This work explores the development of biodegradable laminar composite foams for cushioning applications.The focus lies on overcoming the inherent brittleness of starch foams by incorporating various paper types as rei...This work explores the development of biodegradable laminar composite foams for cushioning applications.The focus lies on overcoming the inherent brittleness of starch foams by incorporating various paper types as rein-forcement.Tapioca starch and glutinous starch were blended in varying ratios(100:0–0:100)to optimize the base material’s properties.The morphology,density,flexural strength,and impact strength of these starch blends were evaluated.The results revealed a trade-off between impact strength and density,with increasing glutinous starch content favoring impact resistance but also leading to higher density.The optimal ratio of tapioca to glutinous starch for achieving maximumflexural strength and modulus was determined to be 60:40.Theflexural strength of the composite material at this ratio reached a peak value of 5.3±0.6 MPa,significantly surpassing theflexural strength of pure tapioca foam,which was measured to be 3.5±0.4 MPa.Building on this foundation,novel lami-nar composite foams were fabricated using the 60:40 starch blend reinforced with mulberry paper,kraft paper,and newsprint paper.To enhance the interfacial adhesion between the starch matrix and paper reinforcement,a silane coupling agent was employed at a 10 wt%loading on the paper.The incorporation of paper reinforcement into starch foams was found to enhance their mechanical properties.Specifically,flexural strength values increased from 5.3±0.6 MPa for the unreinforced starch foam to 6.8±0.6 MPa,8.1±0.9 MPa,and 7.4±0.1 MPa when reinforced with mulberry paper,kraft paper,and newsprint paper,respectively.Notably,kraft paper reinforcement led to the most enhancements inflexural strength,flexural modulus,and impact strength.This research paves the way for developing sustainable cushioning materials with competitive mechanical properties using bio-based resources like starch and paper.展开更多
Hydrogen doping in associated gas combustion presents a promising strategy for mitigating carbon emissions from typically flared or vented gases.To support this idea,this study employed Chemkin Pro to model the lamina...Hydrogen doping in associated gas combustion presents a promising strategy for mitigating carbon emissions from typically flared or vented gases.To support this idea,this study employed Chemkin Pro to model the laminar premixed combustion of associated gases and conducted a sensitivity analysis of key combustion factors.The results demonstrated that increasing the hydrogen-doping ratio accelerated flame propagation and reduced combustion product accumulation time,while also elevating flame instability and inducing cracks or folds on the flame front at higher ratios.Notably,flame speed exhibited a 40%increase per 10%rise in the hydrogen-doping ratio,which directly enhanced combustion efficiency.Flame temperature peaked at an equivalence ratio of 1,whereas flame speed enhancement was maximized at a ratio of 1.3.Higher premix temperatures increased flame speed,and elevated combustion pressures raised flame temperature(stabilizing above 1 atm),with flame speed peaking at 0.06 atm.Critically,hydrogen doping below 15%minimally altered flame morphology,but 30%doping caused significant flame retraction toward the nozzle,which increased the flashback risk and raised NOx emissions by nearly one third.These findings provide insights for optimizing hydrogen-doped combustion processes to balance efficiency gains while ensuring operational safety and emission control.展开更多
7039 Al alloys are widely used in armor vehicles,given the material’s high specific strength and fracture toughness.However,laminar tearing in the thickness plane of the base metal(BM),specifically in the normal dire...7039 Al alloys are widely used in armor vehicles,given the material’s high specific strength and fracture toughness.However,laminar tearing in the thickness plane of the base metal(BM),specifically in the normal direction(ND)and rolling direction(RD)plane,was occasionally observed after the welding of thick plates,resulting in premature material failure.A vertically metal-inert gas(MIG)-welded laminar tearing component of a 30 mm thick plate was analyzed to determine the factors associated with this phenomenon.The texture,residual stress,microhardness,and tensile properties were also investigated.The results indicated that the crack extended along the RD as a transcrystalline fracture and terminated at the BM.The grains near the crack grew preferentially in the(001)crystal direction.Furthermore,the tensile strength(83 MPa)and elongation(6.8%)in the RD were relatively higher than those in the ND.In particular,the primary factors for crack initiation include stronger texture,higher dislocation density,increased Al_(7)Cu_(2)Fe phases,lower proportion of small-angle grain boundaries,and varying grain sizes in different regions,leading to the fragile microstructure.The higher residual stress of the BM promotes the formation and extension of cracks.The restraining force due to fixation and welding shrinkage force transformed the crack into laminar tearing.Preventive measures of laminar tearing were also proposed.展开更多
To meet the challenge of drag reduction for next-generation supersonic transport aircraft,increasing attention has been focused on Natural Laminar Flow(NLF)technology.However,the highly swept wings and high-Reynolds-n...To meet the challenge of drag reduction for next-generation supersonic transport aircraft,increasing attention has been focused on Natural Laminar Flow(NLF)technology.However,the highly swept wings and high-Reynolds-number conditions of such aircraft dramatically amplify Crossflow(CF)instabilities inside boundary layers,making it difficult to maintain a large laminar flow region.To explore novel NLF designs on supersonic wings,this article investigates the mechanisms underlying the attenuation of Tollmien-Schlichting(TS)and CF instabilities by modifying pressure distributions.The evolution of TS and CF instabilities are evaluated under typical pressure distributions with different leading-edge flow acceleration region lengths,pressure coefficient slopes and pressure coefficient deviations.The results show that shortening the leading-edge flow acceleration region and using a flat pressure distribution are favorable for suppressing CF instabilities,and keeping a balance of disturbance growth between positive and negative wave angles is favorable for attenuating TS instabilities.Based on the uncovered mechanisms,a strategy of supersonic NLF design is proposed.Examination of the proposed strategy at a 60°sweep angle and Ma=2 presents potential to exceed the conventional NLF limit and achieve a transition Reynolds number of 17.6million,which can provide guidance for NLF design on supersonic highly swept wings.展开更多
