In the era of AI,especially large models,the importance of open source has become increasingly prominent.First,open source allows innovation to avoid starting from scratch.Through iterative innovation,it promotes tech...In the era of AI,especially large models,the importance of open source has become increasingly prominent.First,open source allows innovation to avoid starting from scratch.Through iterative innovation,it promotes technical exchanges and learning globally.Second,resources required for large model R&D are difficult for a single institution to obtain.The evaluation of general large models also requires the participation of experts from various industries.Third,without open source collaboration,it is difficult to form a unified upper-layer software ecosystem.Therefore,open source has become an important cooperation mechanism to promote the development of AI and large models.There are two cases to illustrate how open source and international standards interact with each other.展开更多
Following the groundbreaking introduction of the Transformer architecture in 2017,the development of Large Language Models(LLMs)formally commenced.In May 2020,Chat GPT-3,with over one hundred billion parameters,entere...Following the groundbreaking introduction of the Transformer architecture in 2017,the development of Large Language Models(LLMs)formally commenced.In May 2020,Chat GPT-3,with over one hundred billion parameters,entered the public eye,marking a significant milestone in LLM advancement.展开更多
Stall flutter poses great challenges to flight safety.To alleviate this problem,a steady blowing control considering the perturbation and wake-induced vibration at a large angle of attack is developed in this paper,wh...Stall flutter poses great challenges to flight safety.To alleviate this problem,a steady blowing control considering the perturbation and wake-induced vibration at a large angle of attack is developed in this paper,where two blowings are configured on upper and lower tail surfaces to suppress the stall flutter.The stall flutter with one-degree-of-freedom is first evaluated by numerical simulation.The equation of motion for stall flutter is solved by the Newmark-β method.Then,the stall flutter responses for five blowing speeds,i.e.,0,4,12,20,and 28 m/s under the airspeed range of 3–9 m/s,are studied in detail.The stall flutter suppression mechanism can be summarized as follows:a large blowing speed can inject energy into the boundary layer and enhance the high-pressure zone,which delays the flow separation on the suction surface.In this way,the formation of the leading-edge separation vortex is suppressed.Thus,the dynamic stall vortex is weakened and accelerates shedding.In addition,the driving moment is reduced,which leads to a decrement in the stall flutter amplitude.When the blowing speed is 28 m/s(stall flutter amplitude=0.1357 rad),compared with uncontrolled case(stall flutter amplitude=0.6002 rad),the amplitude can decrease by 77.39%,which demonstrates the effectiveness of the proposed steady blowing based active control strategy.展开更多
A two-dimensional large eddy simulation numerical model is proposed to study the transient vortex flow and pressure oscillation of a large-aspect-ratio solid rocket motor.The numerical model is validated through exper...A two-dimensional large eddy simulation numerical model is proposed to study the transient vortex flow and pressure oscillation of a large-aspect-ratio solid rocket motor.The numerical model is validated through experimental data,finite element analysis and cumulative error analysis.The numerical simulations are executed to obtain the characteristics of the vortex-acoustic and pressure oscillation.The results show that the burning surface regression decreases the motor aspect ratio,increasing the corresponding natural frequency from 260 Hz to 293 Hz.The pressure oscillation phenomenon is formed due to the vortex-acoustic coupling.Decreasing the corner vortex shedding intensity shows negative effects on the dimensionless amplitude of the pressure oscillation.The head cavity without the injection can decrease the vortex-acoustic coupling level at the acoustic pressure antinode.The modified motor with head cavity can obtain a lower dimensionless oscillating pressure amplitude 0.00149 in comparison with 0.00895 of the original motor.The aspect ratio and volume of the head cavity without the injection have great effects on the pressure oscillation suppression,particularly at the low aspect ratio or large volume.The reason is that the mass in the region around the acoustic pressure antinode is extracted centrally,reducing the energy contribution to the acoustic system.With the volume increasing,the acoustic energy capacity increases.展开更多
Large models,such as large language models(LLMs),vision-language models(VLMs),and multimodal agents,have become key elements in artificial intelli⁃gence(AI)systems.Their rapid development has greatly improved percepti...Large models,such as large language models(LLMs),vision-language models(VLMs),and multimodal agents,have become key elements in artificial intelli⁃gence(AI)systems.Their rapid development has greatly improved perception,generation,and decision-making in various fields.However,their vast scale and complexity bring about new security challenges.Issues such as backdoor vulnerabilities during training,jailbreaking in multimodal rea⁃soning,and data provenance and copyright auditing have made security a critical focus for both academia and industry.展开更多
The ability to generate high pressures in a large-volume press(LVP)is crucial for the study of matter under extreme conditions.Here,we have achieved ultrahigh pressures of and 50 GPa,respectively,at room temperature a...The ability to generate high pressures in a large-volume press(LVP)is crucial for the study of matter under extreme conditions.Here,we have achieved ultrahigh pressures of and 50 GPa,respectively,at room temperature and a high temperature of 1900 K∼60within a millimeter-sized sample volume in a Kawai-type LVP(KLVP)using hard tungsten carbide(WC)and newly designed assem-blies.The introduction of electroconductive polycrystalline boron-doped diamond and dense alumina wrapped with Cu foils into a large conventional cell assembly enables the detection of resistance variations in the Fe_(2)O_(3) pressure standard upon compression.The efficiency of pressure generation in the newly developed cell assembly equipped with conventional ZK10F WC anvils is significantly higher than that of conventional assemblies with some ultrahard or tapered WC anvils.Our study has enabled the routine gener-ation of pressures exceeding 50 GPa within a millimeter-sized sample chamber that have been inaccessible with traditional KLVPs.This advance in high-pressure technology not only breaks a record for pressure generation in traditional KLVPs,but also opens up new avenues for exploration of the properties of the Earth’s deep interior and for the synthesis of novel materials at extreme high pressures.展开更多
