Traditionally,numerical trajectory integration for shooting equation calculation and iterations for shooting with randomly guessed initial solutions deteriorate the real-time performance of indirect methods for on-boa...Traditionally,numerical trajectory integration for shooting equation calculation and iterations for shooting with randomly guessed initial solutions deteriorate the real-time performance of indirect methods for on-board applications.In this study,the indirect method is improved to achieve real-time trajectory optimization of fuel-optimal powered planetary landings with the help of analytical shooting equation derivations and a practical homotopy technique.Specifically,the contributions of this paper are threefold.First,the analytical expressions for shooting equation calculation are derived to replace the traditional time-consuming trajectory integration.Consequently,the computational efficiency is significantly improved.Second,the original three-dimensional landing problem is connected with a simplified one-dimensional problem that only involves the vertical dynamics,and its analytical solution is obtained based on Pontryagin’s minimum principle.Third,starting with the analytical solution,the accurate solution of the original landing problem can be obtained through an adaptive homotopy process.Simulation results of Earth landing scenarios are given to substantiate the effectiveness of the proposed techniques and illustrate that the developed method can obtain a fuel-optimal landing trajectory in 5 ms with 100%success rate.展开更多
Fishing activities can alter the structure of marine food webs by the selective removal of some species. The changes in the marine food webs of the Hormuzgan waters of the Persian Gulf, Iran were assessed, based on es...Fishing activities can alter the structure of marine food webs by the selective removal of some species. The changes in the marine food webs of the Hormuzgan waters of the Persian Gulf, Iran were assessed, based on estimates of the mean trophic index (MTI) and Fishing in Balance index (FIB), and on landing profile of the exploited marine community (49 species) during the period, 2002-2011. The total landings (Yt) (R=0.88, P〈0.001) increased gradually while the Y~ of carnivores has slightly declined, and the Yt of herbivores, detritivores and omnivores has increased. Consequently, the MTI significantly decreased (R=-0.69, P〈0.05) at a rate of 0.1 l during this decade. The MTI showed a decreasing trend, which indicates exploitation of marine resources. The FiB index also showed a downward trend and negative values from 2002 to 2009, which may be associated with unbalanced structure in the fisheries, but an upward trend from 2009 to 20ll. The time variation of the landing profile showed two periods with significant differences in their species composition (R=0.88; P=0.005), and based on analysis of similarity, species have been identified as discriminator species, namely Thunnus albacores and Benthosema pterotum. Results indicate that changes in MTI reflected changes in the Hormuzgan landing structure. The examination of the MTI, FBI, and landing profile (LP) temporal pattern suggests that the status of fishery resources in Hormuzgan inshore waters is overexploited, and provides evidence of the probability that a fishing down process is occurring in this area, and that this trend may continue in the long-tenn. Therefore, environmental fisheries management and conservation programs should be prioritized for these valuable resources.展开更多
Purpose:To determine the effect of unanticipated mid-flight medial-lateral external perturbation of the upper or lower trunk on anterior cruciate ligament(ACL)loading variable s during jump-landings.Methods:Thirty-two...Purpose:To determine the effect of unanticipated mid-flight medial-lateral external perturbation of the upper or lower trunk on anterior cruciate ligament(ACL)loading variable s during jump-landings.Methods:Thirty-two participants performed double-leg vertical jump-landings while bilateral kinematics and kinetics were collected under 6conditions(upper or lower trunk perturbation locations;no,left,or right perturbation directions).Two customized catapult apparatuses were created to apply pushing perturbation to participants near the maximal jump height.Results:The ball contacted participants near the center of mass for the lower-trunk conditions and approximately 23 cm above the center of mass for the upper-trunk conditions.Under upper-trunk perturbation,the contralateral leg demonstrated significantly smaller knee flexion angles at initial contact and greater peak knee abduction angles,peak vertical ground reaction forces,peak knee extension moments,and peak knee adduction moments compared to other legs among all conditions.Under lower-trunk perturbation,the contralateral leg showed significantly smaller knee flexion angles at initial contact and increased peak vertical ground reaction forces and peak knee extension moments compared to legs in the no-perturbation conditions.Conclusion:Mid-flight external trunk pushing perturbation increased ACL loading variables for the leg contralateral to the perturbation.The uppertrunk perturbation resulted in greater changes in ACL loading variables compared to the lower-trunk perturbation,likely due to trunk and ipsilateral leg rotation and more laterally located center of mass relative to the contralateral leg.These findings may help us understand the mechanisms of indirect-contact ACL injuries and develop jump-landing training strategies under mid-flight trunk perturbation to better prevent ACL injury.展开更多
This investigation focuses on two mechanisms over the North Pacific connecting decadal regime shifts to regional ecosystem impacts. The physical conditions show the impacts of the atmospheric surface wind stress and t...This investigation focuses on two mechanisms over the North Pacific connecting decadal regime shifts to regional ecosystem impacts. The physical conditions show the impacts of the atmospheric surface wind stress and the sea surface temperature (SST) physical conditions on the fish landings along the west coast of California (WCC) from 1928-2008. The two mechanisms are identified by the two types of wind stress (e.g. westerly-easterly;or cyclonic-anticyclonic) anomaly over the central North Pacific which results in SST anomalies in the WCC. In both mechanism cases, the local warm (cold) SST anomaly leads to the number of fish species rising (falling) in the WCC region. In addition, the wind stress and SST anomaly pattern over the North Pacific is closely related to the intensity of the regime shifts as identified in the fish landings off the WCC.展开更多
This study investigates climate-and human-induced hydrological changes in the Zavkhan River-Khyargas Lake Basin,a highly sensitive arid and semi-arid region of Central Asia.Using Mann-Kendall,innovative trend analysis...This study investigates climate-and human-induced hydrological changes in the Zavkhan River-Khyargas Lake Basin,a highly sensitive arid and semi-arid region of Central Asia.Using Mann-Kendall,innovative trend analysis,and Sen's slope estimation methods,historical climate trends(1980-2100)were analyzed,while land cover changes represented human impacts.Future projections were simulated using the MIROC model with Shared Socioeconomic Pathways(SSPs)and the Tank model.Results show that during the past 40 years,air temperature significantly increased(Z=3.93^(***)),while precipitation(Z=-1.54^(*))and river flow(Z=-1.73^(*))both declined.The Khyargas Lake water level dropped markedly(Z=-5.57***).Land cover analysis reveals expanded cropland and impervious areas due to human activity.Under the SSP1.26 scenario,which assumes minimal climate change,air temperature is projected to rise by 2.0℃,precipitation by 21.8 mm,and river discharge by 1.61 m^(3)/s between 2000 and 2100.These findings indicate that both global warming and intensified land use have substantially altered hydrological and climatic processes in the basin,highlighting the vulnerability of western Mongolia's water resources to combined climatic and anthropogenic influence.展开更多
