Biodetoxification fungus selectively degrades toxic inhibitors generated from pretreatment of lignocellulose without consuming fermentable sugars.However,one barrier for practical application is the sustained cell via...Biodetoxification fungus selectively degrades toxic inhibitors generated from pretreatment of lignocellulose without consuming fermentable sugars.However,one barrier for practical application is the sustained cell viability in the consequent fermentation step to compete the fermentable sugars with fermenting strains,resulting in sugar loss and reduced target product yield.This study investigated the competitive growth property between the biodetoxification fungus Paecilomyces variotii FN89 and the L-lactic acid bacterium Pediococcus acidilactici ZY271 under varying temperature and lactic acid osmatic stress.The results show that the L-lactic acid bacterium Ped.acidilactici ZY271 showed less thermotolerance to Pae.variotii FN89 at high temperature of 45°C to 50°C in both synthetic medium and wheat straw hydrolysate.In the higher temperature environment,the growth of the biodetoxification strian failed to compete with the lactic acid fermentation strain and was quickly eliminated from the fermentation system.The high temperature fermentation facilitated a fast transition from the detoxification stage to the fermentation stage for higher production of L-lactic acid.展开更多
Repeated-batch and continuous production of L-lactic acid by immobilized Rhizopusoryzae with calcium alginate entrapment method in a three-phase fluidized-bed bioreactor was stud-ied.The operation conditions were opti...Repeated-batch and continuous production of L-lactic acid by immobilized Rhizopusoryzae with calcium alginate entrapment method in a three-phase fluidized-bed bioreactor was stud-ied.The operation conditions were optimized.The productivity based on total reactor volume wasabout 3 times higher than that with free cells in a traditional stirred tank bioreactor.A mathemat-ical model was proposed and the model predictions were in good agreement with the experimentaldat.展开更多
A novel poly(d, /-lactic acid) (PDLLA) based biomimetic polymer was synthesized by grafting maleic anhydride, butanediamine and arg-gly-asp-ser (RGDS) peptides onto the backbone of PDLLA, aiming to overcome the ...A novel poly(d, /-lactic acid) (PDLLA) based biomimetic polymer was synthesized by grafting maleic anhydride, butanediamine and arg-gly-asp-ser (RGDS) peptides onto the backbone of PDLLA, aiming to overcome the acidity and auto-accelerating degradation of PDLLA during degradation and to improve its biospecificity and biocompatibility. The synthetic copolymer was characterized by FTIR, ^13C NMR and amino acid analyzer (AAA).展开更多
The effect of a novel active nucleating agent(TBC8-eb) on the isothermal crystallization of poly(L-lactic acid) (PLLA) was studied by differential scanning calorimetry(DSC) and Fourier transform infrared spectroscopy(...The effect of a novel active nucleating agent(TBC8-eb) on the isothermal crystallization of poly(L-lactic acid) (PLLA) was studied by differential scanning calorimetry(DSC) and Fourier transform infrared spectroscopy(FTIR) . The analysis on kinetics demonstrates that TBC8-eb can not only accelerate the crystallization rate but also transform most of the original spherulite crystals of PLLA into sheaf-like crystals. Furthermore,the free energy of folding(σe) of PLLA and PLLA with TBC8-eb is 0.15 and 0.06 J·m-2,respectively,which suggests that the addition of TBC8-eb favors the regular folding of molecule chains in the crystallization of PLLA,improv-ing its crystallization rate. The FTIR results show that TBC8-eb can accelerate the conformational ordering of PLLA in the isothermal crystallization. The conformational ordering of PLLA nucleated with TBC8-eb begins with the interchain interaction of CH3,and then a short helix emerges where a couple of CH3 groups interact.展开更多