BACKGROUND Gastrointestinal diseases have complex etiologies and clinical presentations.An accurate diagnosis requires physicians to integrate diverse information,including medical history,laboratory test results,and ...BACKGROUND Gastrointestinal diseases have complex etiologies and clinical presentations.An accurate diagnosis requires physicians to integrate diverse information,including medical history,laboratory test results,and imaging findings.Existing artificial intelligence-assisted diagnostic tools are limited to single-modality information,resulting in recommendations that are often incomplete and may be associated with clinical or legal risks.AIM To develop and evaluate a collaborative multimodal large language model(LLM)framework for clinical decision-making in digestive diseases.METHODS In this observational study,DeepGut,a multimodal LLM collaborative diagnostic framework,was developed to integrate four distinct large models into a four-tiered structure.The framework sequentially accomplishes multimodal infor-mation extraction,logical“chain”construction,diagnostic and treatment suggestion generation,and risk analysis.The model was evaluated using objective metrics,which assess the reliability and comprehensiveness of model-generated results,and subjective expert opinions,which examine the effectiveness of the framework in assisting physicians.RESULTS The diagnostic and treatment recommendations generated by the DeepGut framework achieved exceptional performance,with a diagnostic accuracy of 97.8%,diagnostic completeness of 93.9%,treatment plan accuracy of 95.2%,and treatment plan completeness of 98.0%,significantly surpassing the capabilities of single-modal LLM-based diagnostic tools.Experts evaluating the framework commended the completeness,relevance,and logical coherence of its outputs.However,the collaborative multimodal LLM approach resulted in increased input and output token counts,leading to higher computational costs and extended diagnostic times.CONCLUSION The framework achieves successful integration of multimodal diagnostic data,demonstrating enhanced performance enabled by multimodal LLM collaboration,which opens new horizons for the clinical application of artificial intelligence-assisted technology.展开更多
In recent years,deep learning has been introduced into the field of Single-pixel imaging(SPI),garnering significant attention.However,conventional networks still exhibit limitations in preserving image details.To addr...In recent years,deep learning has been introduced into the field of Single-pixel imaging(SPI),garnering significant attention.However,conventional networks still exhibit limitations in preserving image details.To address this issue,we integrate Large Kernel Convolution(LKconv)into the U-Net framework,proposing an enhanced network structure named U-LKconv network,which significantly enhances the capability to recover image details even under low sampling conditions.展开更多
0 INTRODUCTION Due to the rapid population growth and the accelerated urbanization process,the contradiction between the demand for expanding ground space and the limited available land scale is becoming increasingly ...0 INTRODUCTION Due to the rapid population growth and the accelerated urbanization process,the contradiction between the demand for expanding ground space and the limited available land scale is becoming increasingly prominent.China has implemented and completed several largescale land infilling and excavation projects(Figure 1),which have become the main way to increase land resources and expand construction land.展开更多
This article elucidates the concept of large model technology,summarizes the research status of large model technology both domestically and internationally,provides an overview of the application status of large mode...This article elucidates the concept of large model technology,summarizes the research status of large model technology both domestically and internationally,provides an overview of the application status of large models in vertical industries,outlines the challenges and issues confronted in applying large models in the oil and gas sector,and offers prospects for the application of large models in the oil and gas industry.The existing large models can be briefly divided into three categories:large language models,visual large models,and multimodal large models.The application of large models in the oil and gas industry is still in its infancy.Based on open-source large language models,some oil and gas enterprises have released large language model products using methods like fine-tuning and retrieval augmented generation.Scholars have attempted to develop scenario-specific models for oil and gas operations by using visual/multimodal foundation models.A few researchers have constructed pre-trained foundation models for seismic data processing and interpretation,as well as core analysis.The application of large models in the oil and gas industry faces challenges such as current data quantity and quality being difficult to support the training of large models,high research and development costs,and poor algorithm autonomy and control.The application of large models should be guided by the needs of oil and gas business,taking the application of large models as an opportunity to improve data lifecycle management,enhance data governance capabilities,promote the construction of computing power,strengthen the construction of“artificial intelligence+energy”composite teams,and boost the autonomy and control of large model technology.展开更多
Large language models(LLMs)have undergone significant expansion and have been increasingly integrated across various domains.Notably,in the realm of robot task planning,LLMs harness their advanced reasoning and langua...Large language models(LLMs)have undergone significant expansion and have been increasingly integrated across various domains.Notably,in the realm of robot task planning,LLMs harness their advanced reasoning and language comprehension capabilities to formulate precise and efficient action plans based on natural language instructions.However,for embodied tasks,where robots interact with complex environments,textonly LLMs often face challenges due to a lack of compatibility with robotic visual perception.This study provides a comprehensive overview of the emerging integration of LLMs and multimodal LLMs into various robotic tasks.Additionally,we propose a framework that utilizes multimodal GPT-4V to enhance embodied task planning through the combination of natural language instructions and robot visual perceptions.Our results,based on diverse datasets,indicate that GPT-4V effectively enhances robot performance in embodied tasks.This extensive survey and evaluation of LLMs and multimodal LLMs across a variety of robotic tasks enriches the understanding of LLM-centric embodied intelligence and provides forward-looking insights towards bridging the gap in Human-Robot-Environment interaction.展开更多