In the present work,the laminar plasma surface hardening method is employed to enhance the service life of metal components fabricated from 65 Mn steel.The mechanical and wear behaviors of the laminar plasma surface h...In the present work,the laminar plasma surface hardening method is employed to enhance the service life of metal components fabricated from 65 Mn steel.The mechanical and wear behaviors of the laminar plasma surface hardened 65 Mn steel were analyzed.The martensite transition transformation of the temperature of the laminar plasma-hardened 65 ferrite Mn steel was determined by a thermal-solid coupling model.Based on the orthogonal experimental results,the optimal hardening parameters were confirmed.The scanning velocity,quenching distance and arc current are 130 mm/min,50 mm and 120 A,respectively.The pearlites and ferrites are transformed into martensites in the hardened zone,while the ratio of martensite in the heataffected zone decreases with the increase in the hardening depth.Compared to the untreated 65Mn steel,the average hardness increases from 220 HV_(0.2)to 920 HV_(0.2)in the hardened zone and the corresponding absorbed power increases from 118.7 J to 175.5 J.At the same time,the average coefficient of friction(COF)decreases from 0.763 to 0.546,and the wear rate decreases from 5.39×10^(-6)mm^(3)/(N·m)to 2.95×10^(-6)mm^(3)/(N·m),indicating that the wear resistance of 65Mn steel could be significantly improved by using laminar surface hardening.With the same hardening parameters,the depth and width of the hardened zone predicted by the thermal-solid coupling model are 1.85 mm and 11.20 mm,respectively,which are in accordance with the experimental results;depth is 1.83 mm and width is 11.15 mm.In addition,the predicted hardness distributions of the simulation model are in accordance with the experimental results.These results indicate that the simulation model could effectively predict the microstructure characteristics of 65 Mn steel.展开更多
This study investigates the aerodynamic performance of the NACA 633-421 airfoil and the effectiveness and feasibility of intermittent disturbance flow control methods on laminar separation bubbles(LSBs).It is found th...This study investigates the aerodynamic performance of the NACA 633-421 airfoil and the effectiveness and feasibility of intermittent disturbance flow control methods on laminar separation bubbles(LSBs).It is found that the average velocity and influence range of the synthetic jet actuator increase with the increasing of driving frequency and driving amplitude.LSB occurs at Re=1.0×10^(5),and ruptures atα=6°.But with intermittent disturbance control,the stall angle of attack(AoA)increases while significantly reducing drag.Research shows that although certain disturbance cannot fully recover from LSB stall,decreasing driving amplitude partially restores wing aerodynamic performance,more effectively than increasing driving amplitude.展开更多
Numerical predictions are made for Laminar Forced convection heat transfer with and without buoyancy effects for Supercritical Nitrogen flowing over an isothermal horizontal flat plate with a heated surface facing dow...Numerical predictions are made for Laminar Forced convection heat transfer with and without buoyancy effects for Supercritical Nitrogen flowing over an isothermal horizontal flat plate with a heated surface facing downwards.Computations are performed by varying the value ofΔT from5 to 30 K and P_(∞)/P_(cr)ratio from1.1 to 1.5.Variation of all the thermophysical properties of supercritical Nitrogen is considered.The wall temperatures are chosen in such a way that two values of Tw are less than T∗(T*is the temperature at which the fluid has a maximum value of Cp for the given pressure),one value equal to T∗and two values greater than T∗.Three different values of U∞are used to obtain Re∞range of 3.6×10_(4)to 4.74×10^(5)for forced convection without buoyancy effects and Gr_(∞)/Re^(2)_(∞)range of 0.011 to 3.107 for the case where buoyancy effects are predominant.Six different forms of correlations are proposed based on numerical predictions and are compared with actual numerical predictions.It has been found that in all six forms of correlations,the maximum deviations are found to occur in those cases where the pseudocritical temperature TT∗lies between the wall temperature and bulk fluid temperature.展开更多
This article deals with an experimental study on the aerodynamic characteristics of a low-drag high-speed nature laminar flow (NLF) airfoil for business airplanes in the TST27 wind tunnel at Delft University of Techno...This article deals with an experimental study on the aerodynamic characteristics of a low-drag high-speed nature laminar flow (NLF) airfoil for business airplanes in the TST27 wind tunnel at Delft University of Technology, the Netherlands. In this experiment, in an attempt to reduce the errors of measurement and improve its accuracy in high-speed flight, some nonintrusive meas- urement techniques, such as the quantitative infrared thermography (IRT), the digital particle imaging velocimetry (PIV), and the s...展开更多