This study investigates the impact of vegetation-climate feedback on the global land monsoon system during the Last Interglacial(LIG,127000 years BP)and the mid-Holocene(MH,6000 years BP)using the earth system model E...This study investigates the impact of vegetation-climate feedback on the global land monsoon system during the Last Interglacial(LIG,127000 years BP)and the mid-Holocene(MH,6000 years BP)using the earth system model EC-Earth3.Our findings indicate that vegetation changes significantly influence the global monsoon area and precipitation patterns,especially in the North African and Indian monsoon regions.The North African monsoon region experienced the most substantial increase in vegetation during both the LIG and MH,resulting in significant increases in monsoonal precipitation by 9.8%and 6.0%,respectively.The vegetation feedback also intensified the Saharan Heat Low,strengthened monsoonal flows,and enhanced precipitation over the North African monsoon region.In contrast,the Indian monsoon region exhibited divergent responses to vegetation changes.During the LIG,precipitation in the Indian monsoon region decreased by 2.2%,while it increased by 1.6%during the MH.These differences highlight the complex and region-specific impacts of vegetation feedback on monsoon systems.Overall,this study demonstrates that vegetation feedback exerts distinct influences on the global monsoon during the MH and LIG.These findings highlight the importance of considering vegetation-climate feedback in understanding past monsoon variability and in predicting future climate change impacts on monsoon systems.展开更多
Human activities have significantly impacted the land surface temperature(LST),endangering human health;however,the relationship between these two factors has not been adequately quantified.This study comprehensively ...Human activities have significantly impacted the land surface temperature(LST),endangering human health;however,the relationship between these two factors has not been adequately quantified.This study comprehensively constructs a Human Activity Intensity(HAI)index and employs the Maximal Information Coefficient,four-quadrant model,and XGBoostSHAP model to investigate the spatiotemporal relationship and influencing factors of HAI-LST in the Yellow River Basin(YRB)from 2000 to 2020.The results indicated that from 2000 to 2020,as HAI and LST increased,the static HAI-LST relationship in the YRB showed a positive correlation that continued to strengthen.This dynamic relationship exhibited conflicting development,with the proportion of coordinated to conflicting regions shifting from 1:4 to 1:2,indicating a reduction in conflict intensity.Notably,only the degree of conflict in the source area decreased significantly,whereas it intensified in the upper and lower reaches.The key factors influencing the HAI-LST relationship include fractional vegetation cover,slope,precipitation,and evapotranspiration,along with region-specific factors such as PM_(2.5),biodiversity,and elevation.Based on these findings,region-specific ecological management strategies have been proposed to mitigate conflict-prone areas and alleviate thermal stress,thereby providing important guidance for promoting harmonious development between humans and nature.展开更多
Global land monsoon precipitation(GLMP)is highly sensitive to changes in interhemispheric thermal contrast(ITC).Amplified interhemispheric asymmetries of GLMP due to enhanced ITC driven by high-level anthropogenic emi...Global land monsoon precipitation(GLMP)is highly sensitive to changes in interhemispheric thermal contrast(ITC).Amplified interhemispheric asymmetries of GLMP due to enhanced ITC driven by high-level anthropogenic emissions are expected to simultaneously increase the probability of regional floods and droughts,threatening ecosystems within global terrestrial monsoon regions and the freshwater supply for billions of residents in these areas.In this study,the responses of GLMP to the evolution of ITC toward the carbon neutrality goal are assessed using multimodel outputs from a new model intercomparison project(CovidMIP).The results show that the Northern Hemisphere-Southern Hemisphere(NH-SH)asymmetry of GLMP in boreal summer weakens during the 2040s,as a persistent reduction in well-mixed greenhouse gas(WMGHG)emissions leads to a downward trend in the ITC after 2040.At the same time,the reduction in WMGHG emissions dampens the Eastern Hemisphere-Western Hemisphere(EH-WH)asymmetry of GLMP by inducing La Niña-like cooling and enhancing moisture transport to Inner America.The resulting increases in land monsoon precipitation(LMP)may alleviate drought under the global warming scenario by about 19%-25%and 7%-9%in the WH and SH monsoon regions,respectively.However,a persistent reduction in aerosol emissions in Asia will dominate the increases in LMP in this region until the mid-21st century,and these increases may be approximately 23%-60%of the growth under the global warming scenario.Our results highlight the different rates of response of aerosol and WMGHG concentrations to the carbon neutrality goal,leading to various changes in LMP at global and regional scales.展开更多
The onset,cessation,and length of the rainy season are crucial for global water resources,agricultural practices,and food security.However,the response of precipitation seasonality to global warming remains uncertain....The onset,cessation,and length of the rainy season are crucial for global water resources,agricultural practices,and food security.However,the response of precipitation seasonality to global warming remains uncertain.In this study,we analyze how global warming levels(GWLs)of 1.5℃ and 2℃ could affect the timing of rainfall onset(RODs),rainfall cessation(RCDs),and the overall duration of the rainy season(LRS)over global land monsoon(GLM)regions using simulations from CMIP6 under the SSP2-4.5 and SSP5-8.5 scenarios.With high model consensus,our results reveal that RODs are projected to occur later over Southern Africa,North Africa,and South America,but earlier over South Asia and Australia,in a warmer climate.The projected early RODs in Australia are more pronounced at the 2℃ GWL under SSP5-8.5.On the other hand,early RCDs are projected over South America and East Asia,while late RCDs are projected over North Africa,with high inter-model agreement.These changes are associated with a future decrease in LRS in most GLM regions.Additionally,we found that continuous warming over 1.5℃ will further reduce the length of the rainy season,especially over the South America,North Africa,and Southern Africa monsoon regions.The findings underscore the urgent need to mitigate global warming.展开更多
Impact craters are important for understanding the evolution of lunar geologic and surface erosion rates,among other functions.However,the morphological characteristics of these micro impact craters are not obvious an...Impact craters are important for understanding the evolution of lunar geologic and surface erosion rates,among other functions.However,the morphological characteristics of these micro impact craters are not obvious and they are numerous,resulting in low detection accuracy by deep learning models.Therefore,we proposed a new multi-scale fusion crater detection algorithm(MSF-CDA)based on the YOLO11 to improve the accuracy of lunar impact crater detection,especially for small craters with a diameter of<1 km.Using the images taken by the LROC(Lunar Reconnaissance Orbiter Camera)at the Chang’e-4(CE-4)landing area,we constructed three separate datasets for craters with diameters of 0-70 m,70-140 m,and>140 m.We then trained three submodels separately with these three datasets.Additionally,we designed a slicing-amplifying-slicing strategy to enhance the ability to extract features from small craters.To handle redundant predictions,we proposed a new Non-Maximum Suppression with Area Filtering method to fuse the results in overlapping targets within the multi-scale submodels.Finally,our new MSF-CDA method achieved high detection performance,with the Precision,Recall,and F1 score having values of 0.991,0.987,and 0.989,respectively,perfectly addressing the problems induced by the lesser features and sample imbalance of small craters.Our MSF-CDA can provide strong data support for more in-depth study of the geological evolution of the lunar surface and finer geological age estimations.This strategy can also be used to detect other small objects with lesser features and sample imbalance problems.We detected approximately 500,000 impact craters in an area of approximately 214 km2 around the CE-4 landing area.By statistically analyzing the new data,we updated the distribution function of the number and diameter of impact craters.Finally,we identified the most suitable lighting conditions for detecting impact crater targets by analyzing the effect of different lighting conditions on the detection accuracy.展开更多