In recent years,Volunteered Geographic Information(VGI)has emerged as a crucial source of mapping data,contributed by users through crowdsourcing platforms such as OpenStreetMap.This paper presents a novel approach th...In recent years,Volunteered Geographic Information(VGI)has emerged as a crucial source of mapping data,contributed by users through crowdsourcing platforms such as OpenStreetMap.This paper presents a novel approach that Integrates Large Language Models(LLMs)into a fully automated mapping workflow,utilizing VGI data.The process leverages Prompt Engineering,which involves designing and optimizing input instructions to ensure the LLM produces desired mapping outputs.By constructing precise and detailed prompts,LLM agents are able to accurately interpret mapping requirements,and autonomously extract,analyze,and process VGI geospatial data.They dynamically interact with mapping tools to automate the entire mapping process—from data acquisition to map generation.This approach significantly streamlines the creation of high-quality mapping outputs,reducing the time and resources typically required for such tasks.Moreover,the system lowers the barrier for non-expert users,enabling them to generate accurate maps without extensive technical expertise.Through various case studies,we demonstrate the LLM application across different mapping scenarios,highlighting its potential to enhance the efficiency,accuracy,and accessibility of map production.The results suggest that LLM-powered mapping systems can not only optimize VGI data processing but also expand the usability of ubiquitous mapping across diverse fields,including urban planning and infrastructure development.展开更多
Purpose:Evaluating the quality of academic journal articles is a time consuming but critical task for national research evaluation exercises,appointments and promotion.It is therefore important to investigate whether ...Purpose:Evaluating the quality of academic journal articles is a time consuming but critical task for national research evaluation exercises,appointments and promotion.It is therefore important to investigate whether Large Language Models(LLMs)can play a role in this process.Design/methodology/approach:This article assesses which ChatGPT inputs(full text without tables,figures,and references;title and abstract;title only)produce better quality score estimates,and the extent to which scores are affected by ChatGPT models and system prompts.Findings:The optimal input is the article title and abstract,with average ChatGPT scores based on these(30 iterations on a dataset of 51 papers)correlating at 0.67 with human scores,the highest ever reported.ChatGPT 4o is slightly better than 3.5-turbo(0.66),and 4o-mini(0.66).Research limitations:The data is a convenience sample of the work of a single author,it only includes one field,and the scores are self-evaluations.Practical implications:The results suggest that article full texts might confuse LLM research quality evaluations,even though complex system instructions for the task are more effective than simple ones.Thus,whilst abstracts contain insufficient information for a thorough assessment of rigour,they may contain strong pointers about originality and significance.Finally,linear regression can be used to convert the model scores into the human scale scores,which is 31%more accurate than guessing.Originality/value:This is the first systematic comparison of the impact of different prompts,parameters and inputs for ChatGPT research quality evaluations.展开更多
The integration of artificial intelligence(AI)technology,particularly large language models(LLMs),has become essential across various sectors due to their advanced language comprehension and generation capabilities.De...The integration of artificial intelligence(AI)technology,particularly large language models(LLMs),has become essential across various sectors due to their advanced language comprehension and generation capabilities.Despite their transformative impact in fields such as machine translation and intelligent dialogue systems,LLMs face significant challenges.These challenges include safety,security,and privacy concerns that undermine their trustworthiness and effectiveness,such as hallucinations,backdoor attacks,and privacy leakage.Previous works often conflated safety issues with security concerns.In contrast,our study provides clearer and more reasonable definitions for safety,security,and privacy within the context of LLMs.Building on these definitions,we provide a comprehensive overview of the vulnerabilities and defense mechanisms related to safety,security,and privacy in LLMs.Additionally,we explore the unique research challenges posed by LLMs and suggest potential avenues for future research,aiming to enhance the robustness and reliability of LLMs in the face of emerging threats.展开更多
Recently,tool learning with large language models(LLMs)has emerged as a promising paradigm for augmenting the capabilities of LLMs to tackle highly complex problems.Despite growing attention and rapid advancements in ...Recently,tool learning with large language models(LLMs)has emerged as a promising paradigm for augmenting the capabilities of LLMs to tackle highly complex problems.Despite growing attention and rapid advancements in this field,the existing literature remains fragmented and lacks systematic organization,posing barriers to entry for newcomers.This gap motivates us to conduct a comprehensive survey of existing works on tool learning with LLMs.In this survey,we focus on reviewing existing literature from the two primary aspects(1)why tool learning is beneficial and(2)how tool learning is implemented,enabling a comprehensive understanding of tool learning with LLMs.We first explore the“why”by reviewing both the benefits of tool integration and the inherent benefits of the tool learning paradigm from six specific aspects.In terms of“how”,we systematically review the literature according to a taxonomy of four key stages in the tool learning workflow:task planning,tool selection,tool calling,and response generation.Additionally,we provide a detailed summary of existing benchmarks and evaluation methods,categorizing them according to their relevance to different stages.Finally,we discuss current challenges and outline potential future directions,aiming to inspire both researchers and industrial developers to further explore this emerging and promising area.展开更多