A new kind of laminar metal matrix nanocomposite(MMC) was fabricated by an electrodeposition process with copper and superaligned carbon nanotubes film(SACNT film).The SACNT film was put on a titanium plate and th...A new kind of laminar metal matrix nanocomposite(MMC) was fabricated by an electrodeposition process with copper and superaligned carbon nanotubes film(SACNT film).The SACNT film was put on a titanium plate and then a layer of copper was electrodeposited on it.By repeating the above process,the laminar Cu/SACNT composite which contains dozens or hundreds of layers of copper and SACNT films was obtained.The thickness of a single copper layer was controlled by adjusting the process parameter easily and the thinnest layer is less than 2 μm.The microscopic observation shows that the directional alignment structure of SACNT is retained in the composite perfectly.The mechanical and electrical properties testing results show that the tensile and yield strengths of composites are improved obviously compared with those of pure copper,and the high conductivity is retained.This technology is a potential method to make applicable MMC which characterizes high volume fraction and directional alignment of carbon nanotubes.展开更多
Aim To get the analytical for laminar viscous flow in the gap of two parallel rotating disks. Methods By estimating the order of magnitude of each term in the Navier-Stokes equations to drop small terms and achieve...Aim To get the analytical for laminar viscous flow in the gap of two parallel rotating disks. Methods By estimating the order of magnitude of each term in the Navier-Stokes equations to drop small terms and achieve the required simplified differential equations, and by integrating the equations to obtain the solution for theflow between two rotary disks. Results Parameters related to the laminar viscous flow in the gap between two parallel rotary disks, such as the velocity, the pressure, the flowrate, the force, the shearing stress, the torque and the power derived. Conclusion The result provides a theoretical basis and an effective method for the designs of the devices connected with the laminar viscous flow in the gap between two parallel rotary disks.展开更多
Laminar optical tomography(LOT)is a mesoscopic tomographic imaging technique ranging between confocal microscopy and diffuse optical tomography(DOT).Fluorescence LOT(FLOT)provides depth-resolved molecular information ...Laminar optical tomography(LOT)is a mesoscopic tomographic imaging technique ranging between confocal microscopy and diffuse optical tomography(DOT).Fluorescence LOT(FLOT)provides depth-resolved molecular information with 100-200μm resolution over 2-3mm depth.In this study,we use Monte Carlo simulation and singular-value analysis(SVA)to optimize the source-detector configurations for potential enhancement of FLOT imaging performance.The effects of different design parameters,including source incidence and detector collection angles,detector number,and sampling density,are presented.The results indicate that angled incidence/detection configuration might improve the imaging resolution and depth sensitivity,especially for low-scattering medium.Increasing the number of detectors and the number of scanning steps will also result in enhanced imaging performance.We also demonstrate that the optimal imaging performance depends upon the background scattering coe±cient.Our result might provide an optimization strategy for FLOT or LOT experimental setup.展开更多
The structure of laminar cooling control system for hot rolling was introduced and the control mode, cooling strategy, segment tracking and model recalculation were analyzed. The parameters of air/water cooling models...The structure of laminar cooling control system for hot rolling was introduced and the control mode, cooling strategy, segment tracking and model recalculation were analyzed. The parameters of air/water cooling models were optimized by regressing the data gathering in situ, and satisfactory effect was obtained. The coiling temperature can be controlled within ±15℃.展开更多
The mathematical model for online controlling hot rolled steel cooling on run-out table (ROT for abbreviation) was analyzed, and water cooling is found to be the main cooling mode for hot rolled steel. The calculati...The mathematical model for online controlling hot rolled steel cooling on run-out table (ROT for abbreviation) was analyzed, and water cooling is found to be the main cooling mode for hot rolled steel. The calculation of the drop in strip temperature by both water cooling and air cooling is summed up to obtain the change of heat transfer coefficient. It is found that the learning coefficient of heat transfer coefficient is the kernel coefficient of coiler temperature control (CTC) model tuning. To decrease the deviation between the calculated steel temperature and the measured one at coiler entrance, a laminar cooling control self-learning strategy is used. Using the data acquired in the field, the results of the self-learning model used in the field were analyzed. The analyzed results show that the self-learning function is effective.展开更多
Physics-informed deep learning has drawn tremendous interest in recent years to solve computational physics problems,whose basic concept is to embed physical laws to constrain/inform neural networks,with the need of l...Physics-informed deep learning has drawn tremendous interest in recent years to solve computational physics problems,whose basic concept is to embed physical laws to constrain/inform neural networks,with the need of less data for training a reliable model.This can be achieved by incorporating the residual of physics equations into the loss function.Through minimizing the loss function,the network could approximate the solution.In this paper,we propose a mixed-variable scheme of physics-informed neural network(PINN)for fluid dynamics and apply it to simulate steady and transient laminar flows at low Reynolds numbers.A parametric study indicates that the mixed-variable scheme can improve the PINN trainability and the solution accuracy.The predicted velocity and pressure fields by the proposed PINN approach are also compared with the reference numerical solutions.Simulation results demonstrate great potential of the proposed PINN for fluid flow simulation with a high accuracy.展开更多
