It is common for the rotating pin largely plunging into lower sheet to break up lap interface of Friction Stir Lap Welding(FSLW)joint,but the unavoidable up-bending morphology of hook outside Nugget Zone(NZ)largely re...It is common for the rotating pin largely plunging into lower sheet to break up lap interface of Friction Stir Lap Welding(FSLW)joint,but the unavoidable up-bending morphology of hook outside Nugget Zone(NZ)largely reduces the joint bearing ability.Based on the novel Opposite-directions Flowing FSLW(OF-FSLW)by the self-developed rotating tool with an Xshaped right-left thread pin,the 2024 aluminum alloys lap joint was successfully welded in this study.The migration law of lap interface during welding was investigated by the experimental and numerical methods,and then how the rotating pin and its rotating velocity affect the formation and strength of OF-FSLW joint was further analyzed.The results show that the Material Concentrated Zone(MCZ)which formed above the original lap interface made the hook bend downward,the NZ greatly enlarged and the beginning part of cold lap compressed and thickened,thereby heightening the joint bearing ability.For the OF-FSLW joint,its maximum tensile strength was403 MPa,and the corresponding joint efficiency of 90.8%was an incredible and superb value for the 2000 series heat-treatment strengthened aluminum alloys friction stir welded joint.The OF-FSLW technology by the rotating tool with an X-shaped right-left thread pin is proven to be a greatly effective approach for manufacturing the aluminum alloys lap joint with superb strength.展开更多
Friction stir lap welding of AA2195 Al-Li alloy and Ti alloy was conducted to investigate the formation,microstructure,and mechanical properties of the joints.Results show that under different welding parameters,with ...Friction stir lap welding of AA2195 Al-Li alloy and Ti alloy was conducted to investigate the formation,microstructure,and mechanical properties of the joints.Results show that under different welding parameters,with the decrease in welding heat input,the weld surface is smoother.The Ti/Al joint interface is flat without obvious Ti and Al mixed structure,and the hook structure is not formed under optimal parameters.Due to the enhanced breaking effect of the stirring head,the hook structural defects and intermetallic compounds are more likely to form at the Ti/Al interface at high rotational speed of 1000 r/min,thereby deteriorating the mechanical properties of joints.Decreasing the heat input is beneficial to hardness enhancement of the aluminum alloy in the weld nugget zone.Under the optimal parameters of rotation speed of 800 r/min and welding speed of 120 mm/min,the maximum tensile shear strength of joint is 289 N/mm.展开更多
The composite structures/components made by friction stir lap welding(FSLW)of Mg alloy sheet and Al alloy sheet are of wide application potentials in the manufacturing sector of transportation vehicles.To further impr...The composite structures/components made by friction stir lap welding(FSLW)of Mg alloy sheet and Al alloy sheet are of wide application potentials in the manufacturing sector of transportation vehicles.To further improve the joint quality,the ultrasonic vibration(UV)is exerted in FSLW,and the UV enhanced FSLW(UVeFSLW)was developed for making Mg-to-Al dissimilar joints.The numerical analysis and experimental investigation were combined to study the process mechanism in Mg/Al UVeFSLW.An equation related to the temperature and strain rate was derived to calculate the grain size at different locations of the weld nugget zone,and the effect of grain size distribution on the threshold thermal stress was included,so that the prediction accuracy of flow stress was further improved.With such modified constitutive equation,the numerical simulation was conducted to compare the heat generation,temperature profiles and material flow behaviors in Mg/Al UVeFSLW/FSLW processes.It was found that the exerted UV decreased the temperature at two checking points on the tool/workpiece interface from 707/671 K in FSLW to 689/660 K in UVeFSLW,which suppressed the IMCs thickness at Mg-Al interface from 1.7μm in FSLW to 1.1μm in UVeFSLW.The exerted UV increased the horizontal materials flow ability,and decreased the upward flow ability,which resulted in the increase of effective sheet thickness/effective lap width from 2.01/3.70 mm in FSLW to 2.04/4.84 mm in UVeFSLW.Therefore,the ultrasonic vibration improved the tensile shear strength of Mg-to-Al lap joints by 18%.展开更多
