Ni ratio,reduction temperature and reduction gas composition was calculated when laterite ore was selectively reduced by the three different reduction systems.The calculation result was discussed and also compared with the experimental result.The trend of metal iron content in the reduction product of laterite ore varying with temperature and gas composition was well predicted by the calculation result.展开更多
Most of the laterites found in Ivory Coast do not meet the technical conditions to be used in their natural state for the design of road foundations. Also, to meet the growing needs for road materials, various amendme...Most of the laterites found in Ivory Coast do not meet the technical conditions to be used in their natural state for the design of road foundations. Also, to meet the growing needs for road materials, various amendments are made to them, including litho-stabilization. Thus, this study proposes to understand the influence of the granular class of natural aggregates on the performance of laterites. To achieve this objective, different proportions of crushed granites of class 0/5, 0/15 and 5/15 have been incorporated into the soils of southern Côte d’Ivoire, especially in Samo. This modified soil has been subjected to mechanical tests such as the modified Proctor and CBR test. The results obtained show that the dry densities of the incorporated laterites containing crushed granites increase with the content of natural aggregates and decrease with the increase in the water content. Likewise, the CBR bearing indices at 95% of the Modified Optimum Proctor of the different compositions (laterites + crushed granites) increase with the proportion of aggregates. The addition of coarse aggregates to the laterites therefore promotes the establishment of a framework which improves its bearing capacity. From 20% to 30% crushed granites respectively of class 0/15;0/5 and 5/15, the values of the CBR obtained are greater than those of 30% therefore these modified soils can be used as a foundation layer for traffic of T1, T2 and T3 type. Likewise, the laterites’ mixtures with at least 40% crushed granites of class 0/15 and 0/5 can also be used for the foundation and base layers.展开更多
The process of deep reduction and magnetic separation was proposed to enrich nickel and iron from laterite nickel ores.Results show that nickel-iron concentrates with nickel grade of 6.96%,nickel recovery of 94.06%,ir...The process of deep reduction and magnetic separation was proposed to enrich nickel and iron from laterite nickel ores.Results show that nickel-iron concentrates with nickel grade of 6.96%,nickel recovery of 94.06%,iron grade of 34.74%,and iron recovery of 80.44% could be obtained after magnetic separation under the conditions of reduction temperature of 1275℃,reduction time of 50 min,slag basicity of 1.0,carbon-containing coefficient of 2.5,and magnetic field strength of 72 kA/m.Reduction temperature and time affected the possibility of deep reduction and reaction progress.Slag basicity affected the composition of slag in burden and the spilling and enriching rate of nickel-iron from a matrix to form nickel-iron particles.Nickel-iron particles were generated,aggregated,and grew gradually in the reduction process.Nickel-iron particles can be effectively separated from gangue minerals by magnetic separation.展开更多
基金supports from the National Key R&D Program of China(No.2022YFC3901404)the Natural Science Foundation of Chongqing,China(No.CSTB2023NSCQ-BHX0166)the Fundamental Research Funds for the Central Universities,China(No.2023CDJXY-016)are sincerely acknowledged.
文摘The semi-molten smelting process of a mixture of saprolitic and limonitic laterite ores was systematically investigated and the effect of slag basicity was deeply analyzed.The results indicate that the slag system can be located in the liquidus region of low melting-point diopside(CaMgSi_(2)O_(6))when slag basicity is kept at 0.3 and limonitic laterite mass fraction is not less than 10%.When the reduction temperature,C/O mass ratio,limonitic laterite mass fraction and slag basicity are kept at the optimum values of 1300℃,0.86,20%and 0.3,respectively,ferronickel products with grades 6.42%Ni and 86.99%Fe are prepared.The recovery rates of Ni and Fe reach 88.60%and 72.25%,respectively.
基金financially supported by the National Natural Science Foundation of China(Nos.52174288 and 51804346)the Fundamental Research Funds for the Central Universities of Central South University,China(No.1053320231449).