Electro-hydraulic servo-valves are widely used components in the mechanical industry,aerospace and aerodynamic devices which precisely control the airplane or missile wings.Due to the small size and complex structure ...Electro-hydraulic servo-valves are widely used components in the mechanical industry,aerospace and aerodynamic devices which precisely control the airplane or missile wings.Due to the small size and complex structure in the pilot stage of deflection flapper servo-valves,accurate mathematical models for the flow and pressure characteristics have always been very difficult to be built.In this paper,mathematical models for the pilot stage of deflection flapper servo-valve are investigated to overcome some gaps between the theoretical formulation and overall performance of the valve by considering different flow states.Here,a mathematical model of the velocity distribution at the flapper groove exit is established by using Schlichting velocity equations for incompressible laminar fluid flow.Moreover,when the flow becomes turbulent,a mathematical model of pressure characteristics in the receiving ports is built on the basis of the assumption of the collision between the liquid and the jet as the impact of the jet on a moving block of fluid particles.To verify the analytical models for both laminar and turbulent flows,the pressure characteristics of the deflection flapper pilot stage are calculated and tested by using numerical simulation and experiment.Experimental verification of the theory is also presented.The computed numerical and analytical results show a good agreement with experimental data.展开更多
Heat transfer was researched from a perspective of the industry application. On the basis of the first law of thermodynamics, the cooling efficiency was deduced from the change of enthalpy inside hot plate. The relati...Heat transfer was researched from a perspective of the industry application. On the basis of the first law of thermodynamics, the cooling efficiency was deduced from the change of enthalpy inside hot plate. The relationship between the cooling efficiency and its influencing parameters was regressed from plenty of data collected from the worksite and discussed in detail. The temperature profiles resulting from the online model and the model modified by regressed formulas were presented and compared. The results indicated that the control accuracy of the modified model was increased obviously.展开更多
The extraction kinetics of La(III) from aqueous chloride solutions into n-heptane solutions of bifunctional ionic liquid extractant [A336][CA-12](tricaprylmethylammonium sec-octylphenoxy acetic acid) was investigated ...The extraction kinetics of La(III) from aqueous chloride solutions into n-heptane solutions of bifunctional ionic liquid extractant [A336][CA-12](tricaprylmethylammonium sec-octylphenoxy acetic acid) was investigated using a constant interfacial cell with laminar flow. The effects of stirring speed, temperature and specific interfacial area on the extraction rate were examined. The results indicate that mass transfer kinetics of La(III) is a mixed-controlled process influenced by interfacial reaction. On the basis of mass transfer kinetic results in the extraction of La(III) by [A336][CA-12], the extraction rate equation of La(III) is proposed in terms of pseudo-firstorder constants, which is supported by the measured thermodynamic equations. The mass-transfer kinetic model deduced from the rate controlling step is adequate to interpret the experimental data qualitatively.展开更多
Laminar flow design is one of the most effective ways to reduce the drag of a commercial aircraft by expanding the laminar flow region on the surface of the aircraft. As material science develops, the emergence of new...Laminar flow design is one of the most effective ways to reduce the drag of a commercial aircraft by expanding the laminar flow region on the surface of the aircraft. As material science develops, the emergence of new materials such as low surface energy materials has offered new choices for laminar flow design of commercial aircraft. Different types of low surface energy micro-nano coatings are prepared to verify the effects on the boundary layer transition position and the drag of the airfoil through wind tunnel tests. The infrared thermal imaging technology is adopted for measuring the boundary layer transition, while the momentum integral approach is employed to measure the drag coefficient through a wake rake. Infrared thermal imaging results indicate that the coatings are capable of moving backward the boundary layer transition position at both a low velocity of Mach number 0.15 and a high velocity of Mach number 0.785. Results of the momentum integral approach demonstrate that the drag coefficients are reduced obviously within the cruising angle of attack range from 1° and 5° by introducing the low surface energy micro-nano coating technology.展开更多
Feedback control is one of the most important ways to improve coiling temperature control precision during laminar cooling process.Laminar cooling equipments of a hot strip mill and structure of the control system wer...Feedback control is one of the most important ways to improve coiling temperature control precision during laminar cooling process.Laminar cooling equipments of a hot strip mill and structure of the control system were introduced.Feedback control algorithm based on PI controller and that based on Smith predictor were designed and tested in a hot strip mill respectively.Practical application shows that the feedback control system based on PI controller plays a limited role in improving coiling temperature control precision.The feedback control system based on Smith predictor runs stable and reliable.When the measured coiling temperature deviates from the target value,it can be adjusted to the required range quickly and steadily by Smith predictor feedback control,which improves the coiling temperature control precision greatly,and qualities of hot rolled strips are improved significantly展开更多
基金funded by the Thailand Science Research and Innovation(TSRI)under Fundamental Fund 2023(Project:Advanced Materials and Manufacturing for Applications in New S-Curve Industries).
