Introduction:The Aspen-FACE experiment was an 11-year study of the effect of elevated CO_(2) and ozone(alone and in combination)on the growth of model aspen communities(pure aspen,aspen-birch,and aspen-maple)in the fi...Introduction:The Aspen-FACE experiment was an 11-year study of the effect of elevated CO_(2) and ozone(alone and in combination)on the growth of model aspen communities(pure aspen,aspen-birch,and aspen-maple)in the field in northern Wisconsin,USA.Uncertainty remains about how these short-term plotlevel responses might play out over broader temporal and spatial scales where climate change,competition,succession,and disturbances interact with tree-level responses.In this study,we used a new physiologybased approach(PnET-Succession v3.1)within the forest landscape model LANDIS-II to extrapolate the FACE results to broader temporal scales(and ultimately to landscape scale)by mechanistically accounting for the globally changing drivers of temperature,precipitation,CO_(2),and ozone.We added novel algorithms to the model to mechanistically simulate the effects of ozone on photosynthesis through ozone-induced impairment of stomatal control(i.e.,stomatal sluggishness)and damage of photosynthetic capacity at the chloroplast level.Results:We calibrated the model to empirical observations of competitive interactions on the elevated CO_(2) and O_(3) plots of the Aspen-FACE experiment and successfully validated it on the combined factor plots.We used the validated model to extend the Aspen-FACE experiment for 80 years.When only aspen clones competed,we found that clone 271 always dominated,although the ozone-tolerant clone was co-dominant when ozone was present.Under all treatments,when aspen clone 216 and birch competed,birch was always dominant or co-dominant,and when clone 216 and maple competed,clone 216 was dominant,although maple was able to grow steadily because of its shade tolerance.We also predicted long-term competitive outcomes for novel assemblages of taxa under each treatment and discovered that future composition and dominant taxa depend on treatment,and that short-term trends do not always persist in the long term.Conclusions:We identified the strengths and weaknesses of PnET-Succession v3.1 and conclude that it can generate potentially robust predictions of the effects of elevated CO_(2) and ozone at landscape scales because of its mechanistically motivated algorithms.These capabilities can be used to project forest dynamics under anticipated future conditions that have no historical analog with which to parameterize less mechanistic models.展开更多
Background Long-term farmland abandonment has increased fuel build-up in many Euro-Mediterranean mountainous regions. The high fuel hazard in these landscapes, combined with ongoing climate change, is increasing the f...Background Long-term farmland abandonment has increased fuel build-up in many Euro-Mediterranean mountainous regions. The high fuel hazard in these landscapes, combined with ongoing climate change, is increasing the frequency of extreme wildfires, thus altering contemporary fire regimes. Mitigating the loss of the landscape's capacity to regulate large and intense fires is crucial to prevent future harmful effects of fires. As such, effective strategies to manage these fire-prone landscapes are needed. Yet, further understanding of their performance under global change scenarios is required. This study assessed the effects of fire-smart management strategies on future landscape dynamics, fire regulation capacity(FRC), and fire regime in a Mediterranean fire-prone mountainous landscape in Portugal(30,650 ha) undergoing long-term land abandonment and climate change scenarios. For that, we applied the LANDIS-II model under climate change scenarios(RCP 4.5 and 8.5) and long-term farmland abandonment(2020–2050) according to three fire-smart management strategies focused on fire prevention compared with a business-asusual(BAU) strategy based on fire suppression.Results Future fire activity and land dynamics resulted in changes that fostered landscape heterogeneity and fragmentation and favoured fire-adapted forests and agroforestry systems while decreasing the dominance of shrublands and croplands. FRC decreased over time, particularly under RCP 8.5 and the BAU strategy. In turn, fire-smart strategies better prevented large and intense fires than the BAU strategy, but their effectiveness decreased under RCP 8.5. The loss of FRC resulted in increased burned area and fire frequency, which predicts a shift from contemporary fire regimes but more markedly under RCP 8.5 and in the BAU strategy.Conclusions Fire-smart strategies outperformed BAU in averting current fire regime intensification. Merging forestand silvopasture-based management is the most promising approach in taming the effects of climate and farmland abandonment on future fire activity. Our study underlines that planning and management policies in fire-prone Mediterranean mountain landscapes must integrate fire-smart strategies to decrease landscape fuel hazard and buffer the impact of global change on future fire regimes.展开更多
基金Funding was provided by the Northern Research Station of the USDA Forest ServiceThe Aspen-FACE experiment was principally supported by the Office of Science(BER),US Department of Energy Grant No.DE-FG02-95ER62125 to Michigan Technological University+3 种基金Contract No.DE-AC02-98CH10886 to Brookhaven National LaboratoryOffice of Science(BER),US Department of Energy Interagency Agreement No.DE-AI02-09ER64717 to the US Forest Service,Northern Research Stationthe US Forest Service Northern Global Change Programthe Canadian Forest Service.