文摘The growing demand for Ni and Co in the new energy sector necessitates efficient extraction methods for limonitic laterite ores.This study demonstrated the effectiveness of sodium sulfate(Na_(2)SO_(4))as an additive for enhancing the co-enrichment of Ni and Co during solid-state reduction.Na_(2)SO_(4)promoted the formation of two distinct liquid phases,low-melting-point FeS-FeO-Fe and NaAlSiO_(4)-NaFeSiO_(4),facilitating the migration and aggregation of Ni-Co-Fe alloy particles,leading to a high-grade alloy powder with 11.98wt%Ni and 0.88wt%Co and recoveries of 94.03%and 80.16%,respectively.Ni-Co-Fe particle growth was mainly driven by the FeS-FeO-Fe eutectic melt,aligned with a liquid-phase sintering mechanism.Pilot-scale rotary kiln experiments validated the industrial feasibility of this approach,which offers a promising solution for the sustainable extraction of these critical metals.
基金This research was jointly supported by the China Geological Survey Project(DD20211404)the Natural Science Foundation of Inner Mongolia Autonomous Region(2019LH05028).
文摘With the development of the new energy industry and the depletion of nickel sulfide ore resources,laterite nickel ore has become the main source of primary nickel,and nickel for power batteries has become a new growth point in consumption.This paper systematically summarizes the processes,parameters,products,recovery rates,environmental indicators,costs,advantages,disadvantages and the latest research progress of mainstream nickel extraction processes from laterite nickel ore.It also provides a comparative analysis of the environmental impact and economic efficiency of different nickel extraction processes.It is found that the current nickel extraction processes from laterite nickel ore globally for commercial production mainly include the RKEF process for producing ferronickel and the HPAL process for producing intermediate products.The former accounts for about 80%of laterite nickel ore production.Compared to each other,the investment cost per ton of nickel metal production capacity for the RKEF is about 43000$,with an operational cost of about 16000$per ton of nickel metal and a total nickel recovery rate of 77%–90%.Its products are mainly used in stainless steels.For the HPAL process,the investment cost per ton of nickel metal production capacity is about 56000$,with an operational cost of about 15000$per ton of nickel metal and a total nickel recovery rate of 83%–90%.Its products are mainly used in power batteries.The significant differences between the two lies in energy consumption and carbon emissions,with the RKEF being 2.18 and 2.37 times that of the HPAL,respectively.Although the use of clean energy can greatly reduce the operational cost and environmental impact of RKEF,if RKEF is converted to producing high Ni matte,its economic and environmental performance still cannot match that of the HPAL and oxygen-enriched side-blown processes.Therefore,it can be inferred that with the increasing demand for nickel in power batteries,HPAL and oxygen-enriched side blowing processes will play a greater role in laterite nickel extraction.
基金support from the National Key Research and Development Program of China(No.2021YFC2901000)the National Natural Science Foundation of China(No.U23A20603)+1 种基金China Nonferrous Metal Mining(Group)Co.,Ltd.,Technology Research and Development Project(No.2022_2_KJJH01)the Fundamental Research Funds for the Central Universities,China(No.N25ZLV006).
文摘This study explores a hydrogen-assisted mineral phase transformation process with synergistic desulfurization for the efficient recovery of iron from the high-pressure acid leach(HPAL)tailings of laterite nickel ore.HPAL tailings containing 51.50wt%iron and 2.09wt%sulfur present environmental challenges due to their sulfur content.Pre-treatment at 950℃ for 15 min successfully reduced the sulfur content to 0.295wt%and increased the iron grade to 57.66wt%.Further hydrogen-assisted mineral phase transformation at 520℃ for 30 min,using 40vol%hydrogen and a gas flow rate of 600 mL·min^(-1),resulted in a product with an iron grade of 61.00wt%and 90.11%iron recovery.The overall desulfurization rate reached 85.83%when wet scrubbing and limestone were used to capture the sulfur.This study demonstrates the efficiency of this hydrogen-assisted process for sustainable iron recovery and sulfur removal from laterite nickel ore tailings,with potential for industrial applications.