Rapid regional population shifts and spatial polarization have heightened pressure on cultivated land—a critical resource demanding urgent attention amid ongoing urban-rural transition.This study selects Jiangsu prov...Rapid regional population shifts and spatial polarization have heightened pressure on cultivated land—a critical resource demanding urgent attention amid ongoing urban-rural transition.This study selects Jiangsu province,a national leader in both economic and agricultural development,as a case area to construct a multidimensional framework for assessing the recessive morphological characteristics of multifunctional cultivated land use.We examine temporal dynamics,spatial heterogeneity,and propose an integrated zoning strategy based on empirical analysis.The results reveal that:(1)The recessive morphology index shows a consistent upward trend,with structural breaks in 2007 and 2013,and a spatial shift from“higher in the east and lower in the west”to“higher in the south and lower in the north.”(2)Coordination among sub-dimensions of the index has steadily improved.(3)The index is expected to continue rising in the next decade,though at a slower pace.(4)To promote coordinated multidimensional land-use development,we recommend a policy framework that reinforces existing strengths,addresses weaknesses,and adapts zoning schemes to current spatial conditions.This research offers new insights into multifunctional cultivated land systems and underscores their role in enhancing human well-being,securing food supply,and supporting sustainable urban-rural integration.展开更多
英国作家立德夫人的民族志作品The Land of the Blue Gown有多个汉语无本回译译本。本文选取其中三个代表性译本,尝试从民族志翻译理论出发,通过对不同译本的语言风格传达和文化信息还原进行比较,总结各无本回译译本的翻译策略选择以及...英国作家立德夫人的民族志作品The Land of the Blue Gown有多个汉语无本回译译本。本文选取其中三个代表性译本,尝试从民族志翻译理论出发,通过对不同译本的语言风格传达和文化信息还原进行比较,总结各无本回译译本的翻译策略选择以及译者在各自翻译过程中扮演的不同角色,为民族志翻译相关研究作学理探讨。展开更多
1.Introduction Changes in land use are key factors promoting global climate change,and the side effects of mining activity that destroy the soil,vegetation,and biodiversity lead to imbalanced carbon cycling in terrest...1.Introduction Changes in land use are key factors promoting global climate change,and the side effects of mining activity that destroy the soil,vegetation,and biodiversity lead to imbalanced carbon cycling in terrestrial ecosystems.展开更多
The increased frequency and intensity of heavy rainfall events due to climate change could potentially influence the movement of nutrients from land-based regions into recipient rivers.However,little information is av...The increased frequency and intensity of heavy rainfall events due to climate change could potentially influence the movement of nutrients from land-based regions into recipient rivers.However,little information is available on how the rainfall affect nutrient dynamics in subtropicalmontane rivers with complex land use.This study conducted high-frequency monitoring to study the effects of rainfall on nutrients dynamics in an agricultural river draining to Lake Qiandaohu,a montane reservoir of southeast China.The results showed that riverine total nitrogen(TN)and total phosphorus(TP)concentrations increased continuously with increasing rainfall intensity,while TN:TP decreased.The heavy rainfall and rainstorm drove more than 30%of the annual N and P loading in only 5.20%of the total rainfall period,indicating that increased storm runoff is likely to exacerbate eutrophication in montane reservoirs.NO_(3)^(−)-N is the primary nitrogen form lost,while particulate phosphorus(PP)dominated phosphorus loss.Themain source of N is cropland,and themain source of P is residential area.Spatially,forestedwatersheds have better drainage quality,while it is still a potential source of nonpoint pollution during rainfall events.TN and TP concentrations were significantly higher at sites dominated by cropland and residential area,indicating their substantial contributions to deteriorating river water quality.Temporally,TN and TP concentrations reached high values in May-August when rainfall was most intense,while they were lower in autumn and winter than that in spring and summer under the same rainfall intensities.The results emphasize the influence of rainfall-runoff and land use on dynamics of riverine N and P loads,providing guidance for nutrient load reduction planning for Lake Qiandaohu.展开更多
Land use transformations in Sonipat District,Haryana,driven by urbanization,industrialization,and land acquisitions,have posed significant ecological and socio-economic challenges,particularly concerning food security...Land use transformations in Sonipat District,Haryana,driven by urbanization,industrialization,and land acquisitions,have posed significant ecological and socio-economic challenges,particularly concerning food security.This study investigates the interplay between these land use changes and their environmental implications at macro(district)and micro(village)levels,focusing on agricultural productivity and resource sustainability.The study employs a mixed-method approach,integrating secondary data from official datasets and primary data gathered through structured household surveys,focus group discussions,and visual analysis techniques.Data from 20 villages,selected based on predominant land use characteristics,were analysed using statistical and geospatial tools,including ArcGIS and STATA,to quantify food grain losses and evaluate environmental degradation.Findings of this study reveal a 19%reduction in agricultural land over two decades(2000-2024),correlating with increased residential and industrial areas.Groundwater resources face severe overexploitation,with pollution from industrial clusters further degrading water and soil quality.The study estimates a total food grain loss of 1.5 million kilograms across surveyed villages due to land acquisitions.A strong positive correlation(R^(2)=0.98)between land acquisition and food loss underscores the direct impact of urbanization on agricultural output.The research underscores the urgency of sustainable land management practices,including preserving agricultural lands,optimizing groundwater usage,and enhancing community involvement in planning.By addressing these challenges,the study advocates for balanced urban expansion and food security to ensure ecological and economic resilience in the region.展开更多
Human well-being and livelihoods depend on natural ecosystem services(ESs).Following the increment of population,ESs have been deteriorated over time.Ultimately,land use/land cover(LULC)changes have a profound impact ...Human well-being and livelihoods depend on natural ecosystem services(ESs).Following the increment of population,ESs have been deteriorated over time.Ultimately,land use/land cover(LULC)changes have a profound impact on the change of ecosystem.The primary goal of this study is to determine the impacts of LULC changes on ecosystem service values(ESVs)in the upper Gilgel Abbay watershed,Ethiopia.Changes in LULC types were studied using three Landsat images representing 1986,2003,and 2021.The Landsat images were classified using a supervised image classification technique in Earth Resources Data Analysis System(ERDAS)Imagine 2014.We classified ESs in this study into four categories(including provisioning,regulating,supporting,and cultural services)based on global ES classification scheme.The adjusted ESV coefficient benefit approach was employed to measure the impacts of LULC changes on ESVs.Five LULC types were identified in this study,including cultivated land,forest,shrubland,grassland,and water body.The result revealed that the area of cultivated land accounted for 64.50%,71.50%,and 61.50%of the total area in 1986,2003,and 2021,respectively.The percentage of the total area covered by forest was 9.50%,5.90%,and 14.80%in 1986,2003,and 2021,respectively.Result revealed that the total ESV decreased from 7.42×10^(7) to 6.44×10^(7) USD between 1986 and 2003.This is due to the expansion of cultivated land at the expense of forest and shrubland.However,the total ESV increased from 6.44×10^(7) to 7.76×10^(7) USD during 2003-2021,because of the increment of forest and shrubland.The expansion of cultivated land and the reductions of forest and shrubland reduced most individual ESs during 1986-2003.Nevertheless,the increase in forest and shrubland at the expense of cultivated land enhanced many ESs during 2003-2021.Therefore,the findings suggest that appropriate land use practices should be scaled-up to sustainably maintain ESs.展开更多