Large size titanium alloy parts are widely used in aerospace.However,they are difficult to manufacture using mechanical cutting technology because of severe tool wear.Electrochemical jet machining is a promising techn...Large size titanium alloy parts are widely used in aerospace.However,they are difficult to manufacture using mechanical cutting technology because of severe tool wear.Electrochemical jet machining is a promising technology to achieve high efficiency,because it has high machining flexibility and no machining tool wear.However,reports on the macro electrochemical jet machining of large size titanium alloy parts are very scarce,because it is difficult to achieve effective constraint of the flow field in macro electrochemical jet machining.In addition,titanium alloy is very sensitive to fluctuation of the flow field,and a turbulent flow field would lead to serious stray corrosion.This paper reports a series of investigations of the electrochemical jet machining of titanium alloy parts.Based on the flow analysis and experiments,the machining flow field was effectively constrained.TB6 titanium alloy part with a perimeter of one meter was machined.The machined surface was smooth with no obvious machining defects.The machining process was particularly stable with no obvious spark discharge.The research provides a reference for the application of electrochemical jet machining technology to achieve large allowance material removal in the machining of large titanium alloy parts.展开更多
BACKGROUND Inflammatory bowel disease(IBD)is a global health burden that affects millions of individuals worldwide,necessitating extensive patient education.Large language models(LLMs)hold promise for addressing patie...BACKGROUND Inflammatory bowel disease(IBD)is a global health burden that affects millions of individuals worldwide,necessitating extensive patient education.Large language models(LLMs)hold promise for addressing patient information needs.However,LLM use to deliver accurate and comprehensible IBD-related medical information has yet to be thoroughly investigated.AIM To assess the utility of three LLMs(ChatGPT-4.0,Claude-3-Opus,and Gemini-1.5-Pro)as a reference point for patients with IBD.METHODS In this comparative study,two gastroenterology experts generated 15 IBD-related questions that reflected common patient concerns.These questions were used to evaluate the performance of the three LLMs.The answers provided by each model were independently assessed by three IBD-related medical experts using a Likert scale focusing on accuracy,comprehensibility,and correlation.Simultaneously,three patients were invited to evaluate the comprehensibility of their answers.Finally,a readability assessment was performed.RESULTS Overall,each of the LLMs achieved satisfactory levels of accuracy,comprehensibility,and completeness when answering IBD-related questions,although their performance varies.All of the investigated models demonstrated strengths in providing basic disease information such as IBD definition as well as its common symptoms and diagnostic methods.Nevertheless,when dealing with more complex medical advice,such as medication side effects,dietary adjustments,and complication risks,the quality of answers was inconsistent between the LLMs.Notably,Claude-3-Opus generated answers with better readability than the other two models.CONCLUSION LLMs have the potential as educational tools for patients with IBD;however,there are discrepancies between the models.Further optimization and the development of specialized models are necessary to ensure the accuracy and safety of the information provided.展开更多
Software security poses substantial risks to our society because software has become part of our life. Numerous techniques have been proposed to resolve or mitigate the impact of software security issues. Among them, ...Software security poses substantial risks to our society because software has become part of our life. Numerous techniques have been proposed to resolve or mitigate the impact of software security issues. Among them, software testing and analysis are two of the critical methods, which significantly benefit from the advancements in deep learning technologies. Due to the successful use of deep learning in software security, recently,researchers have explored the potential of using large language models(LLMs) in this area. In this paper, we systematically review the results focusing on LLMs in software security. We analyze the topics of fuzzing, unit test, program repair, bug reproduction, data-driven bug detection, and bug triage. We deconstruct these techniques into several stages and analyze how LLMs can be used in the stages. We also discuss the future directions of using LLMs in software security, including the future directions for the existing use of LLMs and extensions from conventional deep learning research.展开更多
ChatGPT is a powerful artificial intelligence(AI)language model that has demonstrated significant improvements in various natural language processing(NLP) tasks. However, like any technology, it presents potential sec...ChatGPT is a powerful artificial intelligence(AI)language model that has demonstrated significant improvements in various natural language processing(NLP) tasks. However, like any technology, it presents potential security risks that need to be carefully evaluated and addressed. In this survey, we provide an overview of the current state of research on security of using ChatGPT, with aspects of bias, disinformation, ethics, misuse,attacks and privacy. We review and discuss the literature on these topics and highlight open research questions and future directions.Through this survey, we aim to contribute to the academic discourse on AI security, enriching the understanding of potential risks and mitigations. We anticipate that this survey will be valuable for various stakeholders involved in AI development and usage, including AI researchers, developers, policy makers, and end-users.展开更多
文摘In the era of AI,especially large models,the importance of open source has become increasingly prominent.First,open source allows innovation to avoid starting from scratch.Through iterative innovation,it promotes technical exchanges and learning globally.Second,resources required for large model R&D are difficult for a single institution to obtain.The evaluation of general large models also requires the participation of experts from various industries.Third,without open source collaboration,it is difficult to form a unified upper-layer software ecosystem.Therefore,open source has become an important cooperation mechanism to promote the development of AI and large models.There are two cases to illustrate how open source and international standards interact with each other.