文摘Constructed Wetlands (CWs) are currently one of the most promising techniques for wastewater treatment, having demonstrated their effectiveness. However, the choice of substrate particle size is critical to the smooth operation of the process, as hydrodynamic constraints require a coarse particle size, whereas wastewater treatment recommends a fine particle size. This study investigates the suitability of laterite and shale as substrates of different sizes (1 - 3, 3 - 5 and 5 - 8 mm) in CWs for domestic wastewater treatment. The study was carried out in an experimental pilot plant consisting of 12 parallelepiped beds (C × C = 0.4 × 0.4 m2;H = 0.6 m) filled from bottom to top with 0.1 m of gravel and 0.4 m of shale or laterite of different grain sizes with two replications. During the six months of operation, plant biomass and stem diameter of Pennisetum purpureum used as vegetation in the CWs were determined. Raw and treated water were also sampled and analyzed for pollutants, including chemical oxygen demand (COD), biochemical oxygen demand (BOD5), total Kjedahl nitrogen (TKN), total phosphorus (TP), and total suspended solids (TSS), using International Organization for Standardization (ISO) analytical methods. P. purpureum developed much better in the CW beds lined with shale;plant biomass ranged from 13.8 to 14.7 kg/m2 and from 11.2 to 12.5 kg/m2 in the beds lined with shale and laterite, respectively, as did stump diameter, which ranged from 15.5 to 16.1 cm and from 11.10 to 12.7 cm, respectively. However, the highest values for biomass and stump diameter for each material were obtained in the beds lined with 1 - 3 mm geomaterials. Pollutant removal efficiencies were highest in the CWs lined with laterite and shale of 1 - 3 mm grain size (76.9% - 83% COD, 78% - 84.7% BOD5, 55.5% - 72.2% TKN, 58.4% - 72.4% TP, 78.1% - 80.2% TSS), with the highest values recorded in the shale-lined beds. However, the 3 - 5 mm grain size of both materials provided quality filtrates (140 - 174 mg/L COD, 78.5 - 94.8 mg/L BOD5, 4.6 - 5.7 mg/L TP) in line with local wastewater discharge levels. This size of geomaterials appears to be suitable for optimization purposes, although further work with these materials, such as increasing the depth of the wetland, is required to improve the level of NTK and TSS discharge.
基金Project(2023JH3/10200010)supported by the Excellent Youth Natural Science Foundation of Liaoning Province,ChinaProject(XLYC2203167)supported by the Liaoning Revitalization Talents Program,China+2 种基金Project(RC231175)supported by the Mid-career and Young Scientific and Technological Talents Program of Shenyang,ChinaProject(2023A03003-2)supported by the Key Special Program of Xinjiang,ChinaProject(N2301026)supported by the Fundamental Research Funds for the Central Universities,China。
文摘Nickel laterite ore is an important nickel-bearing mineral.Research on pre-heating and hydrogen pre-reduction in the pyrometallurgical process of nickel laterite ore is very limited,especially when using fluidized bed roasting.This study systematically explores the mechanisms of fluidized bed pre-heating treatment and hydrogen pre-reduction in the roasting process of saprolitic nickel laterite ore.According to single-factor experiment results,the appropriate pre-heating and pre-reduction conditions were a pre-heating temperature of 700℃,a pre-heating time of 30 min,a pre-reduction temperature of 700℃,a pre-reduction time of 30 min,and a hydrogen concentration of 80%.Then,the nickel metallization rate and iron metallization rate reached 90.56%and 41.31%,respectively.Various analytical and testing methods were employed to study the changes in phase composition,magnetism,surface element valence states,and microstructure of nickel laterite ore during fluidized pre-heating and pre-reduction.The study shows that hydrogen can achieve nickel reduction at relatively low temperatures.It was also found that pre-heating treatment of nickel laterite ore is beneficial.Pre-heating opens up the mineral structures of serpentine and limonite,allowing the reducing gas and nickel to interact quickly during the reduction process,enhancing the pre-reduction process.
