Since piezoelectric ceramic/polymer composites have been widely used as smart materials and smart structures, it is more and more important to obtain the closed-from solutions of the effective properties of piezocompo...Since piezoelectric ceramic/polymer composites have been widely used as smart materials and smart structures, it is more and more important to obtain the closed-from solutions of the effective properties of piezocomposites with piezoelectric ellipsoidal inclusions. Based on the closed-from solutions of the electroe- lastic Eshelby's tensors obtained in the part I of this paper and the generalized Bu- diansky's energy-equivalence framework, the closed-form general relations of effective electroelastic moduli of the piezocomposites with piezoelectric ellipsoidal inclusions are given. The relations can be applicable for several micromechanics models, such as the dilute solution and the Mori-Tanaka's method. The difference among the various models is shown to be the way in which the average strain and the average electric field of the inclusion phase are evaluated. Comparison between predicted and exper- imental results shows that the theoretical values in this paper agree quite well with the experimental results. These expressions can be readily utilized in analysis and design of piezocomposites.展开更多
Although pre-Northridge earthquake steel moment resisting frame buildings have been shown to be susceptible to brittle connection failures,they still represent a large fraction of the existing steel buildings in the U...Although pre-Northridge earthquake steel moment resisting frame buildings have been shown to be susceptible to brittle connection failures,they still represent a large fraction of the existing steel buildings in the United States of America.In this study,the performance of the 3-and 9-story Los Angeles pre-Northridge SAC buildings are analyzed considering ductile and brittle beam-column connection failures,and their uncertainty.This paper contributes to understanding the influence of uncertainty associated with connections brittle fracture on building interstory deformation capacity and its impact on bias and variability of fragility functions and loss assessment.The results show that considering brittle connections leads to significantly l arger d rift demands a nd t o h igher r epair costs,particularly under intense ground shaking.New fragility curve parameters are derived that account for the effect of the uncertainty of the strength and deformation capacity of brittle connections.展开更多
This paper studies the effective properties of multi-phase thermoelastic composites. Based on the Helmholtz free energy and the Gibbs free energy of individual phases, the effective elastic tensor, thermal-expansion t...This paper studies the effective properties of multi-phase thermoelastic composites. Based on the Helmholtz free energy and the Gibbs free energy of individual phases, the effective elastic tensor, thermal-expansion tensor, and specific heats of the multi-phase composites are derived by means of the volume average of free-energies of these phases. Particular emphasis is placed on the derivation of new analytical expressions of effective specific heats at constant-strain and constant-stress situations, in which a modified Eshelby's micromechanics theory is developed and the interaction between inclusions is considered. As an illustrative example, the analytical expression of the effective specific heat for a three-phase thermoelastic composite is presented.展开更多
In this paper, we derive the analytical solutions in a three-dimensional anisotropic magnetoelectroelastic bimaterial space subject to uniform extended dislocations and tractions within a horizontal circular area. By ...In this paper, we derive the analytical solutions in a three-dimensional anisotropic magnetoelectroelastic bimaterial space subject to uniform extended dislocations and tractions within a horizontal circular area. By virtue of the Stroh formalism and Fourier transformation, the final expression of solutions in the physical domain contains only line integrals over [0, 2π] rather than infinite integrals. As the reduced cases, the half-space and homogeneous full-space solutions can be directly derived from the present solutions. Also, in terms of material domains, the present solutions can be reduced to the piezoelectric, piezomagnetic, purely elastic materials with different symmetries of material prop- erty. To carry out numerical calculations, Gauss quadrature is adopted. In the numerical examples, the effect of different loading locations on the response at the interface is analyzed. It is shown that, when the magnetic traction or electric dislocation is applied, the physical quantities on the interface may not decrease monotonically as the loading area moves away from the interface. The distributions of different in-plane physical quantities on the upper and lower interfaces under various extended horizontal loadings are compared and the differences are discussed. The work presented in this paper can serve as benchmarks for future numerical studies in related research fields.展开更多
基金The project supported by the National Natural Science Foundation of China
文摘Since piezoelectric ceramic/polymer composites have been widely used as smart materials and smart structures, it is more and more important to obtain the closed-from solutions of the effective properties of piezocomposites with piezoelectric ellipsoidal inclusions. Based on the closed-from solutions of the electroe- lastic Eshelby's tensors obtained in the part I of this paper and the generalized Bu- diansky's energy-equivalence framework, the closed-form general relations of effective electroelastic moduli of the piezocomposites with piezoelectric ellipsoidal inclusions are given. The relations can be applicable for several micromechanics models, such as the dilute solution and the Mori-Tanaka's method. The difference among the various models is shown to be the way in which the average strain and the average electric field of the inclusion phase are evaluated. Comparison between predicted and exper- imental results shows that the theoretical values in this paper agree quite well with the experimental results. These expressions can be readily utilized in analysis and design of piezocomposites.
文摘Although pre-Northridge earthquake steel moment resisting frame buildings have been shown to be susceptible to brittle connection failures,they still represent a large fraction of the existing steel buildings in the United States of America.In this study,the performance of the 3-and 9-story Los Angeles pre-Northridge SAC buildings are analyzed considering ductile and brittle beam-column connection failures,and their uncertainty.This paper contributes to understanding the influence of uncertainty associated with connections brittle fracture on building interstory deformation capacity and its impact on bias and variability of fragility functions and loss assessment.The results show that considering brittle connections leads to significantly l arger d rift demands a nd t o h igher r epair costs,particularly under intense ground shaking.New fragility curve parameters are derived that account for the effect of the uncertainty of the strength and deformation capacity of brittle connections.
基金Project supported by the National Natural Science Foundation of China (Nos. 10602002 and 10932001)the Major State Basic Research Development Program (No. 2010CB731503)
文摘This paper studies the effective properties of multi-phase thermoelastic composites. Based on the Helmholtz free energy and the Gibbs free energy of individual phases, the effective elastic tensor, thermal-expansion tensor, and specific heats of the multi-phase composites are derived by means of the volume average of free-energies of these phases. Particular emphasis is placed on the derivation of new analytical expressions of effective specific heats at constant-strain and constant-stress situations, in which a modified Eshelby's micromechanics theory is developed and the interaction between inclusions is considered. As an illustrative example, the analytical expression of the effective specific heat for a three-phase thermoelastic composite is presented.
基金supported by the National Natural Science Foundation of China (10772024)
文摘In this paper, we derive the analytical solutions in a three-dimensional anisotropic magnetoelectroelastic bimaterial space subject to uniform extended dislocations and tractions within a horizontal circular area. By virtue of the Stroh formalism and Fourier transformation, the final expression of solutions in the physical domain contains only line integrals over [0, 2π] rather than infinite integrals. As the reduced cases, the half-space and homogeneous full-space solutions can be directly derived from the present solutions. Also, in terms of material domains, the present solutions can be reduced to the piezoelectric, piezomagnetic, purely elastic materials with different symmetries of material prop- erty. To carry out numerical calculations, Gauss quadrature is adopted. In the numerical examples, the effect of different loading locations on the response at the interface is analyzed. It is shown that, when the magnetic traction or electric dislocation is applied, the physical quantities on the interface may not decrease monotonically as the loading area moves away from the interface. The distributions of different in-plane physical quantities on the upper and lower interfaces under various extended horizontal loadings are compared and the differences are discussed. The work presented in this paper can serve as benchmarks for future numerical studies in related research fields.