Atmospheric pressure plasma treatment(APPT)technology was used herein to treat sheet molding compound(SMC)substrates to increase the lap-shear strength of adhesive-bondedSMCjoints.Further,the mechanisms behind the lap...Atmospheric pressure plasma treatment(APPT)technology was used herein to treat sheet molding compound(SMC)substrates to increase the lap-shear strength of adhesive-bondedSMCjoints.Further,the mechanisms behind the lap-shear strength improvements in APPT-treated adhesive-bonded SMC joints were explored.A maximum lap-shear strength about three times that of the as-received SMC joints was achieved when the APPT distance was set to 20 mm.The surface roughness,which exhibited little benefit to the lap-shear strength,was determined to not be the primary reason for the increase in lap-shear strength.Specifically,X-ray photoelectron spectra revealed that an increased amount of O-containing groups(i.e.,C–O–H,C–O–C,H–O–C=O or R–O–C=O)following APPT contributed to the improved lap-shear strength.In addition,the surface free energy increased significantly after APPT,which improved the lap-shear strength of the adhesive-bonded SMC joints.Compared to the change of surface morphology,the changes in both the surface chemical property and surface free energy played larger roles in increasing the lap-shear strength of APPT-treated SMC joints.展开更多
Friction stir lap welds were produced in 3 mm thick Alclad sheets of Al alloy 2014-T4 using two different tools (with triangular and threaded taper cylindrical pins). The effects of tool geometry on weld microstruct...Friction stir lap welds were produced in 3 mm thick Alclad sheets of Al alloy 2014-T4 using two different tools (with triangular and threaded taper cylindrical pins). The effects of tool geometry on weld microstructure, lap-shear performance and failure mode were investigated. The pin profile was found to significantly influence the hook geometry, which in turn strongly influenced the joint strength and the failure mode. Welds produced in alloy 2014-T4 Alclad sheets by using triangular and threaded taper cylindrical tools exhibited an average lap-shear failure load of 16.5 and 19.5 kN, respectively, while the average failure load for standard riveted joints was only 3.4 kN. Welds produced in alloy 2014-T6 Alclad sheets and in alloy 2014-T4 bare sheets (i.e., no Alclad) were comparatively evaluated with those produced in alloy 2014-T4 Alclad sheets. While the welds made (with threaded taper cylindrical tool) in T6 and T4 conditions showed very similar lap-shear failure loads, the joint efficiency of the welds made in T6 condition (43%) was considerably lower (because of the higher base material strength) than those made in T4 condition (51%). The Alclad layers were found to present no special problems in friction stir lap welding. Welds made with triangular tool in alloy 2014-T4 Alclad and bare sheets showed very similar lap-shear failure loads. The present work provides some useful insights into the use of friction stir welding for joining Al alloys in lap configuration.展开更多
Three types of anodic films(unsealed,hot water sealed and agent sealed)were prepared to study the effects of anodic film structure on the adhesive bonding performance of AA5754 automotive sheets.The morphology of the ...Three types of anodic films(unsealed,hot water sealed and agent sealed)were prepared to study the effects of anodic film structure on the adhesive bonding performance of AA5754 automotive sheets.The morphology of the anodic films was examined by using scanning electron microscope(SEM)and the composition was examined by glow discharge optical emission spectroscopy(GDOES).The adhesive bonding strength and the durability in corrosive environment were investigated by using single lap-hear test and salt spray test(SST),respectively.The results showed that the unsealed sample could provide high initial bonding strength,but the durability was poor in corrosive environment.The hot water sealed sample could provide high durability,but the bonding strength was low.In contrast,the agent sealed sample displayed porous structure at outer layer and partially plugged nano pores structure at inner layer,providing both excellent bonding strength and durability.展开更多
基金the National Natural Science Foundation of China(Grant No.51575397).
文摘Atmospheric pressure plasma treatment(APPT)technology was used herein to treat sheet molding compound(SMC)substrates to increase the lap-shear strength of adhesive-bondedSMCjoints.Further,the mechanisms behind the lap-shear strength improvements in APPT-treated adhesive-bonded SMC joints were explored.A maximum lap-shear strength about three times that of the as-received SMC joints was achieved when the APPT distance was set to 20 mm.The surface roughness,which exhibited little benefit to the lap-shear strength,was determined to not be the primary reason for the increase in lap-shear strength.Specifically,X-ray photoelectron spectra revealed that an increased amount of O-containing groups(i.e.,C–O–H,C–O–C,H–O–C=O or R–O–C=O)following APPT contributed to the improved lap-shear strength.In addition,the surface free energy increased significantly after APPT,which improved the lap-shear strength of the adhesive-bonded SMC joints.Compared to the change of surface morphology,the changes in both the surface chemical property and surface free energy played larger roles in increasing the lap-shear strength of APPT-treated SMC joints.
基金the Indian Space Research Organization (ISRO) for providing financial support forcarrying out this work
文摘Friction stir lap welds were produced in 3 mm thick Alclad sheets of Al alloy 2014-T4 using two different tools (with triangular and threaded taper cylindrical pins). The effects of tool geometry on weld microstructure, lap-shear performance and failure mode were investigated. The pin profile was found to significantly influence the hook geometry, which in turn strongly influenced the joint strength and the failure mode. Welds produced in alloy 2014-T4 Alclad sheets by using triangular and threaded taper cylindrical tools exhibited an average lap-shear failure load of 16.5 and 19.5 kN, respectively, while the average failure load for standard riveted joints was only 3.4 kN. Welds produced in alloy 2014-T6 Alclad sheets and in alloy 2014-T4 bare sheets (i.e., no Alclad) were comparatively evaluated with those produced in alloy 2014-T4 Alclad sheets. While the welds made (with threaded taper cylindrical tool) in T6 and T4 conditions showed very similar lap-shear failure loads, the joint efficiency of the welds made in T6 condition (43%) was considerably lower (because of the higher base material strength) than those made in T4 condition (51%). The Alclad layers were found to present no special problems in friction stir lap welding. Welds made with triangular tool in alloy 2014-T4 Alclad and bare sheets showed very similar lap-shear failure loads. The present work provides some useful insights into the use of friction stir welding for joining Al alloys in lap configuration.
基金Project(2018MXJH17)supported by the Technology Foundation of Aluminum Corporation of China
文摘Three types of anodic films(unsealed,hot water sealed and agent sealed)were prepared to study the effects of anodic film structure on the adhesive bonding performance of AA5754 automotive sheets.The morphology of the anodic films was examined by using scanning electron microscope(SEM)and the composition was examined by glow discharge optical emission spectroscopy(GDOES).The adhesive bonding strength and the durability in corrosive environment were investigated by using single lap-hear test and salt spray test(SST),respectively.The results showed that the unsealed sample could provide high initial bonding strength,but the durability was poor in corrosive environment.The hot water sealed sample could provide high durability,but the bonding strength was low.In contrast,the agent sealed sample displayed porous structure at outer layer and partially plugged nano pores structure at inner layer,providing both excellent bonding strength and durability.