The double-sided lapping process is extensively employed in the manufacturing of wafers,optical windows,and seal rings due to its high efficiency and ability to achieve precise flatness.However,limited research has ex...The double-sided lapping process is extensively employed in the manufacturing of wafers,optical windows,and seal rings due to its high efficiency and ability to achieve precise flatness.However,limited research has explored the thickness uniformity among different workpieces after double-sided lapping,and the underlying mechanism remains unclear.To address the demand for higher precision,this paper first analyzed the relative kinematic model between the workpiece and the lapping plate to clarify the causes of thickness variations among workpieces after double-sided lapping.Subsequently,a finite element method(FEM)model was developed to account for the pressure distribution on the workpiece surfaces at the initial stage of the process.The results indicate that the number of workpieces influences the final thickness variation.Then,various sets of thin copper plates with different thicknesses were lapped,and the findings revealed that five copper plates processed simultaneously exhibited more uniform thickness compared to the three plates.The experimental results align well with the theoretical analysis.Ultimately,a thickness variation of less than 6μm was achieved on five copper plates measuringΦ100×2.9 mm.This study presents a comprehensive analysis of the mechanisms influencing thickness uniformity in the double-sided lapping process and provides practical guidelines for optimizing the process to achieve stringent precision standards in industrial applications.展开更多
Pinless friction stir spot welding(P-FSSW)was performed to manufacture Mg/steel lap joints.Orthogonal tests for P-FSSW of Mg/steel were investigated,and the main factors affecting the properties of Mg/steel lap joints...Pinless friction stir spot welding(P-FSSW)was performed to manufacture Mg/steel lap joints.Orthogonal tests for P-FSSW of Mg/steel were investigated,and the main factors affecting the properties of Mg/steel lap joints were derived.The shear force of the Mg/steel lap joints gradually increased and then decreased as the welding time increased.Maximum shear force was 5.3 kN.Fe-Al intermetallic compound(IMC)was formed at the Mg/steel interface near the steel side,and Mg-Al IMCs were formed at the Mg/steel interface near the Mg alloy side.Mg/steel lap joint was transformed from an initial solid-state welding to fusion-brazing welding as the welding time increased.No hole defects were formed in Mg/steel solid-state welding joints,whereas hole defects appeared in Mg/steel fusion-brazing welding joints.The temperature field of Mg/steel lap joints was simulated to analyze hole defects generated during the welding process.Hole defects can be eliminated by changing the spindle deflection angle,and the shear force decreased.Excessive spindle deflection can also lead to failure to form a stable joint.Hole defects were removed because the spindle deflection angle reduced the interfacial reaction temperature,and a solid-state welding joint was formed,which resulted in an absence of fusion-brazing welding hole formation.展开更多