文摘Following the groundbreaking introduction of the Transformer architecture in 2017,the development of Large Language Models(LLMs)formally commenced.In May 2020,Chat GPT-3,with over one hundred billion parameters,entered the public eye,marking a significant milestone in LLM advancement.
基金co-supported by the National Natural Science Foundation of China(Nos.52472394,52425211,52201327,52272360)。
文摘Stall flutter poses great challenges to flight safety.To alleviate this problem,a steady blowing control considering the perturbation and wake-induced vibration at a large angle of attack is developed in this paper,where two blowings are configured on upper and lower tail surfaces to suppress the stall flutter.The stall flutter with one-degree-of-freedom is first evaluated by numerical simulation.The equation of motion for stall flutter is solved by the Newmark-β method.Then,the stall flutter responses for five blowing speeds,i.e.,0,4,12,20,and 28 m/s under the airspeed range of 3–9 m/s,are studied in detail.The stall flutter suppression mechanism can be summarized as follows:a large blowing speed can inject energy into the boundary layer and enhance the high-pressure zone,which delays the flow separation on the suction surface.In this way,the formation of the leading-edge separation vortex is suppressed.Thus,the dynamic stall vortex is weakened and accelerates shedding.In addition,the driving moment is reduced,which leads to a decrement in the stall flutter amplitude.When the blowing speed is 28 m/s(stall flutter amplitude=0.1357 rad),compared with uncontrolled case(stall flutter amplitude=0.6002 rad),the amplitude can decrease by 77.39%,which demonstrates the effectiveness of the proposed steady blowing based active control strategy.
基金supported by the Natural Science Foundation of Hunan Province of China(No.2023JJ40672)the Innovation Science Fund Project of National University of Defense Technology,China(No.ZK2023-039)。
文摘A two-dimensional large eddy simulation numerical model is proposed to study the transient vortex flow and pressure oscillation of a large-aspect-ratio solid rocket motor.The numerical model is validated through experimental data,finite element analysis and cumulative error analysis.The numerical simulations are executed to obtain the characteristics of the vortex-acoustic and pressure oscillation.The results show that the burning surface regression decreases the motor aspect ratio,increasing the corresponding natural frequency from 260 Hz to 293 Hz.The pressure oscillation phenomenon is formed due to the vortex-acoustic coupling.Decreasing the corner vortex shedding intensity shows negative effects on the dimensionless amplitude of the pressure oscillation.The head cavity without the injection can decrease the vortex-acoustic coupling level at the acoustic pressure antinode.The modified motor with head cavity can obtain a lower dimensionless oscillating pressure amplitude 0.00149 in comparison with 0.00895 of the original motor.The aspect ratio and volume of the head cavity without the injection have great effects on the pressure oscillation suppression,particularly at the low aspect ratio or large volume.The reason is that the mass in the region around the acoustic pressure antinode is extracted centrally,reducing the energy contribution to the acoustic system.With the volume increasing,the acoustic energy capacity increases.
文摘Large models,such as large language models(LLMs),vision-language models(VLMs),and multimodal agents,have become key elements in artificial intelli⁃gence(AI)systems.Their rapid development has greatly improved perception,generation,and decision-making in various fields.However,their vast scale and complexity bring about new security challenges.Issues such as backdoor vulnerabilities during training,jailbreaking in multimodal rea⁃soning,and data provenance and copyright auditing have made security a critical focus for both academia and industry.
基金supported by the National Key R&D Program of China(Grant No.2023YFA1406200)the National Natural Science Foundation of China(Grant Nos.42272041 and 52302043)+2 种基金the National Natural Science Foundation of China(Grant No.U23A20561)the Jilin University High-level Innovation Team Foundation(Grant No.2021TD–05)the Shanghai Synchrotron Radiation Facility(Grant Nos.2024-SSRF-PT-510031 and 505511).
文摘The ability to generate high pressures in a large-volume press(LVP)is crucial for the study of matter under extreme conditions.Here,we have achieved ultrahigh pressures of and 50 GPa,respectively,at room temperature and a high temperature of 1900 K∼60within a millimeter-sized sample volume in a Kawai-type LVP(KLVP)using hard tungsten carbide(WC)and newly designed assem-blies.The introduction of electroconductive polycrystalline boron-doped diamond and dense alumina wrapped with Cu foils into a large conventional cell assembly enables the detection of resistance variations in the Fe_(2)O_(3) pressure standard upon compression.The efficiency of pressure generation in the newly developed cell assembly equipped with conventional ZK10F WC anvils is significantly higher than that of conventional assemblies with some ultrahard or tapered WC anvils.Our study has enabled the routine gener-ation of pressures exceeding 50 GPa within a millimeter-sized sample chamber that have been inaccessible with traditional KLVPs.This advance in high-pressure technology not only breaks a record for pressure generation in traditional KLVPs,but also opens up new avenues for exploration of the properties of the Earth’s deep interior and for the synthesis of novel materials at extreme high pressures.