文摘This work explores the development of biodegradable laminar composite foams for cushioning applications.The focus lies on overcoming the inherent brittleness of starch foams by incorporating various paper types as rein-forcement.Tapioca starch and glutinous starch were blended in varying ratios(100:0–0:100)to optimize the base material’s properties.The morphology,density,flexural strength,and impact strength of these starch blends were evaluated.The results revealed a trade-off between impact strength and density,with increasing glutinous starch content favoring impact resistance but also leading to higher density.The optimal ratio of tapioca to glutinous starch for achieving maximumflexural strength and modulus was determined to be 60:40.Theflexural strength of the composite material at this ratio reached a peak value of 5.3±0.6 MPa,significantly surpassing theflexural strength of pure tapioca foam,which was measured to be 3.5±0.4 MPa.Building on this foundation,novel lami-nar composite foams were fabricated using the 60:40 starch blend reinforced with mulberry paper,kraft paper,and newsprint paper.To enhance the interfacial adhesion between the starch matrix and paper reinforcement,a silane coupling agent was employed at a 10 wt%loading on the paper.The incorporation of paper reinforcement into starch foams was found to enhance their mechanical properties.Specifically,flexural strength values increased from 5.3±0.6 MPa for the unreinforced starch foam to 6.8±0.6 MPa,8.1±0.9 MPa,and 7.4±0.1 MPa when reinforced with mulberry paper,kraft paper,and newsprint paper,respectively.Notably,kraft paper reinforcement led to the most enhancements inflexural strength,flexural modulus,and impact strength.This research paves the way for developing sustainable cushioning materials with competitive mechanical properties using bio-based resources like starch and paper.
基金supported by the China Postdoctoral Science Foundation(Grant No.2022M723497).
文摘Hydrogen doping in associated gas combustion presents a promising strategy for mitigating carbon emissions from typically flared or vented gases.To support this idea,this study employed Chemkin Pro to model the laminar premixed combustion of associated gases and conducted a sensitivity analysis of key combustion factors.The results demonstrated that increasing the hydrogen-doping ratio accelerated flame propagation and reduced combustion product accumulation time,while also elevating flame instability and inducing cracks or folds on the flame front at higher ratios.Notably,flame speed exhibited a 40%increase per 10%rise in the hydrogen-doping ratio,which directly enhanced combustion efficiency.Flame temperature peaked at an equivalence ratio of 1,whereas flame speed enhancement was maximized at a ratio of 1.3.Higher premix temperatures increased flame speed,and elevated combustion pressures raised flame temperature(stabilizing above 1 atm),with flame speed peaking at 0.06 atm.Critically,hydrogen doping below 15%minimally altered flame morphology,but 30%doping caused significant flame retraction toward the nozzle,which increased the flashback risk and raised NOx emissions by nearly one third.These findings provide insights for optimizing hydrogen-doped combustion processes to balance efficiency gains while ensuring operational safety and emission control.
基金supported by the National Key Research and Development Program of China(No.SQ2021YFF 0600011).
文摘7039 Al alloys are widely used in armor vehicles,given the material’s high specific strength and fracture toughness.However,laminar tearing in the thickness plane of the base metal(BM),specifically in the normal direction(ND)and rolling direction(RD)plane,was occasionally observed after the welding of thick plates,resulting in premature material failure.A vertically metal-inert gas(MIG)-welded laminar tearing component of a 30 mm thick plate was analyzed to determine the factors associated with this phenomenon.The texture,residual stress,microhardness,and tensile properties were also investigated.The results indicated that the crack extended along the RD as a transcrystalline fracture and terminated at the BM.The grains near the crack grew preferentially in the(001)crystal direction.Furthermore,the tensile strength(83 MPa)and elongation(6.8%)in the RD were relatively higher than those in the ND.In particular,the primary factors for crack initiation include stronger texture,higher dislocation density,increased Al_(7)Cu_(2)Fe phases,lower proportion of small-angle grain boundaries,and varying grain sizes in different regions,leading to the fragile microstructure.The higher residual stress of the BM promotes the formation and extension of cracks.The restraining force due to fixation and welding shrinkage force transformed the crack into laminar tearing.Preventive measures of laminar tearing were also proposed.