The effects of tungsten inert gas arc-assisted friction stir welding(TIG-FSW)on the microstructure,tensile properties and corrosion resistance of AA6016 and AA2519 alloys lap joints were investigated by means of optic...The effects of tungsten inert gas arc-assisted friction stir welding(TIG-FSW)on the microstructure,tensile properties and corrosion resistance of AA6016 and AA2519 alloys lap joints were investigated by means of optical microscope,scanning electron microscope,tensile test at room temperature,corrosion immersion tests and electrochemical measurements.The results show that the introduction of TIG arc during FSW process results in a more uniform microstructure of the joint with no tunnel hole defects.Furthermore,it enhances tensile strength and elongation of the joint with increased rates of 11.5%and 50.0%,respectively;meanwhile,the corrosion current density and largest corrosion depth are decreased with reduction rates of 78.2%and 45.7%,respectively.TIG-FSW can promote flow,contact and diffusion of materials,thus improving microstructure of the joint.Additionally,it reduces the size and number of secondary phase particles.Consequently,these factors contribute to the higher tensile properties and corrosion resistance of the joints.展开更多
For friction stir lap welding (FSLW) process by the rotating pin greatly inserting into the bottom plate, the bending-down morphology of hook helps to obtain a high-strength lap joint, and can be more conducive to the...For friction stir lap welding (FSLW) process by the rotating pin greatly inserting into the bottom plate, the bending-down morphology of hook helps to obtain a high-strength lap joint, and can be more conducive to the joint strength when the tensile-fractured path is located in the top plate. In light of this, the reverse-flow FSLW (RF-FSLW) by a newly designed rotating tool with a right-left threaded X-shape pin (X-pin) was employed to weld 2024-T4 aluminum alloys with the same plate thickness, and the flow field simulation, in situ tensile test and EBSD analysis were utilized to understand the relations among the formation features, the fracture features and the joint strengths. The results indicated that under the integrated effects of the bending-down shape of hook, the bulging shape of nugget zone (NZ) and the bending-up shape of beginning part of cold lap near NZ outline, the RF-FSLW joint was tensile fractured in the top plate of joint. For the RF-FSLW joint, its maximum tensile strength was 412 MPa, and the corresponding joint efficiency (92.8%) was larger than that of reported friction stir welded joint of 2024 aluminum alloys in T temper condition. The RF-FSLW technology by the right-left threaded X-pin puts forward an extremely effective way for obtaining the superb-strength lap joint of aluminum alloys.展开更多
太阳能光伏发电已成为仅次于水电和风能的第三大可再生能源,光伏发电受云量时空变化的影响较大,因此准确模拟云天太阳辐射的时空变化对电网安全运行至关重要。围绕如何减小中尺度气象模式的云初始场误差,进而改进云天的太阳辐射模拟这...太阳能光伏发电已成为仅次于水电和风能的第三大可再生能源,光伏发电受云量时空变化的影响较大,因此准确模拟云天太阳辐射的时空变化对电网安全运行至关重要。围绕如何减小中尺度气象模式的云初始场误差,进而改进云天的太阳辐射模拟这一关键科学问题,本文通过研究基于卫星资料同化的LAPS(Local Analysis Prediction System)多时间层三维云分析同化方法,改进三维云结构,并将LAPS模式输出结果作为WRF(Weather Research and Forecasting)模式的初始场,模拟了2008年1月及夏季(6~8月)北京地区的总云量和总辐射的时空分布,重点分析了多云和有降水天气过程总辐射的模拟改进效果及其原因。结果表明,同化前后的总云量模拟值与观测值的时间变化趋势基本一致,但大部分时次总云量的模拟值低于观测值;大部分多云及降水时段同化后总云量模拟值较接近于实测值。1月晴天、多云天以及夏季晴天同化前后总辐射模拟值与实测值的时间变化趋势较一致,但同化前后两者的相关性差异不明显;晴天条件下同化前后总辐射模拟值均低于实测值,1月多云条件下多数时段同化后总辐射模拟误差减小不明显,与总云量的改进效果不显著有关。夏季多云、有降水及6月典型降水三种天气条件下同化前后总辐射模拟值与观测值的相关性稍差,同化后两者的相关性较同化前有所改进,尤其是6月典型降水过程改进效果较明显;同化前总辐射模拟误差较大,而同化后误差显著减小,尤其是6月典型降水过程同化后均方根误差和平均相对误差较同化前分别减小了102.6 W m^(-2)和355.9%,最大相对误差减小更显著;同化后总辐射模拟误差小于同化前的比例高达75%,即大部分时刻同化后模拟误差小于同化前。多云和有降水天气过程总辐射模拟效果的显著改进与总云量的改进密切相关,即同化后总云量模拟值增加,云的反射和散射作用增强,导致模拟总辐射减小,即更接近于实测总辐射值。研究结果对于多云和降水天气条件下太阳辐射的模拟效果改进、太阳能资源客观评估以及光伏电站的发电量预测具有一定的科学和实际应用价值。展开更多
利用LAPS(Local Analysis and Prediction System)系统同化GPS(Global Positioning System)/PWV(Precipitable Water Vapor)资料,分析GPS/PWV资料对LAPS输出场的影响,并结合WRF模式,将LAPS输出场作为其初始场进行降水预报,进一步考察GPS...利用LAPS(Local Analysis and Prediction System)系统同化GPS(Global Positioning System)/PWV(Precipitable Water Vapor)资料,分析GPS/PWV资料对LAPS输出场的影响,并结合WRF模式,将LAPS输出场作为其初始场进行降水预报,进一步考察GPS/PWV资料对降水预报的作用。选取2009年6月28日湖北地区的一次强降水过程,设计三种方案进行试验。结果表明:同化GPS/PWV资料后对LAPS湿度场有显著的改善,而对高度场及风场的作用则不明显;GPS/PWV资料对区域平均可降水量的影响比雷达资料大一个量级;与此同时,利用多种评分方法对6 h累计降水做了检验,分析结果表明同化GPS/PWV资料能够有效地改进WRF模式的初始场,增加丰富的中小尺度信息,并对随后的确定性预报产生正影响。展开更多
基金supported by the National Natural Science Foundation of China(Nos.51874201 and 52074184)Natural Science Foundation project of Liaoning Province(2023-MS238)+1 种基金Liaoning Revitalization talents program(XLYC2203009)the Fundamental Research Funds for the Universities of Liaoning Province。