基金Supported by China Health Promotion Foundation Young Doctors’Research Foundation for Inflammatory Bowel DiseaseTaishan Scholars Program of Shandong Province,China,NO.tsqn202306343National Natural Science Foundation of China,No.82270580,No.82070552,No.82270578,and No.82300599.
文摘BACKGROUND Gastrointestinal diseases have complex etiologies and clinical presentations.An accurate diagnosis requires physicians to integrate diverse information,including medical history,laboratory test results,and imaging findings.Existing artificial intelligence-assisted diagnostic tools are limited to single-modality information,resulting in recommendations that are often incomplete and may be associated with clinical or legal risks.AIM To develop and evaluate a collaborative multimodal large language model(LLM)framework for clinical decision-making in digestive diseases.METHODS In this observational study,DeepGut,a multimodal LLM collaborative diagnostic framework,was developed to integrate four distinct large models into a four-tiered structure.The framework sequentially accomplishes multimodal infor-mation extraction,logical“chain”construction,diagnostic and treatment suggestion generation,and risk analysis.The model was evaluated using objective metrics,which assess the reliability and comprehensiveness of model-generated results,and subjective expert opinions,which examine the effectiveness of the framework in assisting physicians.RESULTS The diagnostic and treatment recommendations generated by the DeepGut framework achieved exceptional performance,with a diagnostic accuracy of 97.8%,diagnostic completeness of 93.9%,treatment plan accuracy of 95.2%,and treatment plan completeness of 98.0%,significantly surpassing the capabilities of single-modal LLM-based diagnostic tools.Experts evaluating the framework commended the completeness,relevance,and logical coherence of its outputs.However,the collaborative multimodal LLM approach resulted in increased input and output token counts,leading to higher computational costs and extended diagnostic times.CONCLUSION The framework achieves successful integration of multimodal diagnostic data,demonstrating enhanced performance enabled by multimodal LLM collaboration,which opens new horizons for the clinical application of artificial intelligence-assisted technology.
文摘In recent years,deep learning has been introduced into the field of Single-pixel imaging(SPI),garnering significant attention.However,conventional networks still exhibit limitations in preserving image details.To address this issue,we integrate Large Kernel Convolution(LKconv)into the U-Net framework,proposing an enhanced network structure named U-LKconv network,which significantly enhances the capability to recover image details even under low sampling conditions.
基金funded by the Key Research and Development Program of Shaanxi Province(No.2024SFYBXM-669)the National Natural Science Foundation of China(No.42271078)。
文摘0 INTRODUCTION Due to the rapid population growth and the accelerated urbanization process,the contradiction between the demand for expanding ground space and the limited available land scale is becoming increasingly prominent.China has implemented and completed several largescale land infilling and excavation projects(Figure 1),which have become the main way to increase land resources and expand construction land.
基金Supported by the National Natural Science Foundation of China(72088101,42372175)PetroChina Science and Technology Innovation Fund Program(2021DQ02-0904)。
文摘This article elucidates the concept of large model technology,summarizes the research status of large model technology both domestically and internationally,provides an overview of the application status of large models in vertical industries,outlines the challenges and issues confronted in applying large models in the oil and gas sector,and offers prospects for the application of large models in the oil and gas industry.The existing large models can be briefly divided into three categories:large language models,visual large models,and multimodal large models.The application of large models in the oil and gas industry is still in its infancy.Based on open-source large language models,some oil and gas enterprises have released large language model products using methods like fine-tuning and retrieval augmented generation.Scholars have attempted to develop scenario-specific models for oil and gas operations by using visual/multimodal foundation models.A few researchers have constructed pre-trained foundation models for seismic data processing and interpretation,as well as core analysis.The application of large models in the oil and gas industry faces challenges such as current data quantity and quality being difficult to support the training of large models,high research and development costs,and poor algorithm autonomy and control.The application of large models should be guided by the needs of oil and gas business,taking the application of large models as an opportunity to improve data lifecycle management,enhance data governance capabilities,promote the construction of computing power,strengthen the construction of“artificial intelligence+energy”composite teams,and boost the autonomy and control of large model technology.
基金supported by National Natural Science Foundation of China(62376219 and 62006194)Foundational Research Project in Specialized Discipline(Grant No.G2024WD0146)Faculty Construction Project(Grant No.24GH0201148).
文摘Large language models(LLMs)have undergone significant expansion and have been increasingly integrated across various domains.Notably,in the realm of robot task planning,LLMs harness their advanced reasoning and language comprehension capabilities to formulate precise and efficient action plans based on natural language instructions.However,for embodied tasks,where robots interact with complex environments,textonly LLMs often face challenges due to a lack of compatibility with robotic visual perception.This study provides a comprehensive overview of the emerging integration of LLMs and multimodal LLMs into various robotic tasks.Additionally,we propose a framework that utilizes multimodal GPT-4V to enhance embodied task planning through the combination of natural language instructions and robot visual perceptions.Our results,based on diverse datasets,indicate that GPT-4V effectively enhances robot performance in embodied tasks.This extensive survey and evaluation of LLMs and multimodal LLMs across a variety of robotic tasks enriches the understanding of LLM-centric embodied intelligence and provides forward-looking insights towards bridging the gap in Human-Robot-Environment interaction.