Northern China is a prominent “hotspot” for land–atmosphere interactions, with substantial gradients in both moisture and thermal conditions. Previous studies have identified a link between land–atmosphere couplin...Northern China is a prominent “hotspot” for land–atmosphere interactions, with substantial gradients in both moisture and thermal conditions. Previous studies have identified a link between land–atmosphere coupling and the individual roles of each factor, but the synergistic effect of the two factors remains unclear. This study considers the covariation of evapotranspiration and precipitation to assess evapotranspiration–precipitation(ET–P) coupling across northern China,exploring its spatial variations and their linkage to water and heat factors. Our findings reveal a transition from strongly positive coupling in the northwest to weakly negative coupling in the southeast, peaking in spring. These spatial variations are attributable to water(soil moisture) and heat(air temperature), which explain 39% and 25% of the variability,respectively. The aridity index(AI), a water–heat synergy factor, is the dominant factor, explaining 66% of the spatial variation in ET–P coupling. As the AI increases, ET–P coupling shifts from strongly positive to weakly negative, with an AI around 0.7. This shift is determined by a shift in the evapotranspiration–lifting condensation level(LCL) coupling under an AI change. Regions with an AI below 0.7 experience water-limited evapotranspiration, where increased soil moisture enhances evapotranspiration, reduces sensible heat(H), and lowers the LCL, resulting in a negative ET–LCL coupling.Conversely, regions with an AI above 0.7 experience energy-limited evapotranspiration, where the positive ET–LCL coupling reflects a positive H–LCL coupling or a positive impact of the LCL on evapotranspiration. This analysis advances our understanding of the intricate influences of multifactor surface interactions on the spatial variations of land–atmosphere coupling.展开更多
Accurate spatio-temporal land cover information in agricultural irrigation districts is crucial for effective agricultural management and crop production.Therefore,a spectralphenological-based land cover classificatio...Accurate spatio-temporal land cover information in agricultural irrigation districts is crucial for effective agricultural management and crop production.Therefore,a spectralphenological-based land cover classification(SPLC)method combined with a fusion model(flexible spatiotemporal data fusion,FSDAF)(abbreviated as SPLC-F)was proposed to map multi-year land cover and crop type(LC-CT)distribution in agricultural irrigated areas with complex landscapes and cropping system,using time series optical images(Landsat and MODIS).The SPLC-F method was well validated and applied in a super-large irrigated area(Hetao)of the upper Yellow River Basin(YRB).Results showed that the SPLC-F method had a satisfactory performance in producing long-term LC-CT maps in Hetao,without the requirement of field sampling.Then,the spatio-temporal variation and the driving factors of the cropping systems were further analyzed with the aid of detailed household surveys and statistics.We clarified that irrigation and salinity conditions were the main factors that had impacts on crop spatial distribution in the upper YRB.Investment costs,market demand,and crop price are the main driving factors in determining the temporal variations in cropping distribution.Overall,this study provided essential multi-year LC-CT maps for sustainable management of agriculture,eco-environments,and food security in the upper YRB.展开更多
Foreign-funded overseas industrial parks(OIPs)are crucial for attracting foreign investment and promoting globalization in developing countries.However,large-scale land acquisition for these parks generates conflicts ...Foreign-funded overseas industrial parks(OIPs)are crucial for attracting foreign investment and promoting globalization in developing countries.However,large-scale land acquisition for these parks generates conflicts between developers and local stakeholders,increasing development costs.A qualitative multicase study was conducted in this study to analyze the land transaction trajectories of China's OIPs.Four OIPs were selected to reveal the underlying mechanisms from the perspectives of institutional arrangements,governance mechanisms,and enterprise heterogeneity.The findings indicate that in host countries with insufficient institutional development,local governments are more inclined to directly engage in OIP land acquisition.High-level intergovernmental mechanisms facilitate land acquisition processes,although their efficacy depends largely on administrative power allocation across parks in host countries.The results also indicate that enterprise characteristics significantly influence land acquisition,where microscale private enterprises lacking political connections often employ low-cost,bottom-up strategies by leveraging international experience.In summary,policy-makers in developing countries should prioritize enhancing OIP governance to mitigate transaction costs,promote diversified land supply,and optimize land allocation.By depicting China's OIP land acquisition processes,this study deepens the academic understanding of OIP governance in developing countries and related international land transactions,offering practical OIP management insights for governments in both host and parent countries.展开更多
Land surface temperature(LST)is the key variable in land-atmosphere interaction,having an important impact on weather and climate forecasting.However,achieving consistent analysis of LST and the atmosphere in assimila...Land surface temperature(LST)is the key variable in land-atmosphere interaction,having an important impact on weather and climate forecasting.However,achieving consistent analysis of LST and the atmosphere in assimilation is quite challenging.This is because there is limited knowledge about the cross-component background error covariance(BEC)between LST and atmospheric state variables.This study aims to clarify whether there is a relationship between the error of LST and atmospheric variables,and whether this relationship varies spatially and temporally.To this end,the BEC coupled with atmospheric variables and LST was constructed(LST-BEC),and its characteristics were analyzed based on the 2023 mei-yu season.The general characteristics of LST-BEC show that the LST is mainly correlated with the atmospheric temperature and the correlation decreases gradually with a rise in atmospheric height,and the error standard deviation of the LST is noticeably larger than that of the low-level atmospheric temperature.The spatiotemporal characteristics of LST-BEC on the heavy-rain day and light-rain day show that the error correlation and error standard deviation of LST and low-level atmospheric temperature and humidity are closely related to the weather background,and also have obvious diurnal variations.These results provide valuable information for strongly coupled land-atmosphere assimilation.展开更多
基金supported by the National Natural Science Foundation of China(Nos.11872223,11902174,11772167)。
文摘Traditionally,numerical trajectory integration for shooting equation calculation and iterations for shooting with randomly guessed initial solutions deteriorate the real-time performance of indirect methods for on-board applications.In this study,the indirect method is improved to achieve real-time trajectory optimization of fuel-optimal powered planetary landings with the help of analytical shooting equation derivations and a practical homotopy technique.Specifically,the contributions of this paper are threefold.First,the analytical expressions for shooting equation calculation are derived to replace the traditional time-consuming trajectory integration.Consequently,the computational efficiency is significantly improved.Second,the original three-dimensional landing problem is connected with a simplified one-dimensional problem that only involves the vertical dynamics,and its analytical solution is obtained based on Pontryagin’s minimum principle.Third,starting with the analytical solution,the accurate solution of the original landing problem can be obtained through an adaptive homotopy process.Simulation results of Earth landing scenarios are given to substantiate the effectiveness of the proposed techniques and illustrate that the developed method can obtain a fuel-optimal landing trajectory in 5 ms with 100%success rate.