基金supported by the National Natural Science Foundation of China(No.12072285)the National Key Research and Development Program of China(No.2023YFB3002800)the Youth Innovation Team of Shaanxi Universities,China。
文摘To meet the challenge of drag reduction for next-generation supersonic transport aircraft,increasing attention has been focused on Natural Laminar Flow(NLF)technology.However,the highly swept wings and high-Reynolds-number conditions of such aircraft dramatically amplify Crossflow(CF)instabilities inside boundary layers,making it difficult to maintain a large laminar flow region.To explore novel NLF designs on supersonic wings,this article investigates the mechanisms underlying the attenuation of Tollmien-Schlichting(TS)and CF instabilities by modifying pressure distributions.The evolution of TS and CF instabilities are evaluated under typical pressure distributions with different leading-edge flow acceleration region lengths,pressure coefficient slopes and pressure coefficient deviations.The results show that shortening the leading-edge flow acceleration region and using a flat pressure distribution are favorable for suppressing CF instabilities,and keeping a balance of disturbance growth between positive and negative wave angles is favorable for attenuating TS instabilities.Based on the uncovered mechanisms,a strategy of supersonic NLF design is proposed.Examination of the proposed strategy at a 60°sweep angle and Ma=2 presents potential to exceed the conventional NLF limit and achieve a transition Reynolds number of 17.6million,which can provide guidance for NLF design on supersonic highly swept wings.
基金appreciate the support of the Key Laboratory of Mechanical Structure Optimization&Material Application Technology of Luzhou(No.SCHYZSA-2022-02)the Scientific Research and Innovation Team Program of Sichuan University of Science and Technology(No.SUSE652A004)+1 种基金the Key Laboratory of Intelligent Manufacturing of Construction Machinery Project(No.IMCM202103)the Panzhihua Key Laboratory of Advanced Manufacturing Technology Open Fund Project(No.2022XJZD01)。
文摘In the present work,the laminar plasma surface hardening method is employed to enhance the service life of metal components fabricated from 65 Mn steel.The mechanical and wear behaviors of the laminar plasma surface hardened 65 Mn steel were analyzed.The martensite transition transformation of the temperature of the laminar plasma-hardened 65 ferrite Mn steel was determined by a thermal-solid coupling model.Based on the orthogonal experimental results,the optimal hardening parameters were confirmed.The scanning velocity,quenching distance and arc current are 130 mm/min,50 mm and 120 A,respectively.The pearlites and ferrites are transformed into martensites in the hardened zone,while the ratio of martensite in the heataffected zone decreases with the increase in the hardening depth.Compared to the untreated 65Mn steel,the average hardness increases from 220 HV_(0.2)to 920 HV_(0.2)in the hardened zone and the corresponding absorbed power increases from 118.7 J to 175.5 J.At the same time,the average coefficient of friction(COF)decreases from 0.763 to 0.546,and the wear rate decreases from 5.39×10^(-6)mm^(3)/(N·m)to 2.95×10^(-6)mm^(3)/(N·m),indicating that the wear resistance of 65Mn steel could be significantly improved by using laminar surface hardening.With the same hardening parameters,the depth and width of the hardened zone predicted by the thermal-solid coupling model are 1.85 mm and 11.20 mm,respectively,which are in accordance with the experimental results;depth is 1.83 mm and width is 11.15 mm.In addition,the predicted hardness distributions of the simulation model are in accordance with the experimental results.These results indicate that the simulation model could effectively predict the microstructure characteristics of 65 Mn steel.
文摘This study investigates the aerodynamic performance of the NACA 633-421 airfoil and the effectiveness and feasibility of intermittent disturbance flow control methods on laminar separation bubbles(LSBs).It is found that the average velocity and influence range of the synthetic jet actuator increase with the increasing of driving frequency and driving amplitude.LSB occurs at Re=1.0×10^(5),and ruptures atα=6°.But with intermittent disturbance control,the stall angle of attack(AoA)increases while significantly reducing drag.Research shows that although certain disturbance cannot fully recover from LSB stall,decreasing driving amplitude partially restores wing aerodynamic performance,more effectively than increasing driving amplitude.
文摘Numerical predictions are made for Laminar Forced convection heat transfer with and without buoyancy effects for Supercritical Nitrogen flowing over an isothermal horizontal flat plate with a heated surface facing downwards.Computations are performed by varying the value ofΔT from5 to 30 K and P_(∞)/P_(cr)ratio from1.1 to 1.5.Variation of all the thermophysical properties of supercritical Nitrogen is considered.The wall temperatures are chosen in such a way that two values of Tw are less than T∗(T*is the temperature at which the fluid has a maximum value of Cp for the given pressure),one value equal to T∗and two values greater than T∗.Three different values of U∞are used to obtain Re∞range of 3.6×10_(4)to 4.74×10^(5)for forced convection without buoyancy effects and Gr_(∞)/Re^(2)_(∞)range of 0.011 to 3.107 for the case where buoyancy effects are predominant.Six different forms of correlations are proposed based on numerical predictions and are compared with actual numerical predictions.It has been found that in all six forms of correlations,the maximum deviations are found to occur in those cases where the pseudocritical temperature TT∗lies between the wall temperature and bulk fluid temperature.