文摘It is common for the rotating pin largely plunging into lower sheet to break up lap interface of Friction Stir Lap Welding(FSLW)joint,but the unavoidable up-bending morphology of hook outside Nugget Zone(NZ)largely reduces the joint bearing ability.Based on the novel Opposite-directions Flowing FSLW(OF-FSLW)by the self-developed rotating tool with an Xshaped right-left thread pin,the 2024 aluminum alloys lap joint was successfully welded in this study.The migration law of lap interface during welding was investigated by the experimental and numerical methods,and then how the rotating pin and its rotating velocity affect the formation and strength of OF-FSLW joint was further analyzed.The results show that the Material Concentrated Zone(MCZ)which formed above the original lap interface made the hook bend downward,the NZ greatly enlarged and the beginning part of cold lap compressed and thickened,thereby heightening the joint bearing ability.For the OF-FSLW joint,its maximum tensile strength was403 MPa,and the corresponding joint efficiency of 90.8%was an incredible and superb value for the 2000 series heat-treatment strengthened aluminum alloys friction stir welded joint.The OF-FSLW technology by the rotating tool with an X-shaped right-left thread pin is proven to be a greatly effective approach for manufacturing the aluminum alloys lap joint with superb strength.
基金National Natural Science Foundation of China(52275349)Key Research and Development Program of Shandong Province(2021ZLGX01)。
文摘Friction stir lap welding of AA2195 Al-Li alloy and Ti alloy was conducted to investigate the formation,microstructure,and mechanical properties of the joints.Results show that under different welding parameters,with the decrease in welding heat input,the weld surface is smoother.The Ti/Al joint interface is flat without obvious Ti and Al mixed structure,and the hook structure is not formed under optimal parameters.Due to the enhanced breaking effect of the stirring head,the hook structural defects and intermetallic compounds are more likely to form at the Ti/Al interface at high rotational speed of 1000 r/min,thereby deteriorating the mechanical properties of joints.Decreasing the heat input is beneficial to hardness enhancement of the aluminum alloy in the weld nugget zone.Under the optimal parameters of rotation speed of 800 r/min and welding speed of 120 mm/min,the maximum tensile shear strength of joint is 289 N/mm.
基金supported by the National Natural Science Foundation of China(Grant No.52035005)the Key R&D Program of Shandong Province in China(Grant No.2021ZLGX01).
文摘The composite structures/components made by friction stir lap welding(FSLW)of Mg alloy sheet and Al alloy sheet are of wide application potentials in the manufacturing sector of transportation vehicles.To further improve the joint quality,the ultrasonic vibration(UV)is exerted in FSLW,and the UV enhanced FSLW(UVeFSLW)was developed for making Mg-to-Al dissimilar joints.The numerical analysis and experimental investigation were combined to study the process mechanism in Mg/Al UVeFSLW.An equation related to the temperature and strain rate was derived to calculate the grain size at different locations of the weld nugget zone,and the effect of grain size distribution on the threshold thermal stress was included,so that the prediction accuracy of flow stress was further improved.With such modified constitutive equation,the numerical simulation was conducted to compare the heat generation,temperature profiles and material flow behaviors in Mg/Al UVeFSLW/FSLW processes.It was found that the exerted UV decreased the temperature at two checking points on the tool/workpiece interface from 707/671 K in FSLW to 689/660 K in UVeFSLW,which suppressed the IMCs thickness at Mg-Al interface from 1.7μm in FSLW to 1.1μm in UVeFSLW.The exerted UV increased the horizontal materials flow ability,and decreased the upward flow ability,which resulted in the increase of effective sheet thickness/effective lap width from 2.01/3.70 mm in FSLW to 2.04/4.84 mm in UVeFSLW.Therefore,the ultrasonic vibration improved the tensile shear strength of Mg-to-Al lap joints by 18%.