基金the financial support from the National Natural Science Foundation of China(Nos.52404356 and 52174329)the National Key R&D Program of China(2023YFC3903900 and 2023YFC3903904)Guangxi Key Technologies R&D Program(AA24206042).
文摘The rotary kiln and electric furnace melting process is the primary pyrometallurgical method for producing Fe-Ni alloy from nickel laterite.During the drying and preheating stages in the rotary kilns,nickel laterite briquettes tend to generate significant amounts of powder because of insufficient heating.These fine powders not only contribute to ring formation within the kiln but also impair the gas permeability of electric furnaces,thereby increasing their power consumption.Replacing the rotary kiln with a traveling grate can significantly improve the strength of reduced briquettes and enhance the discharge temperature.Under a reduction temperature of 1000℃ for 10 min,using green briquettes containing 8 wt.% coal processed through a traveling grate,the reduced briquettes achieved cold compressive strength of 449.7 N/briquette,dropping strength of 88.00%,tumbler strength of 83.49%,Ni metallization degree of 84.80% and Fe metallization degree of 11.16%.Increasing the charging temperature is beneficial to improving the recovery rates of Ni and Fe.Furthermore,an Fe-Ni alloy containing 87.90%Fe and 7.32%Ni was obtained at a smelting temperature of 1575℃ for 45 min with a charging temperature of 1000℃,achieving Ni and Fe recovery rates of 94.91% and 78.67%,respectively.
基金supported by the National Natural Science Foundation of China(No.U2202254).
文摘The loss pathways of Ni and Co during Al and Sc enrichment were analyzed in the HNO_(3) leach liquor of saprolitic laterite ore.Although over 99%of Al and Sc can be enriched,about 40%of Ni and Co are also lost.The adsorption of Al-Sc precipitate is an important cause of Ni and Co loss.Subsequently,the precipitation behavior of metal ions in the different nitrate solutions was studied.The results confirm that Ni^(2+)and Co^(2+)do not hydrolyze to form their respective hydroxides.Ni^(2+),Co^(2+)and Mg^(2+)can form composite hydroxides with precipitated Al(OH)3,decreasing the pH at which Ni^(2+)and Co^(2+)begin to precipitate,causing their co-precipitation loss.A high Mg^(2+)concentration enhances the formation of these composite hydroxides.Finally,titration curves for different nitrate systems were determined,further demonstrating the formation of Me-Al composite hydroxides and revealing a formation trend of Mg-Al>Co-Al>Ni-Al.
基金financially supported by the National Natural Science Foundation of China(Nos.52174288 and 51804346)。
文摘The demand for Ni and Co has surged due to the rapid expansion of the electric vehicle industry.Thus,developing efficient and eco-friendly metallurgical routes for extracting these metals has become imperative.This study introduces a sustainable and effective method for extracting Ni and Co from Ni–Co–Fe alloy powder obtained from limonitic laterite ores through selective reduction and magnetic separation.The leaching efficiency for Ni,Co,and Fe was 89.4%,94.8%,and 96.5%,respectively,under the following conditions for leaching:3 mol/L H_(2)SO_(4),85℃,10 m L/g liquid–solid ratio,and 90 min leaching time.The incorporation of H_(2)O_(2)enhanced the leaching efficiency for Ni,Co,and Fe.The redox potential of the solution plays a crucial role in acid dissolution,and H_(2)O_(2)enhances Ni and Co dissolution.Phosphate precipitation facilitated the removal of Fe from the leachate,affording a 96.1%Fe removal ratio and 2.29%Ni loss.