PLLA/CA mixtures of different compositions were successfully electrospun to obtain composite nanofibrous membranes. The microstructures of the membrances changed from homogeneous to heterogeneous with the addition of ...PLLA/CA mixtures of different compositions were successfully electrospun to obtain composite nanofibrous membranes. The microstructures of the membrances changed from homogeneous to heterogeneous with the addition of CA, which was observed by FE-ESEM. The PLLA/CA fabric membranes were characterized by mechanical testing, DSC and contact angle measurements. The tensile stress of the composite fibrous membranes increased obviously with the increase of CA content. DSC results indicated that the CA component was the main factor for the changes of enthalpies in the composite fibers. Contact angle measurements showed the hydrophilicity of the electrospun nanofiber membranes was improved with the addition of CA.展开更多
A rotating disk contactor(RDC)was designed to perform L-lactic acid fermentation with afilamentous fungi,Rhizopus oryzae,which was immobilized on the surfaces of the rotating discs.Thebioreactor was operated using r...A rotating disk contactor(RDC)was designed to perform L-lactic acid fermentation with afilamentous fungi,Rhizopus oryzae,which was immobilized on the surfaces of the rotating discs.Thebioreactor was operated using repeated-batch method as well as continuous feeding method.Ananionic resin,D354,slightly basic in nature and of high selectivity and capacity was chosen for lacticacid separation.A coupled process of L-lactic acid fermentation and ion-exchange separation wasevaluated experimentally.The results indicated that the pH value of the fermentation broth could bemaintained at about 3-3.5 without any addition of alkali.The conversion ratio of glucose to L-lacticacid was about 0.7 g·g<sup>-1</sup> and the fermentation rate reached as high as 62.5 g·h<sup>-1</sup>·m<sup>-2</sup>.展开更多
The toughened poly(L-lactic acid)/poly(butylene succinate-butylene terephthalate)(PLLA/PBST) blend with enhanced melt strength and excellent low temperature toughness and strength was prepared by melt compounding thro...The toughened poly(L-lactic acid)/poly(butylene succinate-butylene terephthalate)(PLLA/PBST) blend with enhanced melt strength and excellent low temperature toughness and strength was prepared by melt compounding through in situ compatibilization reaction in presence of multifunctional epoxy compound(ADR).The PLLA/PBST blend was an immiscible system,and the compatibility of the PLLA/PBST blend was improved after adding ADR.FTIR and GPC curves confirmed the formation of the PLLA-g-PBST copolymer,which improved the interfacial bonding of the blend and therefore the PLLA/PBST/ADR blend showed excellent melt strength and mechanical properties.For the PLLA/PBST/ADR blend with 70/30 PLLA/PBST content,the complex viscosity increased significantly with increasing ADR content.Moreover,the tensile strength,elongation at break and impact strength all increased obviously with increasing the ADR content.The elongation at break of the blend reached the maximum value of 392.7%,which was 93.2 times that of neat PLLA.And the impact strength of the blend reached the maximum value of 74.7 k J/m~2,which was 21.3 times that of neat PLLA.Interestingly,the PLLA/PBST/ADR blend exhibited excellent lowtemperature toughness and strength.At –20 ℃,the elongation at break of the PLLA/PBST/ADR blend was as high as 93.2%,and the impact strength reached 18.8 k J/m~2.Meanwhile,the tensile strength of the blend at low temperature was also high(64.7 MPa),which was beneficial to the application of PLA in the low temperature field.In addition,the PLLA/PBST/ADR blend maintaind good biodegradability,which was of great significance to the wide application of PLLA.展开更多
The demand for injectable dermal filler has unde rgone significant growth with the rapid development of the beauty industry.Poly(lactic acid)(PLA) as a benefit of excellent biocompatibility and long-term promotion of ...The demand for injectable dermal filler has unde rgone significant growth with the rapid development of the beauty industry.Poly(lactic acid)(PLA) as a benefit of excellent biocompatibility and long-term promotion of collagen regeneration has been favored as a commonly used filler.However,the effects of chirality and particle size of PLA on the efficacy of dermal filler have not been studied.In this study,we prepared three kinds of microspheres(MSs) consisting of