文摘Introduction:The Aspen-FACE experiment was an 11-year study of the effect of elevated CO_(2) and ozone(alone and in combination)on the growth of model aspen communities(pure aspen,aspen-birch,and aspen-maple)in the field in northern Wisconsin,USA.Uncertainty remains about how these short-term plotlevel responses might play out over broader temporal and spatial scales where climate change,competition,succession,and disturbances interact with tree-level responses.In this study,we used a new physiologybased approach(PnET-Succession v3.1)within the forest landscape model LANDIS-II to extrapolate the FACE results to broader temporal scales(and ultimately to landscape scale)by mechanistically accounting for the globally changing drivers of temperature,precipitation,CO_(2),and ozone.We added novel algorithms to the model to mechanistically simulate the effects of ozone on photosynthesis through ozone-induced impairment of stomatal control(i.e.,stomatal sluggishness)and damage of photosynthetic capacity at the chloroplast level.Results:We calibrated the model to empirical observations of competitive interactions on the elevated CO_(2) and O_(3) plots of the Aspen-FACE experiment and successfully validated it on the combined factor plots.We used the validated model to extend the Aspen-FACE experiment for 80 years.When only aspen clones competed,we found that clone 271 always dominated,although the ozone-tolerant clone was co-dominant when ozone was present.Under all treatments,when aspen clone 216 and birch competed,birch was always dominant or co-dominant,and when clone 216 and maple competed,clone 216 was dominant,although maple was able to grow steadily because of its shade tolerance.We also predicted long-term competitive outcomes for novel assemblages of taxa under each treatment and discovered that future composition and dominant taxa depend on treatment,and that short-term trends do not always persist in the long term.Conclusions:We identified the strengths and weaknesses of PnET-Succession v3.1 and conclude that it can generate potentially robust predictions of the effects of elevated CO_(2) and ozone at landscape scales because of its mechanistically motivated algorithms.These capabilities can be used to project forest dynamics under anticipated future conditions that have no historical analog with which to parameterize less mechanistic models.
文摘Background Long-term farmland abandonment has increased fuel build-up in many Euro-Mediterranean mountainous regions. The high fuel hazard in these landscapes, combined with ongoing climate change, is increasing the frequency of extreme wildfires, thus altering contemporary fire regimes. Mitigating the loss of the landscape's capacity to regulate large and intense fires is crucial to prevent future harmful effects of fires. As such, effective strategies to manage these fire-prone landscapes are needed. Yet, further understanding of their performance under global change scenarios is required. This study assessed the effects of fire-smart management strategies on future landscape dynamics, fire regulation capacity(FRC), and fire regime in a Mediterranean fire-prone mountainous landscape in Portugal(30,650 ha) undergoing long-term land abandonment and climate change scenarios. For that, we applied the LANDIS-II model under climate change scenarios(RCP 4.5 and 8.5) and long-term farmland abandonment(2020–2050) according to three fire-smart management strategies focused on fire prevention compared with a business-asusual(BAU) strategy based on fire suppression.Results Future fire activity and land dynamics resulted in changes that fostered landscape heterogeneity and fragmentation and favoured fire-adapted forests and agroforestry systems while decreasing the dominance of shrublands and croplands. FRC decreased over time, particularly under RCP 8.5 and the BAU strategy. In turn, fire-smart strategies better prevented large and intense fires than the BAU strategy, but their effectiveness decreased under RCP 8.5. The loss of FRC resulted in increased burned area and fire frequency, which predicts a shift from contemporary fire regimes but more markedly under RCP 8.5 and in the BAU strategy.Conclusions Fire-smart strategies outperformed BAU in averting current fire regime intensification. Merging forestand silvopasture-based management is the most promising approach in taming the effects of climate and farmland abandonment on future fire activity. Our study underlines that planning and management policies in fire-prone Mediterranean mountain landscapes must integrate fire-smart strategies to decrease landscape fuel hazard and buffer the impact of global change on future fire regimes.