BACKGROUND:The specificity in discriminating pancreatitis is limited in the positron emission tomography(PET)using Fluorine-18-fluorodeoxyglucose.Furthermore,PET is not widely available compared to the single photon e...BACKGROUND:The specificity in discriminating pancreatitis is limited in the positron emission tomography(PET)using Fluorine-18-fluorodeoxyglucose.Furthermore,PET is not widely available compared to the single photon emission computed tomography(SPECT).Since amino acids play a minor role in metabolism of inflammatory cells,the potential of the SPECT tracer,3-[ 123 I]iodo-L-α-methyltyrosine(123I-IMT),for detecting pancreatic cancer was examined in xenotransplantation models of human pancreatic carcinoma in mice. METHODS: 123 I-IMT was injected to eight mice inoculated with subcutaneous or orthotopic pancreatic tumors.Fused high-resolution-micro-SPECT(Hi-SPECT)and magnetic resonance imaging were performed.The gene expression level of L amino acid transport-system 1(LAT1)was analyzed and correlated with tumor uptake of 123 I-IMT. RESULTS:A high uptake of 123 I-IMT was detected in all tumor-bearing mice.The median tumor-to-background ratio (T/B)was 12.1(2.0-13.2)for orthotopic and 8.4(1.8-11.1)for subcutaneous xenotransplantation,respectively.Accordingly, the LAT1 expression in transplanted Colo357 cells was increased compared to non-malignant controls.CONCLUSIONS:Our mouse model could show a high 123 I-IMT uptake in pancreatic cancer.Fused MRI scans facilitate precise evaluation of uptake in the specific regions of interest.Further studies are required to confirm these findings in tumors derived from other human pancreatic cancer cells.Since amino acids play a minor role in the metabolism of inflammatory cells,the potential for application of 123 I-IMT to distinguish pancreatic tumor from inflammatory pancreatitis warrants further investigation.展开更多
For indoor location estimation based on received signal strength( RSS) in wireless local area networks( WLAN),in order to reduce the influence of noise on the positioning accuracy,a large number of RSS should be colle...For indoor location estimation based on received signal strength( RSS) in wireless local area networks( WLAN),in order to reduce the influence of noise on the positioning accuracy,a large number of RSS should be collected in offline phase. Therefore,collecting training data with positioning information is time consuming which becomes the bottleneck of WLAN indoor localization. In this paper,the traditional semisupervised learning method based on k-NN and ε-NN graph for reducing collection workload of offline phase are analyzed,and the result shows that the k-NN or ε-NN graph are sensitive to data noise,which limit the performance of semi-supervised learning WLAN indoor localization system. Aiming at the above problem,it proposes a l1-graph-algorithm-based semi-supervised learning( LG-SSL) indoor localization method in which the graph is built by l1-norm algorithm. In our system,it firstly labels the unlabeled data using LG-SSL and labeled data to build the Radio Map in offline training phase,and then uses LG-SSL to estimate user's location in online phase. Extensive experimental results show that,benefit from the robustness to noise and sparsity ofl1-graph,LG-SSL exhibits superior performance by effectively reducing the collection workload in offline phase and improving localization accuracy in online phase.展开更多
We propose a fractional-order improved Fitz Hugh–Nagumo(FHN)neuron model in terms of a generalized Caputo fractional derivative.Following the existence of a unique solution for the proposed model,we derive the numeri...We propose a fractional-order improved Fitz Hugh–Nagumo(FHN)neuron model in terms of a generalized Caputo fractional derivative.Following the existence of a unique solution for the proposed model,we derive the numerical solution using a recently proposed L1 predictor–corrector method.The given method is based on the L1-type discretization algorithm and the spline interpolation scheme.We perform the error and stability analyses for the given method.We perform graphical simulations demonstrating that the proposed FHN neuron model generates rich electrical activities of periodic spiking patterns,chaotic patterns,and quasi-periodic patterns.The motivation behind proposing a fractional-order improved FHN neuron model is that such a system can provide a more nuanced description of the process with better understanding and simulation of the neuronal responses by incorporating memory effects and non-local dynamics,which are inherent to many biological systems.展开更多
In this article,a high-order scheme,which is formulated by combining the quadratic finite element method in space with a second-order time discrete scheme,is developed for looking for the numerical solution of a two-d...In this article,a high-order scheme,which is formulated by combining the quadratic finite element method in space with a second-order time discrete scheme,is developed for looking for the numerical solution of a two-dimensional nonlinear time fractional thermal diffusion model.The time Caputo fractional derivative is approximated by using the L2-1formula,the first-order derivative and nonlinear term are discretized by some second-order approximation formulas,and the quadratic finite element is used to approximate the spatial direction.The error accuracy O(h3+t2)is obtained,which is verified by the numerical results.展开更多