基金National Natural Science Foundation of china(No.42371446)Natural Science Foundatiorof Hubei Province(No.2024AFD412)Fundamental Research Funds for National Universities,China University of Geosciences(Wuhan)(No.2024XLA17).
文摘In recent years,Volunteered Geographic Information(VGI)has emerged as a crucial source of mapping data,contributed by users through crowdsourcing platforms such as OpenStreetMap.This paper presents a novel approach that Integrates Large Language Models(LLMs)into a fully automated mapping workflow,utilizing VGI data.The process leverages Prompt Engineering,which involves designing and optimizing input instructions to ensure the LLM produces desired mapping outputs.By constructing precise and detailed prompts,LLM agents are able to accurately interpret mapping requirements,and autonomously extract,analyze,and process VGI geospatial data.They dynamically interact with mapping tools to automate the entire mapping process—from data acquisition to map generation.This approach significantly streamlines the creation of high-quality mapping outputs,reducing the time and resources typically required for such tasks.Moreover,the system lowers the barrier for non-expert users,enabling them to generate accurate maps without extensive technical expertise.Through various case studies,we demonstrate the LLM application across different mapping scenarios,highlighting its potential to enhance the efficiency,accuracy,and accessibility of map production.The results suggest that LLM-powered mapping systems can not only optimize VGI data processing but also expand the usability of ubiquitous mapping across diverse fields,including urban planning and infrastructure development.
文摘Purpose:Evaluating the quality of academic journal articles is a time consuming but critical task for national research evaluation exercises,appointments and promotion.It is therefore important to investigate whether Large Language Models(LLMs)can play a role in this process.Design/methodology/approach:This article assesses which ChatGPT inputs(full text without tables,figures,and references;title and abstract;title only)produce better quality score estimates,and the extent to which scores are affected by ChatGPT models and system prompts.Findings:The optimal input is the article title and abstract,with average ChatGPT scores based on these(30 iterations on a dataset of 51 papers)correlating at 0.67 with human scores,the highest ever reported.ChatGPT 4o is slightly better than 3.5-turbo(0.66),and 4o-mini(0.66).Research limitations:The data is a convenience sample of the work of a single author,it only includes one field,and the scores are self-evaluations.Practical implications:The results suggest that article full texts might confuse LLM research quality evaluations,even though complex system instructions for the task are more effective than simple ones.Thus,whilst abstracts contain insufficient information for a thorough assessment of rigour,they may contain strong pointers about originality and significance.Finally,linear regression can be used to convert the model scores into the human scale scores,which is 31%more accurate than guessing.Originality/value:This is the first systematic comparison of the impact of different prompts,parameters and inputs for ChatGPT research quality evaluations.
基金supported by the National Key R&D Program of China under Grant No.2022YFB3103500the National Natural Science Foundation of China under Grants No.62402087 and No.62020106013+3 种基金the Sichuan Science and Technology Program under Grant No.2023ZYD0142the Chengdu Science and Technology Program under Grant No.2023-XT00-00002-GXthe Fundamental Research Funds for Chinese Central Universities under Grants No.ZYGX2020ZB027 and No.Y030232063003002the Postdoctoral Innovation Talents Support Program under Grant No.BX20230060.
文摘The integration of artificial intelligence(AI)technology,particularly large language models(LLMs),has become essential across various sectors due to their advanced language comprehension and generation capabilities.Despite their transformative impact in fields such as machine translation and intelligent dialogue systems,LLMs face significant challenges.These challenges include safety,security,and privacy concerns that undermine their trustworthiness and effectiveness,such as hallucinations,backdoor attacks,and privacy leakage.Previous works often conflated safety issues with security concerns.In contrast,our study provides clearer and more reasonable definitions for safety,security,and privacy within the context of LLMs.Building on these definitions,we provide a comprehensive overview of the vulnerabilities and defense mechanisms related to safety,security,and privacy in LLMs.Additionally,we explore the unique research challenges posed by LLMs and suggest potential avenues for future research,aiming to enhance the robustness and reliability of LLMs in the face of emerging threats.
基金funded by the National Key R&D Program of China(2023YFA1008704),the National Natural Science Foundation of China(Grant No.62377044)Beijing Key Laboratory of Big Data Management and Analysis Methods,Major Innovation&Planning Interdisciplinary Platform for the“Double-First Class”Initiative,funds for building world-class universities(disciplines)of Renmin University of China,and PCC@RUC.The authors would like to extend their sincere gratitude to Yankai Lin for his constructive feedback throughout the development of this work.