文摘Fishing activities can alter the structure of marine food webs by the selective removal of some species. The changes in the marine food webs of the Hormuzgan waters of the Persian Gulf, Iran were assessed, based on estimates of the mean trophic index (MTI) and Fishing in Balance index (FIB), and on landing profile of the exploited marine community (49 species) during the period, 2002-2011. The total landings (Yt) (R=0.88, P〈0.001) increased gradually while the Y~ of carnivores has slightly declined, and the Yt of herbivores, detritivores and omnivores has increased. Consequently, the MTI significantly decreased (R=-0.69, P〈0.05) at a rate of 0.1 l during this decade. The MTI showed a decreasing trend, which indicates exploitation of marine resources. The FiB index also showed a downward trend and negative values from 2002 to 2009, which may be associated with unbalanced structure in the fisheries, but an upward trend from 2009 to 20ll. The time variation of the landing profile showed two periods with significant differences in their species composition (R=0.88; P=0.005), and based on analysis of similarity, species have been identified as discriminator species, namely Thunnus albacores and Benthosema pterotum. Results indicate that changes in MTI reflected changes in the Hormuzgan landing structure. The examination of the MTI, FBI, and landing profile (LP) temporal pattern suggests that the status of fishery resources in Hormuzgan inshore waters is overexploited, and provides evidence of the probability that a fishing down process is occurring in this area, and that this trend may continue in the long-tenn. Therefore, environmental fisheries management and conservation programs should be prioritized for these valuable resources.
基金supported by the National Science Foundation(1933409)the China Scholarship Council+1 种基金a student research grant from the International Society of Biomechanics in Sportsthe Wyoming IDeA Networks for Biomedical Research Excellence,supported by the National Institutes of Health(P20GM103432)。
文摘Purpose:To determine the effect of unanticipated mid-flight medial-lateral external perturbation of the upper or lower trunk on anterior cruciate ligament(ACL)loading variable s during jump-landings.Methods:Thirty-two participants performed double-leg vertical jump-landings while bilateral kinematics and kinetics were collected under 6conditions(upper or lower trunk perturbation locations;no,left,or right perturbation directions).Two customized catapult apparatuses were created to apply pushing perturbation to participants near the maximal jump height.Results:The ball contacted participants near the center of mass for the lower-trunk conditions and approximately 23 cm above the center of mass for the upper-trunk conditions.Under upper-trunk perturbation,the contralateral leg demonstrated significantly smaller knee flexion angles at initial contact and greater peak knee abduction angles,peak vertical ground reaction forces,peak knee extension moments,and peak knee adduction moments compared to other legs among all conditions.Under lower-trunk perturbation,the contralateral leg showed significantly smaller knee flexion angles at initial contact and increased peak vertical ground reaction forces and peak knee extension moments compared to legs in the no-perturbation conditions.Conclusion:Mid-flight external trunk pushing perturbation increased ACL loading variables for the leg contralateral to the perturbation.The uppertrunk perturbation resulted in greater changes in ACL loading variables compared to the lower-trunk perturbation,likely due to trunk and ipsilateral leg rotation and more laterally located center of mass relative to the contralateral leg.These findings may help us understand the mechanisms of indirect-contact ACL injuries and develop jump-landing training strategies under mid-flight trunk perturbation to better prevent ACL injury.
文摘This investigation focuses on two mechanisms over the North Pacific connecting decadal regime shifts to regional ecosystem impacts. The physical conditions show the impacts of the atmospheric surface wind stress and the sea surface temperature (SST) physical conditions on the fish landings along the west coast of California (WCC) from 1928-2008. The two mechanisms are identified by the two types of wind stress (e.g. westerly-easterly;or cyclonic-anticyclonic) anomaly over the central North Pacific which results in SST anomalies in the WCC. In both mechanism cases, the local warm (cold) SST anomaly leads to the number of fish species rising (falling) in the WCC region. In addition, the wind stress and SST anomaly pattern over the North Pacific is closely related to the intensity of the regime shifts as identified in the fish landings off the WCC.
基金The National University of Mongolia,No.P2024-4814The Mongolian Science and Technology Foundation,No.CHN-2022/274The‘Chey Institute for Advanced Studies’International Scholar Exchange Fellowship for the Academic Year of 2025-2026。
文摘This study investigates climate-and human-induced hydrological changes in the Zavkhan River-Khyargas Lake Basin,a highly sensitive arid and semi-arid region of Central Asia.Using Mann-Kendall,innovative trend analysis,and Sen's slope estimation methods,historical climate trends(1980-2100)were analyzed,while land cover changes represented human impacts.Future projections were simulated using the MIROC model with Shared Socioeconomic Pathways(SSPs)and the Tank model.Results show that during the past 40 years,air temperature significantly increased(Z=3.93^(***)),while precipitation(Z=-1.54^(*))and river flow(Z=-1.73^(*))both declined.The Khyargas Lake water level dropped markedly(Z=-5.57***).Land cover analysis reveals expanded cropland and impervious areas due to human activity.Under the SSP1.26 scenario,which assumes minimal climate change,air temperature is projected to rise by 2.0℃,precipitation by 21.8 mm,and river discharge by 1.61 m^(3)/s between 2000 and 2100.These findings indicate that both global warming and intensified land use have substantially altered hydrological and climatic processes in the basin,highlighting the vulnerability of western Mongolia's water resources to combined climatic and anthropogenic influence.