基金Supported by the Liaoning Provincial Natural Science Foundation(Grant No.2023-MSBA-008)Unveiling and Commanding Program of Liaoning Province(Grant No.2022JH1/10800080)the Fundamental Research Funds for the Central Universities(Grant No.DUT24MS008).
文摘The double-sided lapping process is extensively employed in the manufacturing of wafers,optical windows,and seal rings due to its high efficiency and ability to achieve precise flatness.However,limited research has explored the thickness uniformity among different workpieces after double-sided lapping,and the underlying mechanism remains unclear.To address the demand for higher precision,this paper first analyzed the relative kinematic model between the workpiece and the lapping plate to clarify the causes of thickness variations among workpieces after double-sided lapping.Subsequently,a finite element method(FEM)model was developed to account for the pressure distribution on the workpiece surfaces at the initial stage of the process.The results indicate that the number of workpieces influences the final thickness variation.Then,various sets of thin copper plates with different thicknesses were lapped,and the findings revealed that five copper plates processed simultaneously exhibited more uniform thickness compared to the three plates.The experimental results align well with the theoretical analysis.Ultimately,a thickness variation of less than 6μm was achieved on five copper plates measuringΦ100×2.9 mm.This study presents a comprehensive analysis of the mechanisms influencing thickness uniformity in the double-sided lapping process and provides practical guidelines for optimizing the process to achieve stringent precision standards in industrial applications.
基金supported by the National Natural Science Foundation of China(Grant Number 52001141).
文摘Pinless friction stir spot welding(P-FSSW)was performed to manufacture Mg/steel lap joints.Orthogonal tests for P-FSSW of Mg/steel were investigated,and the main factors affecting the properties of Mg/steel lap joints were derived.The shear force of the Mg/steel lap joints gradually increased and then decreased as the welding time increased.Maximum shear force was 5.3 kN.Fe-Al intermetallic compound(IMC)was formed at the Mg/steel interface near the steel side,and Mg-Al IMCs were formed at the Mg/steel interface near the Mg alloy side.Mg/steel lap joint was transformed from an initial solid-state welding to fusion-brazing welding as the welding time increased.No hole defects were formed in Mg/steel solid-state welding joints,whereas hole defects appeared in Mg/steel fusion-brazing welding joints.The temperature field of Mg/steel lap joints was simulated to analyze hole defects generated during the welding process.Hole defects can be eliminated by changing the spindle deflection angle,and the shear force decreased.Excessive spindle deflection can also lead to failure to form a stable joint.Hole defects were removed because the spindle deflection angle reduced the interfacial reaction temperature,and a solid-state welding joint was formed,which resulted in an absence of fusion-brazing welding hole formation.
文摘The effects of tungsten inert gas arc-assisted friction stir welding(TIG-FSW)on the microstructure,tensile properties and corrosion resistance of AA6016 and AA2519 alloys lap joints were investigated by means of optical microscope,scanning electron microscope,tensile test at room temperature,corrosion immersion tests and electrochemical measurements.The results show that the introduction of TIG arc during FSW process results in a more uniform microstructure of the joint with no tunnel hole defects.Furthermore,it enhances tensile strength and elongation of the joint with increased rates of 11.5%and 50.0%,respectively;meanwhile,the corrosion current density and largest corrosion depth are decreased with reduction rates of 78.2%and 45.7%,respectively.TIG-FSW can promote flow,contact and diffusion of materials,thus improving microstructure of the joint.Additionally,it reduces the size and number of secondary phase particles.Consequently,these factors contribute to the higher tensile properties and corrosion resistance of the joints.
基金supported by the National Natural Sci-ence Foundation of China(Nos.52074184 and 52374393)the Natu-ral Science Foundation Project of Liaoning Province(No.2023-MS-238)+1 种基金Liaoning Revitalization Talents Program(No.XLYC2203009)the Fundamental Research Funds for the Universities of Liaon-ing Province.