基金supported by the National Natural Science Foundation of China(U2202254,51974025,52034002)the Fundamental Research Funds for the Central Universities(FRF-TT-19-001).
文摘Nickel is a strategic resource in social life and defense technology,playing an essential role in many fields,such as alloys and batteries.With the decrease in nickel sulfide,it is of great significance to extract nickel from laterite.The limonitic laterite is a kind of rich nickel-cobalt-scandium resource.At present,there are few reviews on the extraction of limonitic laterite.This study reviews the hydrometallurgical processes for limonitic laterite ores and the methods of recovering valuable elements.The mineralogical characteristics are analyzed,and the typical mineral compositions are summarized.The main hydrometallurgical processes are compared and discussed,including reduction roasting-ammonia leaching,sulfuric acid pressure leaching,nitric acid pressure leaching,and the atmospheric nitric acid leaching(DNi process).The methods of recovering nickel,cobalt,scandium,and iron are emphatically outlined.Finally,reasonable suggestions are proposed for comprehensive utilization.This study can provide a reference for industrial development and diversified applications.
基金Project(XDA 29020100)supported by the Strategic Priority Research Program of the Chinese Academy of SciencesProject(2022YFE0206600)supported by National Key R&D Program of China。
文摘Fluidized reduction roasting is an efficient metallurgical technique.However,its application to nickel laterite ore has rarely been reported.In this paper,the effects of reduction temperature,reduction time,CO concentration,and material particle size on the roasting characteristics of ferronickel fluidization reduction were investigated.Combined with X-ray diffraction,scanning electron microscopy-energy dispersive spectrometry(SEM-EDS)characterization,the mineral phases and microscopic morphology of nickel laterite ore and its roasted ores were analyzed in depth.The results indicated that under the condition of a CO/CO_(2)ratio of 1:1,a reduction temperature of 800℃,and a reduction roasting time of 60 min,a nickel-iron concentrate with a nickel grade of 2.10%and an iron content of 45.96%was produced from a raw material with a nickel grade of 1.45%,achieving a remarkable nickel recovery rate of 46.26%.XRD and SEM-EDS analysis indicated that nickel in the concentrate mainly exists in the form of[Fe,Ni],while the unrecovered nickel in the tailings is primarily present in the form of[Fe,Ni]and Ni_(2)SiO_(4)in forsterite.This study established a theoretical foundation for further exploration of fluidized reduction roasting technology.
文摘This work studies the variability of the relationship between relative permittivity and compaction parameters as a function of certain geotechnical properties for different laterite types. This study allows to purpose the dielectric permittivity as a third compaction parameter allowing to obtain a non destructive control méthod. Preliminary studies on Diack laterite had shown a good correlation. Additional investigations are carried out to verify the possibility of generalizing this correlation to three new laterite careers: Ngoudiane, Yéba and Fandene. To proceed, particle size analysis, Atterberg limits, specific weight tests and compaction according to the modified Proctor test were performed on laterite samples. Using the radar method, experimental permittivities are determined for laterite samples by the point method of propagation times and confirmed by the diffraction hyperbole method. The geotechnical and radar data obtained allowed correlations between permittivity and water content on the one hand and between permittivity and dry density on the other. The results show that the maximum dry density as a function of permittivity corresponds with the optimum Proctor, which confirms the results previously obtained on Diack laterite.