基金supported by the Swedish Research Council(Vetenskapsradet,Grant No.202203129)the Project of Youth Science and Technology Fund of Gansu Province(Grant No.24JRRA439)partially funded by the Swedish Research Council(Vetenskapsradet,Grant No.2022-06725)。
文摘This study investigates the impact of vegetation-climate feedback on the global land monsoon system during the Last Interglacial(LIG,127000 years BP)and the mid-Holocene(MH,6000 years BP)using the earth system model EC-Earth3.Our findings indicate that vegetation changes significantly influence the global monsoon area and precipitation patterns,especially in the North African and Indian monsoon regions.The North African monsoon region experienced the most substantial increase in vegetation during both the LIG and MH,resulting in significant increases in monsoonal precipitation by 9.8%and 6.0%,respectively.The vegetation feedback also intensified the Saharan Heat Low,strengthened monsoonal flows,and enhanced precipitation over the North African monsoon region.In contrast,the Indian monsoon region exhibited divergent responses to vegetation changes.During the LIG,precipitation in the Indian monsoon region decreased by 2.2%,while it increased by 1.6%during the MH.These differences highlight the complex and region-specific impacts of vegetation feedback on monsoon systems.Overall,this study demonstrates that vegetation feedback exerts distinct influences on the global monsoon during the MH and LIG.These findings highlight the importance of considering vegetation-climate feedback in understanding past monsoon variability and in predicting future climate change impacts on monsoon systems.
基金Shanxi Province Graduate Research Practice Innovation Project,No.2023KY465Project on the Reform of Graduate Education and Teaching in Shanxi Province,No.2021YJJG146+1 种基金Research Project of Shanxi Provincial Cultural Relics Bureau,No.22-8-14-1400-119National Key R&D Program of China,No.2021YFB3901300。
文摘Human activities have significantly impacted the land surface temperature(LST),endangering human health;however,the relationship between these two factors has not been adequately quantified.This study comprehensively constructs a Human Activity Intensity(HAI)index and employs the Maximal Information Coefficient,four-quadrant model,and XGBoostSHAP model to investigate the spatiotemporal relationship and influencing factors of HAI-LST in the Yellow River Basin(YRB)from 2000 to 2020.The results indicated that from 2000 to 2020,as HAI and LST increased,the static HAI-LST relationship in the YRB showed a positive correlation that continued to strengthen.This dynamic relationship exhibited conflicting development,with the proportion of coordinated to conflicting regions shifting from 1:4 to 1:2,indicating a reduction in conflict intensity.Notably,only the degree of conflict in the source area decreased significantly,whereas it intensified in the upper and lower reaches.The key factors influencing the HAI-LST relationship include fractional vegetation cover,slope,precipitation,and evapotranspiration,along with region-specific factors such as PM_(2.5),biodiversity,and elevation.Based on these findings,region-specific ecological management strategies have been proposed to mitigate conflict-prone areas and alleviate thermal stress,thereby providing important guidance for promoting harmonious development between humans and nature.
基金funded by the National Natural Science Foundation of China(Grant No.42275039)the Meteorological Joint Fund by NSF and CMA(Grant No.U2342224)+1 种基金the National Key R&D Program of China(Grant No.2022YFC3701202)the S&T Development Fund of CAMS(Grant No.2024KJ019)。
文摘Global land monsoon precipitation(GLMP)is highly sensitive to changes in interhemispheric thermal contrast(ITC).Amplified interhemispheric asymmetries of GLMP due to enhanced ITC driven by high-level anthropogenic emissions are expected to simultaneously increase the probability of regional floods and droughts,threatening ecosystems within global terrestrial monsoon regions and the freshwater supply for billions of residents in these areas.In this study,the responses of GLMP to the evolution of ITC toward the carbon neutrality goal are assessed using multimodel outputs from a new model intercomparison project(CovidMIP).The results show that the Northern Hemisphere-Southern Hemisphere(NH-SH)asymmetry of GLMP in boreal summer weakens during the 2040s,as a persistent reduction in well-mixed greenhouse gas(WMGHG)emissions leads to a downward trend in the ITC after 2040.At the same time,the reduction in WMGHG emissions dampens the Eastern Hemisphere-Western Hemisphere(EH-WH)asymmetry of GLMP by inducing La Niña-like cooling and enhancing moisture transport to Inner America.The resulting increases in land monsoon precipitation(LMP)may alleviate drought under the global warming scenario by about 19%-25%and 7%-9%in the WH and SH monsoon regions,respectively.However,a persistent reduction in aerosol emissions in Asia will dominate the increases in LMP in this region until the mid-21st century,and these increases may be approximately 23%-60%of the growth under the global warming scenario.Our results highlight the different rates of response of aerosol and WMGHG concentrations to the carbon neutrality goal,leading to various changes in LMP at global and regional scales.
基金supported by the Australian Research Council(Grant No.CE230100012)。
文摘The onset,cessation,and length of the rainy season are crucial for global water resources,agricultural practices,and food security.However,the response of precipitation seasonality to global warming remains uncertain.In this study,we analyze how global warming levels(GWLs)of 1.5℃ and 2℃ could affect the timing of rainfall onset(RODs),rainfall cessation(RCDs),and the overall duration of the rainy season(LRS)over global land monsoon(GLM)regions using simulations from CMIP6 under the SSP2-4.5 and SSP5-8.5 scenarios.With high model consensus,our results reveal that RODs are projected to occur later over Southern Africa,North Africa,and South America,but earlier over South Asia and Australia,in a warmer climate.The projected early RODs in Australia are more pronounced at the 2℃ GWL under SSP5-8.5.On the other hand,early RCDs are projected over South America and East Asia,while late RCDs are projected over North Africa,with high inter-model agreement.These changes are associated with a future decrease in LRS in most GLM regions.Additionally,we found that continuous warming over 1.5℃ will further reduce the length of the rainy season,especially over the South America,North Africa,and Southern Africa monsoon regions.The findings underscore the urgent need to mitigate global warming.
基金the National Key Research and Development Program of China(Grant No.2022YFF0711400)which provided valuable financial support and resources for my research and made it possible for me to deeply explore the unknown mysteries in the field of lunar geologythe National Space Science Data Center Youth Open Project(Grant No.NSSDC2302001),which has not only facilitated the smooth progress of my research,but has also built a platform for me to communicate and cooperate with experts in the field.