In this article,we introduce a nonlinear Caputo-type snakebite envenoming model with memory.The well-known Caputo fractional derivative is used to generalize the previously presented integer-order model into a fractio...In this article,we introduce a nonlinear Caputo-type snakebite envenoming model with memory.The well-known Caputo fractional derivative is used to generalize the previously presented integer-order model into a fractionalorder sense.The numerical solution of the model is derived from a novel implementation of a finite-difference predictor-corrector(L1-PC)scheme with error estimation and stability analysis.The proof of the existence and positivity of the solution is given by using the fixed point theory.From the necessary simulations,we justify that the first-time implementation of the proposedmethod on an epidemicmodel shows that the scheme is fully suitable and time-efficient for solving epidemic models.This work aims to show the novel application of the given scheme as well as to check how the proposed snakebite envenoming model behaves in the presence of the Caputo fractional derivative,including memory effects.展开更多
In view of the composition analysis and identification of ancient glass products, L1 regularization, K-Means cluster analysis, elbow rule and other methods were comprehensively used to build logical regression, cluste...In view of the composition analysis and identification of ancient glass products, L1 regularization, K-Means cluster analysis, elbow rule and other methods were comprehensively used to build logical regression, cluster analysis, hyper-parameter test and other models, and SPSS, Python and other tools were used to obtain the classification rules of glass products under different fluxes, sub classification under different chemical compositions, hyper-parameter K value test and rationality analysis. Research can provide theoretical support for the protection and restoration of ancient glass relics.展开更多
A new analysis of a previously studied traveling agent model, showed that there is a relation between the degree of homogeneity of the medium where the agents move, agent motion patterns, and the noise generated from ...A new analysis of a previously studied traveling agent model, showed that there is a relation between the degree of homogeneity of the medium where the agents move, agent motion patterns, and the noise generated from their displacements. We proved that for a particular value of homogeneity, the system self organizes in a state where the agents carry out Lévy walks and the displacement signal corresponds to 1/f noise. Using probabilistic arguments, we conjectured that 1/f noise is a fingerprint of a statistical phase transition, from randomness (disorder) to predictability (order), and that it emerges from the contextuality nature of the system which generates it.展开更多
基金supported in part by a BMBF grant(TOMCAT)given to H.K.the Molecular Imaging North Competence Center(MOIN-CC)
文摘BACKGROUND:The specificity in discriminating pancreatitis is limited in the positron emission tomography(PET)using Fluorine-18-fluorodeoxyglucose.Furthermore,PET is not widely available compared to the single photon emission computed tomography(SPECT).Since amino acids play a minor role in metabolism of inflammatory cells,the potential of the SPECT tracer,3-[ 123 I]iodo-L-α-methyltyrosine(123I-IMT),for detecting pancreatic cancer was examined in xenotransplantation models of human pancreatic carcinoma in mice. METHODS: 123 I-IMT was injected to eight mice inoculated with subcutaneous or orthotopic pancreatic tumors.Fused high-resolution-micro-SPECT(Hi-SPECT)and magnetic resonance imaging were performed.The gene expression level of L amino acid transport-system 1(LAT1)was analyzed and correlated with tumor uptake of 123 I-IMT. RESULTS:A high uptake of 123 I-IMT was detected in all tumor-bearing mice.The median tumor-to-background ratio (T/B)was 12.1(2.0-13.2)for orthotopic and 8.4(1.8-11.1)for subcutaneous xenotransplantation,respectively.Accordingly, the LAT1 expression in transplanted Colo357 cells was increased compared to non-malignant controls.CONCLUSIONS:Our mouse model could show a high 123 I-IMT uptake in pancreatic cancer.Fused MRI scans facilitate precise evaluation of uptake in the specific regions of interest.Further studies are required to confirm these findings in tumors derived from other human pancreatic cancer cells.Since amino acids play a minor role in the metabolism of inflammatory cells,the potential for application of 123 I-IMT to distinguish pancreatic tumor from inflammatory pancreatitis warrants further investigation.