文摘This article deals with an experimental study on the aerodynamic characteristics of a low-drag high-speed nature laminar flow (NLF) airfoil for business airplanes in the TST27 wind tunnel at Delft University of Technology, the Netherlands. In this experiment, in an attempt to reduce the errors of measurement and improve its accuracy in high-speed flight, some nonintrusive meas- urement techniques, such as the quantitative infrared thermography (IRT), the digital particle imaging velocimetry (PIV), and the s...
基金Project(20111080980)supported by the Initiative Scientific Research Program,Tsinghua University,China
文摘A new kind of laminar metal matrix nanocomposite(MMC) was fabricated by an electrodeposition process with copper and superaligned carbon nanotubes film(SACNT film).The SACNT film was put on a titanium plate and then a layer of copper was electrodeposited on it.By repeating the above process,the laminar Cu/SACNT composite which contains dozens or hundreds of layers of copper and SACNT films was obtained.The thickness of a single copper layer was controlled by adjusting the process parameter easily and the thinnest layer is less than 2 μm.The microscopic observation shows that the directional alignment structure of SACNT is retained in the composite perfectly.The mechanical and electrical properties testing results show that the tensile and yield strengths of composites are improved obviously compared with those of pure copper,and the high conductivity is retained.This technology is a potential method to make applicable MMC which characterizes high volume fraction and directional alignment of carbon nanotubes.
文摘Aim To get the analytical for laminar viscous flow in the gap of two parallel rotating disks. Methods By estimating the order of magnitude of each term in the Navier-Stokes equations to drop small terms and achieve the required simplified differential equations, and by integrating the equations to obtain the solution for theflow between two rotary disks. Results Parameters related to the laminar viscous flow in the gap between two parallel rotary disks, such as the velocity, the pressure, the flowrate, the force, the shearing stress, the torque and the power derived. Conclusion The result provides a theoretical basis and an effective method for the designs of the devices connected with the laminar viscous flow in the gap between two parallel rotary disks.
文摘Laminar optical tomography(LOT)is a mesoscopic tomographic imaging technique ranging between confocal microscopy and diffuse optical tomography(DOT).Fluorescence LOT(FLOT)provides depth-resolved molecular information with 100-200μm resolution over 2-3mm depth.In this study,we use Monte Carlo simulation and singular-value analysis(SVA)to optimize the source-detector configurations for potential enhancement of FLOT imaging performance.The effects of different design parameters,including source incidence and detector collection angles,detector number,and sampling density,are presented.The results indicate that angled incidence/detection configuration might improve the imaging resolution and depth sensitivity,especially for low-scattering medium.Increasing the number of detectors and the number of scanning steps will also result in enhanced imaging performance.We also demonstrate that the optimal imaging performance depends upon the background scattering coe±cient.Our result might provide an optimization strategy for FLOT or LOT experimental setup.
基金ItemSponsored by National Natural Science Foundation of China (50104004)
文摘The structure of laminar cooling control system for hot rolling was introduced and the control mode, cooling strategy, segment tracking and model recalculation were analyzed. The parameters of air/water cooling models were optimized by regressing the data gathering in situ, and satisfactory effect was obtained. The coiling temperature can be controlled within ±15℃.
基金Item Sponsored by National Natural Science Foundation of China(50474016)
文摘The mathematical model for online controlling hot rolled steel cooling on run-out table (ROT for abbreviation) was analyzed, and water cooling is found to be the main cooling mode for hot rolled steel. The calculation of the drop in strip temperature by both water cooling and air cooling is summed up to obtain the change of heat transfer coefficient. It is found that the learning coefficient of heat transfer coefficient is the kernel coefficient of coiler temperature control (CTC) model tuning. To decrease the deviation between the calculated steel temperature and the measured one at coiler entrance, a laminar cooling control self-learning strategy is used. Using the data acquired in the field, the results of the self-learning model used in the field were analyzed. The analyzed results show that the self-learning function is effective.
文摘Physics-informed deep learning has drawn tremendous interest in recent years to solve computational physics problems,whose basic concept is to embed physical laws to constrain/inform neural networks,with the need of less data for training a reliable model.This can be achieved by incorporating the residual of physics equations into the loss function.Through minimizing the loss function,the network could approximate the solution.In this paper,we propose a mixed-variable scheme of physics-informed neural network(PINN)for fluid dynamics and apply it to simulate steady and transient laminar flows at low Reynolds numbers.A parametric study indicates that the mixed-variable scheme can improve the PINN trainability and the solution accuracy.The predicted velocity and pressure fields by the proposed PINN approach are also compared with the reference numerical solutions.Simulation results demonstrate great potential of the proposed PINN for fluid flow simulation with a high accuracy.