文摘Impact craters are important for understanding the evolution of lunar geologic and surface erosion rates,among other functions.However,the morphological characteristics of these micro impact craters are not obvious and they are numerous,resulting in low detection accuracy by deep learning models.Therefore,we proposed a new multi-scale fusion crater detection algorithm(MSF-CDA)based on the YOLO11 to improve the accuracy of lunar impact crater detection,especially for small craters with a diameter of<1 km.Using the images taken by the LROC(Lunar Reconnaissance Orbiter Camera)at the Chang’e-4(CE-4)landing area,we constructed three separate datasets for craters with diameters of 0-70 m,70-140 m,and>140 m.We then trained three submodels separately with these three datasets.Additionally,we designed a slicing-amplifying-slicing strategy to enhance the ability to extract features from small craters.To handle redundant predictions,we proposed a new Non-Maximum Suppression with Area Filtering method to fuse the results in overlapping targets within the multi-scale submodels.Finally,our new MSF-CDA method achieved high detection performance,with the Precision,Recall,and F1 score having values of 0.991,0.987,and 0.989,respectively,perfectly addressing the problems induced by the lesser features and sample imbalance of small craters.Our MSF-CDA can provide strong data support for more in-depth study of the geological evolution of the lunar surface and finer geological age estimations.This strategy can also be used to detect other small objects with lesser features and sample imbalance problems.We detected approximately 500,000 impact craters in an area of approximately 214 km2 around the CE-4 landing area.By statistically analyzing the new data,we updated the distribution function of the number and diameter of impact craters.Finally,we identified the most suitable lighting conditions for detecting impact crater targets by analyzing the effect of different lighting conditions on the detection accuracy.
基金National Natural Science Foundation of China,No.42101252。
文摘Rapid regional population shifts and spatial polarization have heightened pressure on cultivated land—a critical resource demanding urgent attention amid ongoing urban-rural transition.This study selects Jiangsu province,a national leader in both economic and agricultural development,as a case area to construct a multidimensional framework for assessing the recessive morphological characteristics of multifunctional cultivated land use.We examine temporal dynamics,spatial heterogeneity,and propose an integrated zoning strategy based on empirical analysis.The results reveal that:(1)The recessive morphology index shows a consistent upward trend,with structural breaks in 2007 and 2013,and a spatial shift from“higher in the east and lower in the west”to“higher in the south and lower in the north.”(2)Coordination among sub-dimensions of the index has steadily improved.(3)The index is expected to continue rising in the next decade,though at a slower pace.(4)To promote coordinated multidimensional land-use development,we recommend a policy framework that reinforces existing strengths,addresses weaknesses,and adapts zoning schemes to current spatial conditions.This research offers new insights into multifunctional cultivated land systems and underscores their role in enhancing human well-being,securing food supply,and supporting sustainable urban-rural integration.
文摘英国作家立德夫人的民族志作品The Land of the Blue Gown有多个汉语无本回译译本。本文选取其中三个代表性译本,尝试从民族志翻译理论出发,通过对不同译本的语言风格传达和文化信息还原进行比较,总结各无本回译译本的翻译策略选择以及译者在各自翻译过程中扮演的不同角色,为民族志翻译相关研究作学理探讨。
基金supported by the National Natural Science Foun dation of China(52374170 and 51974313)the National Key Research and Development Plan Project(2022YFF1303300).
文摘1.Introduction Changes in land use are key factors promoting global climate change,and the side effects of mining activity that destroy the soil,vegetation,and biodiversity lead to imbalanced carbon cycling in terrestrial ecosystems.
基金supported by the National Natural Science Foundation of China(Nos.U2340209,and 42271126)the NIGLAS Foundation(No.NIGLAS2022GS03)+1 种基金the Natural Science Foundation of Jiangsu Province(No.BK20220041)the US National Science Foundation Projects(Nos.1831096,1803697,and 2108917).
文摘The increased frequency and intensity of heavy rainfall events due to climate change could potentially influence the movement of nutrients from land-based regions into recipient rivers.However,little information is available on how the rainfall affect nutrient dynamics in subtropicalmontane rivers with complex land use.This study conducted high-frequency monitoring to study the effects of rainfall on nutrients dynamics in an agricultural river draining to Lake Qiandaohu,a montane reservoir of southeast China.The results showed that riverine total nitrogen(TN)and total phosphorus(TP)concentrations increased continuously with increasing rainfall intensity,while TN:TP decreased.The heavy rainfall and rainstorm drove more than 30%of the annual N and P loading in only 5.20%of the total rainfall period,indicating that increased storm runoff is likely to exacerbate eutrophication in montane reservoirs.NO_(3)^(−)-N is the primary nitrogen form lost,while particulate phosphorus(PP)dominated phosphorus loss.Themain source of N is cropland,and themain source of P is residential area.Spatially,forestedwatersheds have better drainage quality,while it is still a potential source of nonpoint pollution during rainfall events.TN and TP concentrations were significantly higher at sites dominated by cropland and residential area,indicating their substantial contributions to deteriorating river water quality.Temporally,TN and TP concentrations reached high values in May-August when rainfall was most intense,while they were lower in autumn and winter than that in spring and summer under the same rainfall intensities.The results emphasize the influence of rainfall-runoff and land use on dynamics of riverine N and P loads,providing guidance for nutrient load reduction planning for Lake Qiandaohu.
文摘Land use transformations in Sonipat District,Haryana,driven by urbanization,industrialization,and land acquisitions,have posed significant ecological and socio-economic challenges,particularly concerning food security.This study investigates the interplay between these land use changes and their environmental implications at macro(district)and micro(village)levels,focusing on agricultural productivity and resource sustainability.The study employs a mixed-method approach,integrating secondary data from official datasets and primary data gathered through structured household surveys,focus group discussions,and visual analysis techniques.Data from 20 villages,selected based on predominant land use characteristics,were analysed using statistical and geospatial tools,including ArcGIS and STATA,to quantify food grain losses and evaluate environmental degradation.Findings of this study reveal a 19%reduction in agricultural land over two decades(2000-2024),correlating with increased residential and industrial areas.Groundwater resources face severe overexploitation,with pollution from industrial clusters further degrading water and soil quality.The study estimates a total food grain loss of 1.5 million kilograms across surveyed villages due to land acquisitions.A strong positive correlation(R^(2)=0.98)between land acquisition and food loss underscores the direct impact of urbanization on agricultural output.The research underscores the urgency of sustainable land management practices,including preserving agricultural lands,optimizing groundwater usage,and enhancing community involvement in planning.By addressing these challenges,the study advocates for balanced urban expansion and food security to ensure ecological and economic resilience in the region.