基金Sponsored by the National Natural Science Foundation of China(Grant No.61101122)the National High Technology Research and Development Program of China(Grant No.2012AA120802)the National Science and Technology Major Project of the Ministry of Science and Technology of China(Grant No.2012ZX03004-003)
文摘For indoor location estimation based on received signal strength( RSS) in wireless local area networks( WLAN),in order to reduce the influence of noise on the positioning accuracy,a large number of RSS should be collected in offline phase. Therefore,collecting training data with positioning information is time consuming which becomes the bottleneck of WLAN indoor localization. In this paper,the traditional semisupervised learning method based on k-NN and ε-NN graph for reducing collection workload of offline phase are analyzed,and the result shows that the k-NN or ε-NN graph are sensitive to data noise,which limit the performance of semi-supervised learning WLAN indoor localization system. Aiming at the above problem,it proposes a l1-graph-algorithm-based semi-supervised learning( LG-SSL) indoor localization method in which the graph is built by l1-norm algorithm. In our system,it firstly labels the unlabeled data using LG-SSL and labeled data to build the Radio Map in offline training phase,and then uses LG-SSL to estimate user's location in online phase. Extensive experimental results show that,benefit from the robustness to noise and sparsity ofl1-graph,LG-SSL exhibits superior performance by effectively reducing the collection workload in offline phase and improving localization accuracy in online phase.
文摘We propose a fractional-order improved Fitz Hugh–Nagumo(FHN)neuron model in terms of a generalized Caputo fractional derivative.Following the existence of a unique solution for the proposed model,we derive the numerical solution using a recently proposed L1 predictor–corrector method.The given method is based on the L1-type discretization algorithm and the spline interpolation scheme.We perform the error and stability analyses for the given method.We perform graphical simulations demonstrating that the proposed FHN neuron model generates rich electrical activities of periodic spiking patterns,chaotic patterns,and quasi-periodic patterns.The motivation behind proposing a fractional-order improved FHN neuron model is that such a system can provide a more nuanced description of the process with better understanding and simulation of the neuronal responses by incorporating memory effects and non-local dynamics,which are inherent to many biological systems.
基金the National Natural Science Fund(11661058,11761053)Natural Science Fund of Inner Mongolia Autonomous Region(2016MS0102,2017MS0107)+1 种基金Program for Young Talents of Science and Technology in Universities of Inner Mongolia Autonomous Region(NJYT-17-A07)National Undergraduate Innovative Training Project of Inner Mongolia University(201710126026).
文摘In this article,a high-order scheme,which is formulated by combining the quadratic finite element method in space with a second-order time discrete scheme,is developed for looking for the numerical solution of a two-dimensional nonlinear time fractional thermal diffusion model.The time Caputo fractional derivative is approximated by using the L2-1formula,the first-order derivative and nonlinear term are discretized by some second-order approximation formulas,and the quadratic finite element is used to approximate the spatial direction.The error accuracy O(h3+t2)is obtained,which is verified by the numerical results.
文摘In this article,we introduce a nonlinear Caputo-type snakebite envenoming model with memory.The well-known Caputo fractional derivative is used to generalize the previously presented integer-order model into a fractionalorder sense.The numerical solution of the model is derived from a novel implementation of a finite-difference predictor-corrector(L1-PC)scheme with error estimation and stability analysis.The proof of the existence and positivity of the solution is given by using the fixed point theory.From the necessary simulations,we justify that the first-time implementation of the proposedmethod on an epidemicmodel shows that the scheme is fully suitable and time-efficient for solving epidemic models.This work aims to show the novel application of the given scheme as well as to check how the proposed snakebite envenoming model behaves in the presence of the Caputo fractional derivative,including memory effects.
文摘In view of the composition analysis and identification of ancient glass products, L1 regularization, K-Means cluster analysis, elbow rule and other methods were comprehensively used to build logical regression, cluster analysis, hyper-parameter test and other models, and SPSS, Python and other tools were used to obtain the classification rules of glass products under different fluxes, sub classification under different chemical compositions, hyper-parameter K value test and rationality analysis. Research can provide theoretical support for the protection and restoration of ancient glass relics.
文摘A new analysis of a previously studied traveling agent model, showed that there is a relation between the degree of homogeneity of the medium where the agents move, agent motion patterns, and the noise generated from their displacements. We proved that for a particular value of homogeneity, the system self organizes in a state where the agents carry out Lévy walks and the displacement signal corresponds to 1/f noise. Using probabilistic arguments, we conjectured that 1/f noise is a fingerprint of a statistical phase transition, from randomness (disorder) to predictability (order), and that it emerges from the contextuality nature of the system which generates it.