基金The National Natural Science Foundation of China(No.51675119)。
文摘Electro-hydraulic servo-valves are widely used components in the mechanical industry,aerospace and aerodynamic devices which precisely control the airplane or missile wings.Due to the small size and complex structure in the pilot stage of deflection flapper servo-valves,accurate mathematical models for the flow and pressure characteristics have always been very difficult to be built.In this paper,mathematical models for the pilot stage of deflection flapper servo-valve are investigated to overcome some gaps between the theoretical formulation and overall performance of the valve by considering different flow states.Here,a mathematical model of the velocity distribution at the flapper groove exit is established by using Schlichting velocity equations for incompressible laminar fluid flow.Moreover,when the flow becomes turbulent,a mathematical model of pressure characteristics in the receiving ports is built on the basis of the assumption of the collision between the liquid and the jet as the impact of the jet on a moving block of fluid particles.To verify the analytical models for both laminar and turbulent flows,the pressure characteristics of the deflection flapper pilot stage are calculated and tested by using numerical simulation and experiment.Experimental verification of the theory is also presented.The computed numerical and analytical results show a good agreement with experimental data.
基金National Natural Science Foundation of China (50634030)
文摘Heat transfer was researched from a perspective of the industry application. On the basis of the first law of thermodynamics, the cooling efficiency was deduced from the change of enthalpy inside hot plate. The relationship between the cooling efficiency and its influencing parameters was regressed from plenty of data collected from the worksite and discussed in detail. The temperature profiles resulting from the online model and the model modified by regressed formulas were presented and compared. The results indicated that the control accuracy of the modified model was increased obviously.
基金Supported by the National Natural Science Foundation of China(51174184)National Basic Research Program of China(2012CBA01202)+3 种基金the Key Research Programof the Chinese Academy of Sciences(KGZD-EW-201-1)the Science and Technology Planof Nantong City(BK2013030)the University Science Research Project of Jiangsu Province(14KJB150019)Open Subject of Changchun Institute of Applied Chemistry,Chinese Academy of Sciences(RERU2014016)
文摘The extraction kinetics of La(III) from aqueous chloride solutions into n-heptane solutions of bifunctional ionic liquid extractant [A336][CA-12](tricaprylmethylammonium sec-octylphenoxy acetic acid) was investigated using a constant interfacial cell with laminar flow. The effects of stirring speed, temperature and specific interfacial area on the extraction rate were examined. The results indicate that mass transfer kinetics of La(III) is a mixed-controlled process influenced by interfacial reaction. On the basis of mass transfer kinetic results in the extraction of La(III) by [A336][CA-12], the extraction rate equation of La(III) is proposed in terms of pseudo-firstorder constants, which is supported by the measured thermodynamic equations. The mass-transfer kinetic model deduced from the rate controlling step is adequate to interpret the experimental data qualitatively.
基金support by the United Innovation Program of Shanghai Commercial Aircraft Engine, which was founded by Shanghai Municipal Commission of Economy and Informatization, Shanghai Municipal Education Commission, and AECC Commercial Aircraft Engine Co., Ltd. (No. AR909)the Aeronautical Science Foundation of China (No. 2015ZBP9002)the China Scholarship Council
文摘Laminar flow design is one of the most effective ways to reduce the drag of a commercial aircraft by expanding the laminar flow region on the surface of the aircraft. As material science develops, the emergence of new materials such as low surface energy materials has offered new choices for laminar flow design of commercial aircraft. Different types of low surface energy micro-nano coatings are prepared to verify the effects on the boundary layer transition position and the drag of the airfoil through wind tunnel tests. The infrared thermal imaging technology is adopted for measuring the boundary layer transition, while the momentum integral approach is employed to measure the drag coefficient through a wake rake. Infrared thermal imaging results indicate that the coatings are capable of moving backward the boundary layer transition position at both a low velocity of Mach number 0.15 and a high velocity of Mach number 0.785. Results of the momentum integral approach demonstrate that the drag coefficients are reduced obviously within the cruising angle of attack range from 1° and 5° by introducing the low surface energy micro-nano coating technology.
基金Sponsored by National Natural Science Foundation of China(50634030)
文摘Feedback control is one of the most important ways to improve coiling temperature control precision during laminar cooling process.Laminar cooling equipments of a hot strip mill and structure of the control system were introduced.Feedback control algorithm based on PI controller and that based on Smith predictor were designed and tested in a hot strip mill respectively.Practical application shows that the feedback control system based on PI controller plays a limited role in improving coiling temperature control precision.The feedback control system based on Smith predictor runs stable and reliable.When the measured coiling temperature deviates from the target value,it can be adjusted to the required range quickly and steadily by Smith predictor feedback control,which improves the coiling temperature control precision greatly,and qualities of hot rolled strips are improved significantly