文摘For friction stir lap welding (FSLW) process by the rotating pin greatly inserting into the bottom plate, the bending-down morphology of hook helps to obtain a high-strength lap joint, and can be more conducive to the joint strength when the tensile-fractured path is located in the top plate. In light of this, the reverse-flow FSLW (RF-FSLW) by a newly designed rotating tool with a right-left threaded X-shape pin (X-pin) was employed to weld 2024-T4 aluminum alloys with the same plate thickness, and the flow field simulation, in situ tensile test and EBSD analysis were utilized to understand the relations among the formation features, the fracture features and the joint strengths. The results indicated that under the integrated effects of the bending-down shape of hook, the bulging shape of nugget zone (NZ) and the bending-up shape of beginning part of cold lap near NZ outline, the RF-FSLW joint was tensile fractured in the top plate of joint. For the RF-FSLW joint, its maximum tensile strength was 412 MPa, and the corresponding joint efficiency (92.8%) was larger than that of reported friction stir welded joint of 2024 aluminum alloys in T temper condition. The RF-FSLW technology by the right-left threaded X-pin puts forward an extremely effective way for obtaining the superb-strength lap joint of aluminum alloys.
文摘太阳能光伏发电已成为仅次于水电和风能的第三大可再生能源,光伏发电受云量时空变化的影响较大,因此准确模拟云天太阳辐射的时空变化对电网安全运行至关重要。围绕如何减小中尺度气象模式的云初始场误差,进而改进云天的太阳辐射模拟这一关键科学问题,本文通过研究基于卫星资料同化的LAPS(Local Analysis Prediction System)多时间层三维云分析同化方法,改进三维云结构,并将LAPS模式输出结果作为WRF(Weather Research and Forecasting)模式的初始场,模拟了2008年1月及夏季(6~8月)北京地区的总云量和总辐射的时空分布,重点分析了多云和有降水天气过程总辐射的模拟改进效果及其原因。结果表明,同化前后的总云量模拟值与观测值的时间变化趋势基本一致,但大部分时次总云量的模拟值低于观测值;大部分多云及降水时段同化后总云量模拟值较接近于实测值。1月晴天、多云天以及夏季晴天同化前后总辐射模拟值与实测值的时间变化趋势较一致,但同化前后两者的相关性差异不明显;晴天条件下同化前后总辐射模拟值均低于实测值,1月多云条件下多数时段同化后总辐射模拟误差减小不明显,与总云量的改进效果不显著有关。夏季多云、有降水及6月典型降水三种天气条件下同化前后总辐射模拟值与观测值的相关性稍差,同化后两者的相关性较同化前有所改进,尤其是6月典型降水过程改进效果较明显;同化前总辐射模拟误差较大,而同化后误差显著减小,尤其是6月典型降水过程同化后均方根误差和平均相对误差较同化前分别减小了102.6 W m^(-2)和355.9%,最大相对误差减小更显著;同化后总辐射模拟误差小于同化前的比例高达75%,即大部分时刻同化后模拟误差小于同化前。多云和有降水天气过程总辐射模拟效果的显著改进与总云量的改进密切相关,即同化后总云量模拟值增加,云的反射和散射作用增强,导致模拟总辐射减小,即更接近于实测总辐射值。研究结果对于多云和降水天气条件下太阳辐射的模拟效果改进、太阳能资源客观评估以及光伏电站的发电量预测具有一定的科学和实际应用价值。
文摘利用LAPS(Local Analysis and Prediction System)系统同化GPS(Global Positioning System)/PWV(Precipitable Water Vapor)资料,分析GPS/PWV资料对LAPS输出场的影响,并结合WRF模式,将LAPS输出场作为其初始场进行降水预报,进一步考察GPS/PWV资料对降水预报的作用。选取2009年6月28日湖北地区的一次强降水过程,设计三种方案进行试验。结果表明:同化GPS/PWV资料后对LAPS湿度场有显著的改善,而对高度场及风场的作用则不明显;GPS/PWV资料对区域平均可降水量的影响比雷达资料大一个量级;与此同时,利用多种评分方法对6 h累计降水做了检验,分析结果表明同化GPS/PWV资料能够有效地改进WRF模式的初始场,增加丰富的中小尺度信息,并对随后的确定性预报产生正影响。