文摘Recently,tool learning with large language models(LLMs)has emerged as a promising paradigm for augmenting the capabilities of LLMs to tackle highly complex problems.Despite growing attention and rapid advancements in this field,the existing literature remains fragmented and lacks systematic organization,posing barriers to entry for newcomers.This gap motivates us to conduct a comprehensive survey of existing works on tool learning with LLMs.In this survey,we focus on reviewing existing literature from the two primary aspects(1)why tool learning is beneficial and(2)how tool learning is implemented,enabling a comprehensive understanding of tool learning with LLMs.We first explore the“why”by reviewing both the benefits of tool integration and the inherent benefits of the tool learning paradigm from six specific aspects.In terms of“how”,we systematically review the literature according to a taxonomy of four key stages in the tool learning workflow:task planning,tool selection,tool calling,and response generation.Additionally,we provide a detailed summary of existing benchmarks and evaluation methods,categorizing them according to their relevance to different stages.Finally,we discuss current challenges and outline potential future directions,aiming to inspire both researchers and industrial developers to further explore this emerging and promising area.
基金the National Natural Science Foundation of China(No.52205468)China Postdoctoral Science Foundation(No.2022M710061 and No.2023T160277)Natural Science Foundation of Jiangsu Province(No.BK20210755)。
文摘Large size titanium alloy parts are widely used in aerospace.However,they are difficult to manufacture using mechanical cutting technology because of severe tool wear.Electrochemical jet machining is a promising technology to achieve high efficiency,because it has high machining flexibility and no machining tool wear.However,reports on the macro electrochemical jet machining of large size titanium alloy parts are very scarce,because it is difficult to achieve effective constraint of the flow field in macro electrochemical jet machining.In addition,titanium alloy is very sensitive to fluctuation of the flow field,and a turbulent flow field would lead to serious stray corrosion.This paper reports a series of investigations of the electrochemical jet machining of titanium alloy parts.Based on the flow analysis and experiments,the machining flow field was effectively constrained.TB6 titanium alloy part with a perimeter of one meter was machined.The machined surface was smooth with no obvious machining defects.The machining process was particularly stable with no obvious spark discharge.The research provides a reference for the application of electrochemical jet machining technology to achieve large allowance material removal in the machining of large titanium alloy parts.
基金Supported by the China Health Promotion Foundation Young Doctors'Research Foundation for Inflammatory Bowel Disease,the Taishan Scholars Program of Shandong Province,China,No.tsqn202306343National Natural Science Foundation of China,No.82270578.
文摘BACKGROUND Inflammatory bowel disease(IBD)is a global health burden that affects millions of individuals worldwide,necessitating extensive patient education.Large language models(LLMs)hold promise for addressing patient information needs.However,LLM use to deliver accurate and comprehensible IBD-related medical information has yet to be thoroughly investigated.AIM To assess the utility of three LLMs(ChatGPT-4.0,Claude-3-Opus,and Gemini-1.5-Pro)as a reference point for patients with IBD.METHODS In this comparative study,two gastroenterology experts generated 15 IBD-related questions that reflected common patient concerns.These questions were used to evaluate the performance of the three LLMs.The answers provided by each model were independently assessed by three IBD-related medical experts using a Likert scale focusing on accuracy,comprehensibility,and correlation.Simultaneously,three patients were invited to evaluate the comprehensibility of their answers.Finally,a readability assessment was performed.RESULTS Overall,each of the LLMs achieved satisfactory levels of accuracy,comprehensibility,and completeness when answering IBD-related questions,although their performance varies.All of the investigated models demonstrated strengths in providing basic disease information such as IBD definition as well as its common symptoms and diagnostic methods.Nevertheless,when dealing with more complex medical advice,such as medication side effects,dietary adjustments,and complication risks,the quality of answers was inconsistent between the LLMs.Notably,Claude-3-Opus generated answers with better readability than the other two models.CONCLUSION LLMs have the potential as educational tools for patients with IBD;however,there are discrepancies between the models.Further optimization and the development of specialized models are necessary to ensure the accuracy and safety of the information provided.
文摘Software security poses substantial risks to our society because software has become part of our life. Numerous techniques have been proposed to resolve or mitigate the impact of software security issues. Among them, software testing and analysis are two of the critical methods, which significantly benefit from the advancements in deep learning technologies. Due to the successful use of deep learning in software security, recently,researchers have explored the potential of using large language models(LLMs) in this area. In this paper, we systematically review the results focusing on LLMs in software security. We analyze the topics of fuzzing, unit test, program repair, bug reproduction, data-driven bug detection, and bug triage. We deconstruct these techniques into several stages and analyze how LLMs can be used in the stages. We also discuss the future directions of using LLMs in software security, including the future directions for the existing use of LLMs and extensions from conventional deep learning research.
文摘ChatGPT is a powerful artificial intelligence(AI)language model that has demonstrated significant improvements in various natural language processing(NLP) tasks. However, like any technology, it presents potential security risks that need to be carefully evaluated and addressed. In this survey, we provide an overview of the current state of research on security of using ChatGPT, with aspects of bias, disinformation, ethics, misuse,attacks and privacy. We review and discuss the literature on these topics and highlight open research questions and future directions.Through this survey, we aim to contribute to the academic discourse on AI security, enriching the understanding of potential risks and mitigations. We anticipate that this survey will be valuable for various stakeholders involved in AI development and usage, including AI researchers, developers, policy makers, and end-users.