文摘In tropical regions,heavy rainfall induces erosion and shallow landslides on road embankments.Cement-based stabilization methods,common in these regions,contribute to climate change due to their high carbon footprint.This study explored the potential application of coir fiber-reinforced laterite soil-bottom ash mixtures as embankment materials in the tropics.The objective is to enhance engineered embankment slopes'erosion resistance and stability while offering reuse options for industrial byproducts.This study examined various mix designs for unconfined compressive strength(UCS)and permeability,utilizing 30%bottom ash(BA)and 1%coir fiber(CF)with varying sizes ranging from 10 to 40 mm,6%lime,and laterite soil(LS),followed by microstructural analyses.The results demonstrate that the compressive strength increases as the CF length increases to 25 mm.In contrast,permeability increases continuously with increasing CF length.Lime-treated mixtures exhibit superior short-and long-term strength and reduce permeability owing to the formation of cementitious materials,as confirmed by microstructural analyses.A lab-scale slope box was constructed to evaluate the surface erosion of the stabilized laterite soil embankment.Based on the rainfall simulation results,the LS-BA-CF mixtures show better resistance to erosion and deformation compared to untreated LS,especially when lime is added to the top layer.This study provides insights into a sustainable and cost-effective approach for slope stabilization using BA and CF,offering a promising solution for tropical regions susceptible to surface erosion and landslides.
文摘The leaching behavior of metals from a nickeliferous limonitic laterite ore was investigated by high pressure acid leaching process for the extraction of nickel and cobalt.The effects of sulfuric acid added,leaching temperature,leaching time and liquid/solid(L/S) ratio on metals extraction were examined.More than 97% Ni,96% Co,93% Mn,95% Mg and less than 1% Fe are extracted under optimum conditions.Analysis of the high pressure acid leaching residue by chemical and XRD analysis indicates that the residual iron and sulfur are mainly present in phases of hematite and alunite,respectively.The high pressure leaching process provides a simple and efficient way for the high recovery of nickel and cobalt from laterite ore,leaving residue as a suitable iron resource.
基金Project (50974135) supported by the National Natural Science Foundation of China
文摘To acquire understanding of Ni enrichment from laterite ore,the mineralogy and crystal chemistry of a low grade limonite type nickel laterite ore sample assaying 0.97% Ni from Indonesia were studied using optical microscopy,X-ray diffraction(XRD),scanning electron microscopy(SEM) and electron probe microanalysis(EPMA).According to EPMA results,the mineral includes 80% goethite((Fe,Ni,Al)O(OH)) with 0.87% Ni,15% silicate minerals with lizardite((Mg,Fe,Ni)3Si2O5(OH)) and olivine((Mg,Fe,Ni)2SiO4),and 1.19% Ni,and other minor phases,such as hematite,maghemite,chromite and quartz,and no Ni was detected.The mineralogy of the laterite ore indicates that due to the complicated association of the various phases and the variable distribution of Ni,this refractory laterite ore can not be upgraded by traditional physical beneficiation processes.
基金Project(51134002)supported by the National Natural Science Foundation of ChinaProject(2012BAB14B02)supported by the Ministry of Science and Technology of ChinaProject(12120113086600)supported by Ministry of Land and Resources of China
文摘A low-grade nickel laterite ore was reduced at different reduction temperatures. The morphology of metallic particles was investigated by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). Experimental results indicate that the metallic nickel and iron gradually assemble and grow into larger spherical particles with increasing temperature and prolonging time. After reduction, the nickel laterite ore obviously changes into two parts of Fe-Ni metallic particles and slag matrix. An obvious relationship is found between the reduction of iron magnesium olivine and its crystal chemical properties. The nickel and iron oxides are reduced to metallic by reductant, and the lattice of olivine is destroyed. The entire reduction process is comprised of oxide reduction and metallic phase growth.
基金Project(51125018)supported by the National Natural Science Foundation for Distinguished Young Scholars of ChinaProject(51204153)supported by the National Natural Science Foundation of ChinaProject(2011BAC06B07)supported by the National High Technology Research and Development Program,China
文摘A novel process was proposed for the activation pretreatment of limonitic laterite ores by Na2CO3 roasting. Dechromization and dealumination kinetics of the laterite ores and the effect of particle size, Na2CO3-ore mass ratio, and roasting temperature on Cr and Al extraction were studied. Experimental results indicate that the extraction rates of Cr and Al are up to 99%and 82%, respectively, under the optimal particle size of 44–74μm, Na2CO3-to-ore mass ratio of 0.6:1, and temperature of 1000 ℃. Dechromization within the range of 600–800 oC is controlled by the diffusion through the product layer with an apparent activation energy of 3.9 kJ/mol, and that it is controlled by the chemical reaction at the surface within the range of 900–1100 ℃ with an apparent activation energy of 54.3 kJ/mol. Besides, the Avrami diffusion controlled model with on apparent activation energy of 16.4 kJ/mol is most applicable for dealumination. Furthermore, 96.8%Ni and 95.6%Co could be extracted from the alkali-roasting residues in the subsequent pressure acid leaching process.