文摘Human well-being and livelihoods depend on natural ecosystem services(ESs).Following the increment of population,ESs have been deteriorated over time.Ultimately,land use/land cover(LULC)changes have a profound impact on the change of ecosystem.The primary goal of this study is to determine the impacts of LULC changes on ecosystem service values(ESVs)in the upper Gilgel Abbay watershed,Ethiopia.Changes in LULC types were studied using three Landsat images representing 1986,2003,and 2021.The Landsat images were classified using a supervised image classification technique in Earth Resources Data Analysis System(ERDAS)Imagine 2014.We classified ESs in this study into four categories(including provisioning,regulating,supporting,and cultural services)based on global ES classification scheme.The adjusted ESV coefficient benefit approach was employed to measure the impacts of LULC changes on ESVs.Five LULC types were identified in this study,including cultivated land,forest,shrubland,grassland,and water body.The result revealed that the area of cultivated land accounted for 64.50%,71.50%,and 61.50%of the total area in 1986,2003,and 2021,respectively.The percentage of the total area covered by forest was 9.50%,5.90%,and 14.80%in 1986,2003,and 2021,respectively.Result revealed that the total ESV decreased from 7.42×10^(7) to 6.44×10^(7) USD between 1986 and 2003.This is due to the expansion of cultivated land at the expense of forest and shrubland.However,the total ESV increased from 6.44×10^(7) to 7.76×10^(7) USD during 2003-2021,because of the increment of forest and shrubland.The expansion of cultivated land and the reductions of forest and shrubland reduced most individual ESs during 1986-2003.Nevertheless,the increase in forest and shrubland at the expense of cultivated land enhanced many ESs during 2003-2021.Therefore,the findings suggest that appropriate land use practices should be scaled-up to sustainably maintain ESs.
基金jointly supported by the National Science Foundation of China (Grant No.42230611)the Meteorological Joint Fund (Grant No.U2142208)+2 种基金the Second Tibetan Plateau Scientific Expedition and Research (STEP) program (grant no.2019QZKK0102)the National Science Foundation of China (Grant No.42005071)the Gansu Province Key Talent Project (Grant No.2023RCXM37)。
文摘Northern China is a prominent “hotspot” for land–atmosphere interactions, with substantial gradients in both moisture and thermal conditions. Previous studies have identified a link between land–atmosphere coupling and the individual roles of each factor, but the synergistic effect of the two factors remains unclear. This study considers the covariation of evapotranspiration and precipitation to assess evapotranspiration–precipitation(ET–P) coupling across northern China,exploring its spatial variations and their linkage to water and heat factors. Our findings reveal a transition from strongly positive coupling in the northwest to weakly negative coupling in the southeast, peaking in spring. These spatial variations are attributable to water(soil moisture) and heat(air temperature), which explain 39% and 25% of the variability,respectively. The aridity index(AI), a water–heat synergy factor, is the dominant factor, explaining 66% of the spatial variation in ET–P coupling. As the AI increases, ET–P coupling shifts from strongly positive to weakly negative, with an AI around 0.7. This shift is determined by a shift in the evapotranspiration–lifting condensation level(LCL) coupling under an AI change. Regions with an AI below 0.7 experience water-limited evapotranspiration, where increased soil moisture enhances evapotranspiration, reduces sensible heat(H), and lowers the LCL, resulting in a negative ET–LCL coupling.Conversely, regions with an AI above 0.7 experience energy-limited evapotranspiration, where the positive ET–LCL coupling reflects a positive H–LCL coupling or a positive impact of the LCL on evapotranspiration. This analysis advances our understanding of the intricate influences of multifactor surface interactions on the spatial variations of land–atmosphere coupling.
基金National Natural Science Foundation of China,No.52379053,No.52022108The Key Research Project of Science and Technology in Inner Mongolia Autonomous Region of China,No.NMKJXM202208,No.NMKJXM202301The Project Funded by the Water Resources Department of Inner Mongolia Autonomous Region of China,No.NSK202103。
文摘Accurate spatio-temporal land cover information in agricultural irrigation districts is crucial for effective agricultural management and crop production.Therefore,a spectralphenological-based land cover classification(SPLC)method combined with a fusion model(flexible spatiotemporal data fusion,FSDAF)(abbreviated as SPLC-F)was proposed to map multi-year land cover and crop type(LC-CT)distribution in agricultural irrigated areas with complex landscapes and cropping system,using time series optical images(Landsat and MODIS).The SPLC-F method was well validated and applied in a super-large irrigated area(Hetao)of the upper Yellow River Basin(YRB).Results showed that the SPLC-F method had a satisfactory performance in producing long-term LC-CT maps in Hetao,without the requirement of field sampling.Then,the spatio-temporal variation and the driving factors of the cropping systems were further analyzed with the aid of detailed household surveys and statistics.We clarified that irrigation and salinity conditions were the main factors that had impacts on crop spatial distribution in the upper YRB.Investment costs,market demand,and crop price are the main driving factors in determining the temporal variations in cropping distribution.Overall,this study provided essential multi-year LC-CT maps for sustainable management of agriculture,eco-environments,and food security in the upper YRB.
基金Philosophy and Social Science Planning Projects in Yunnan Province,No.QN202428China Postdoctoral Science Foundation,No.2024M752918。
文摘Foreign-funded overseas industrial parks(OIPs)are crucial for attracting foreign investment and promoting globalization in developing countries.However,large-scale land acquisition for these parks generates conflicts between developers and local stakeholders,increasing development costs.A qualitative multicase study was conducted in this study to analyze the land transaction trajectories of China's OIPs.Four OIPs were selected to reveal the underlying mechanisms from the perspectives of institutional arrangements,governance mechanisms,and enterprise heterogeneity.The findings indicate that in host countries with insufficient institutional development,local governments are more inclined to directly engage in OIP land acquisition.High-level intergovernmental mechanisms facilitate land acquisition processes,although their efficacy depends largely on administrative power allocation across parks in host countries.The results also indicate that enterprise characteristics significantly influence land acquisition,where microscale private enterprises lacking political connections often employ low-cost,bottom-up strategies by leveraging international experience.In summary,policy-makers in developing countries should prioritize enhancing OIP governance to mitigate transaction costs,promote diversified land supply,and optimize land allocation.By depicting China's OIP land acquisition processes,this study deepens the academic understanding of OIP governance in developing countries and related international land transactions,offering practical OIP management insights for governments in both host and parent countries.
基金sponsored by the National Natural Science Foundation of China[grant number U2442218]。
文摘Land surface temperature(LST)is the key variable in land-atmosphere interaction,having an important impact on weather and climate forecasting.However,achieving consistent analysis of LST and the atmosphere in assimilation is quite challenging.This is because there is limited knowledge about the cross-component background error covariance(BEC)between LST and atmospheric state variables.This study aims to clarify whether there is a relationship between the error of LST and atmospheric variables,and whether this relationship varies spatially and temporally.To this end,the BEC coupled with atmospheric variables and LST was constructed(LST-BEC),and its characteristics were analyzed based on the 2023 mei-yu season.The general characteristics of LST-BEC show that the LST is mainly correlated with the atmospheric temperature and the correlation decreases gradually with a rise in atmospheric height,and the error standard deviation of the LST is noticeably larger than that of the low-level atmospheric temperature.The spatiotemporal characteristics of LST-BEC on the heavy-rain day and light-rain day show that the error correlation and error standard deviation of LST and low-level atmospheric temperature and humidity are closely related to the weather background,and also have obvious diurnal variations.These results provide valuable information for strongly coupled land-atmosphere assimilation.