期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
最小L_1-模估计与有界线性规划问题
1
作者 陈志 薛毅 《北京工业大学学报》 CAS CSCD 1990年第4期43-49,共7页
对任意有限制的有界解集的线性规划问题与从最小L_1-模估计导出的线性规划问题的对隅形式等价性的定理证明做了改进,并从这一定理出发,利用求解线性规划的有效集法得到了求解有界线性规划问题的一阶段方法。
关键词 线性规划 最小l1-模估计 对偶形式
在线阅读 下载PDF
求解最小L_1-模估计的数学规划方法
2
作者 薛毅 陈立萍 《北京工业大学学报》 CAS CSCD 1997年第2期14-22,共9页
最小L_1-模估计(也称为最小—乘估计)在回归分析中有着十分重要的意义,但其计算确相当困难.以致于影响到它的应用.本文就最小L_1-模估计的计算,介绍几种求解的数学规划方法,它们包括:(1)单纯形方法;(2)L_1-模估计的对偶规划方法;(3)投... 最小L_1-模估计(也称为最小—乘估计)在回归分析中有着十分重要的意义,但其计算确相当困难.以致于影响到它的应用.本文就最小L_1-模估计的计算,介绍几种求解的数学规划方法,它们包括:(1)单纯形方法;(2)L_1-模估计的对偶规划方法;(3)投影梯度方法;(4)有效集法. 展开更多
关键词 线性规划 线性回归 数学规划 最小乘估计
在线阅读 下载PDF
Asymptotics of the“Minimum L_1-Norm”Estimates in Nonparametric Regression Models
3
作者 Shi Pei-De Cheng Ping Institute of Systems Science Academia Sinica Beijing,100080 China 《Acta Mathematica Sinica,English Series》 SCIE CSCD 1994年第3期276-288,共13页
Consider the nonparametric regression model Y=go(T)+u,where Y is real-valued, u is a random error,T ranges over a nondegenerate compact interval,say[0,1],and go(·)is an unknown regression function,which is m... Consider the nonparametric regression model Y=go(T)+u,where Y is real-valued, u is a random error,T ranges over a nondegenerate compact interval,say[0,1],and go(·)is an unknown regression function,which is m(m≥0)times continuously differentiable and its ruth derivative,g<sub>0</sub><sup>(m)</sup>,satisfies a H■lder condition of order γ(m +γ】1/2).A piecewise polynomial L<sub>1</sub>- norm estimator of go is proposed.Under some regularity conditions including that the random errors are independent but not necessarily have a common distribution,it is proved that the rates of convergence of the piecewise polynomial L<sub>1</sub>-norm estimator are o(n<sup>-2(m+γ)+1/m+γ-1/δ</sup>almost surely and o(n<sup>-2(m+γ)+1/m+γ-δ</sup>)in probability,which can arbitrarily approach the optimal rates of convergence for nonparametric regression,where δ is any number in (0, min((m+γ-1/2)/3,γ)). 展开更多
关键词 Estimates in Nonparametric Regression Models minimum l1-norm
原文传递
秩亏自由网单点粗变形探测方法研究
4
作者 王欣宇 范百兴 +2 位作者 王同合 陈盼盼 谨雪朝 《测绘科学与工程》 2017年第1期18-20,29,共4页
在变形测量中,对自由网进行变形测量,广泛应用于变形监测和矿山测量中。传统的方法是假设控制网中所有控制点都发生较小的位移变化,通过伪逆矩阵的方法来计算其变形,不适合单个点发生较大位移的情况。本文基于最小一范数在粗差探测... 在变形测量中,对自由网进行变形测量,广泛应用于变形监测和矿山测量中。传统的方法是假设控制网中所有控制点都发生较小的位移变化,通过伪逆矩阵的方法来计算其变形,不适合单个点发生较大位移的情况。本文基于最小一范数在粗差探测中的基本原理,在经典伪逆矩阵方法基础上建立合理的平差解算模型。对于在控制网中仅有一个点发生大幅度变形的情况,通过模拟实验证明该方法比传统方法准确可靠。 展开更多
关键词 变形监测 最小二乘法 抗差估计 整体最佳化 最小一范数
在线阅读 下载PDF
范数最小估计的海底大地控制点精密标校方法 被引量:1
5
作者 胡致远 王盼龙 +2 位作者 唐秋华 周兴华 周东旭 《导航定位学报》 CSCD 2020年第3期15-22,共8页
针对海洋测绘水下声学定位中常用的最小二乘平差法易受粗差和系统误差影响,导致解算精度和稳定性较差的问题,提出1种水下控制点解算的方法:介绍海底大地控制点标校基本原理和方法,给出全球卫星导航系统(GNSS)和水下声学定位模型;然后选... 针对海洋测绘水下声学定位中常用的最小二乘平差法易受粗差和系统误差影响,导致解算精度和稳定性较差的问题,提出1种水下控制点解算的方法:介绍海底大地控制点标校基本原理和方法,给出全球卫星导航系统(GNSS)和水下声学定位模型;然后选用中国科学院测量与地球物理研究所(IGG)选权迭代法和一次范数最小法,用于水下声学定位数据精密标校。实验结果表明,一次范数最小法能有效抗拒异常观测扰动,抗差能力较强,能够实现浅海海底控制点厘米级定位精度。 展开更多
关键词 海底大地控制点 水下声学定位 一次范数最小法 选权迭代法
在线阅读 下载PDF
Feature selection for probabilistic load forecasting via sparse penalized quantile regression 被引量:7
6
作者 Yi WANG Dahua GAN +2 位作者 Ning ZHANG Le XIE Chongqing KANG 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2019年第5期1200-1209,共10页