基金Project(2012CB722805)supported by the National Basic Research Program of China
文摘As the sulfide ore deposits become less economical and environmental viable as a source of nickel,increasing attention is being paid to the laterite ores.But in the pyrometallurgical process of laterite,more efforts should be paid to control the reduction of iron oxide in order to get high nickel-content nickeliferous product.For these reasons,equilibrium condition of iron oxide when laterite ore was selectively reduced by CO2/CO,H2O/H2 and CO2/H2 was studied from the perspective of iron activity with an assumption that the activities of Fe O and Fe3O4 equal 1 in this work,and it well accounts for the inescapability of Fe metallization.Activity coefficient of iron in Ni-Fe binary solid alloy was calculated by Miedema model based on the known thermodynamics datum filed.According to Raoult's law,the relationship among the Fe/Ni ratio,reduction temperature and reduction gas composition was calculated when laterite ore was selectively reduced by the three different reduction systems.The calculation result was discussed and also compared with the experimental result.The trend of metal iron content in the reduction product of laterite ore varying with temperature and gas composition was well predicted by the calculation result.
文摘Most of the laterites found in Ivory Coast do not meet the technical conditions to be used in their natural state for the design of road foundations. Also, to meet the growing needs for road materials, various amendments are made to them, including litho-stabilization. Thus, this study proposes to understand the influence of the granular class of natural aggregates on the performance of laterites. To achieve this objective, different proportions of crushed granites of class 0/5, 0/15 and 5/15 have been incorporated into the soils of southern Côte d’Ivoire, especially in Samo. This modified soil has been subjected to mechanical tests such as the modified Proctor and CBR test. The results obtained show that the dry densities of the incorporated laterites containing crushed granites increase with the content of natural aggregates and decrease with the increase in the water content. Likewise, the CBR bearing indices at 95% of the Modified Optimum Proctor of the different compositions (laterites + crushed granites) increase with the proportion of aggregates. The addition of coarse aggregates to the laterites therefore promotes the establishment of a framework which improves its bearing capacity. From 20% to 30% crushed granites respectively of class 0/15;0/5 and 5/15, the values of the CBR obtained are greater than those of 30% therefore these modified soils can be used as a foundation layer for traffic of T1, T2 and T3 type. Likewise, the laterites’ mixtures with at least 40% crushed granites of class 0/15 and 0/5 can also be used for the foundation and base layers.
基金Projects(51904058,51734005)supported by the National Natural Science Foundation of ChinaProject(2018YFC1901901902)supported by the National Key Research and Development Program of China
文摘The process of deep reduction and magnetic separation was proposed to enrich nickel and iron from laterite nickel ores.Results show that nickel-iron concentrates with nickel grade of 6.96%,nickel recovery of 94.06%,iron grade of 34.74%,and iron recovery of 80.44% could be obtained after magnetic separation under the conditions of reduction temperature of 1275℃,reduction time of 50 min,slag basicity of 1.0,carbon-containing coefficient of 2.5,and magnetic field strength of 72 kA/m.Reduction temperature and time affected the possibility of deep reduction and reaction progress.Slag basicity affected the composition of slag in burden and the spilling and enriching rate of nickel-iron from a matrix to form nickel-iron particles.Nickel-iron particles were generated,aggregated,and grew gradually in the reduction process.Nickel-iron particles can be effectively separated from gangue minerals by magnetic separation.