Probabilistic load forecasting(PLF)is able to present the uncertainty information of the future loads.It is the basis of stochastic power system planning and operation.Recent works on PLF mainly focus on how to develo... Probabilistic load forecasting(PLF)is able to present the uncertainty information of the future loads.It is the basis of stochastic power system planning and operation.Recent works on PLF mainly focus on how to develop and combine forecasting models,while the feature selection issue has not been thoroughly investigated for PLF.This paper fills the gap by proposing a feature selection method for PLF via sparse L1-norm penalized quantile regression.It can be viewed as an extension from point forecasting-based feature selection to probabilistic forecasting-based feature selection.Since both the number of training samples and the number of features to be selected are very large,the feature selection process is casted as a large-scale convex optimization problem.The alternating direction method of multipliers is applied to solve the problem in an efficient manner.We conduct case studies on the open datasets of ten areas.Numerical results show that the proposed feature selection method can improve the performance of the probabilistic forecasting and outperforms traditional least absolute shrinkage and selection operator method. 展开更多
关键词 PROBABIlISTIC load forecasting Feature selection AlTERNATING direction method of multipliers(ADMM) QUANTIlE regression l1-norm PENAlTY
原文传递
The Sparsest Solution to the System of Absolute Value Equations 被引量:4
7
作者 Min Zhang Zheng-Hai Huang Yu-Fan Li 《Journal of the Operations Research Society of China》 EI CSCD 2015年第1期31-51,共21页
On one hand,to find the sparsest solution to the system of linear equations has been a major focus since it has a large number of applications in many areas;and on the other hand,the system of absolute value equations... On one hand,to find the sparsest solution to the system of linear equations has been a major focus since it has a large number of applications in many areas;and on the other hand,the system of absolute value equations(AVEs)has attracted a lot of attention since many practical problems can be equivalently transformed as a system of AVEs.Motivated by the development of these two aspects,we consider the problem to find the sparsest solution to the system of AVEs in this paper.We first propose the model of the concerned problem,i.e.,to find the solution to the system of AVEs with the minimum l0-norm.Since l0-norm is difficult to handle,we relax the problem into a convex optimization problem and discuss the necessary and sufficient conditions to guarantee the existence of the unique solution to the convex relaxation problem.Then,we prove that under such conditions the unique solution to the convex relaxation is exactly the sparsest solution to the system of AVEs.When the concerned system of AVEs reduces to the system of linear equations,the obtained results reduce to those given in the literature.The theoretical results obtained in this paper provide an important basis for designing numerical method to find the sparsest solution to the system of AVEs. 展开更多
关键词 Absolute value equations The sparsest solution minimum l1-norm solution
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部