poly(D-lactic acid)(PDLA MS),poly(L-lactic acid)(PLLA MS),or meso-PLA(PDLLA MS)at 5,10 and 20 μmto reveal the different biological functions as dermal filler.Following intradermal injection into guinea pig,it was found that PLLA MS induced the slightest inflammation,and the level of pro-inflammatory cytokine IL-1β induced by PLLA MS is only 0.3 or 0.7-fold of that induced by PDLA or PDLLA MS,respectively.More importantly,PLLA MS significantly stimulated the regeneration of collagen,which was 1.4 or 1.1 times higher than those stimulated by PDLA MS or PDLLA MS,respectively.The size of PLA MSs did not affect the levels of inflammation and collagen regeneration.The results confirmed the superiority of PLLA as a dermal filler.展开更多
Biodegradable chitosan-g-poly (D, L-lactic acid) copolymers were prepared via two methods. (1) The lactide was grafted onto hydroxyl groups of chitosan by using macromolecular initiator sodium of trimethylsilyl-chit...Biodegradable chitosan-g-poly (D, L-lactic acid) copolymers were prepared via two methods. (1) The lactide was grafted onto hydroxyl groups of chitosan by using macromolecular initiator sodium of trimethylsilyl-chitosan, (2) poly (D,L-lactic acid)(PLA) with low molecular weight can be linked to the amino group by coupling activated PLA to trimethylsilyl-chitosan. Two graft copolymers had hydrophilic-hydrophobic character and can be applied as carriers for drug delivery.展开更多
The morphologies of poly(L-lactic acid)(PLLA)spherulites,when crystallized within the pre-existed poly(oxymethylene)(POM)crystal frameworks,have been investigated.PLLA/POM blend is a melt-miscible crystalline/crystall...The morphologies of poly(L-lactic acid)(PLLA)spherulites,when crystallized within the pre-existed poly(oxymethylene)(POM)crystal frameworks,have been investigated.PLLA/POM blend is a melt-miscible crystalline/crystalline blend system.Owing to the lower melting point but much faster crystallization rate than PLEA,POM crystallized first upon cooling from the melt state and then melted first during the subsequent heating process in this blend system.Lamellar assembly of PLLA crystals within the pre-existed POM spherulitic frameworks was directly observed with the polarized light microscopy by selectively melting the POM frameworks.The investigation indicated that PLLA crystals fully replicated the spherulitic morphology and optical birefringence of the POM crystal frameworks,which was independent of T_(o).On the other hand,POM could also duplicate the pre-existed PLLA morphologies.The result obtained provides us a possibility to design the lamellar assembly and crystal structures of polymer crystals in miscible crystalline/crystalline polymer blends.展开更多
Poly(L-lactic acid)(PLLA)is a thermoplastic material with complete degradability,high biocompatibility and excellent mechanical properties.It can replace petroleum-based polymers are currently being used in the fields...Poly(L-lactic acid)(PLLA)is a thermoplastic material with complete degradability,high biocompatibility and excellent mechanical properties.It can replace petroleum-based polymers are currently being used in the fields of packaging,agriculture,textiles,medical and so on.However,PLLA’s extremely flammability greatly limits its wider application.An bio-based flame retardant L-APP/PLLA composites was prepared by melt blending of the L-APP and PLLA.The morphology,impact properties,thermal properties and flame retardant properties of composites were investigated by field emission scanning electron microscope(SEM),impact tester,differential scanning calorimeter(DSC),thermogravimetric analyzer(TGA),limiting oxygen indexer(LOI)and horizontalvertical burning tester.The results showed that the degree of crystallization(X_(c))and LOI of L-APP/PLLA composites increased as increasing of L-APP content.What’s more,the impact strength first increased and then decreased,the glass transition temperature(T_(g))and melting temperature(T_(m))do not changed significantly.The impact strength of composites was 9.1 kJ/m^(2) at a 5 wt%loading for L-APP,which was the highest level.When the content of L-APP was 20%,the LOI was 30.8%,the Xc was 42.3%and the UL-94 level was V-0.This research can promote the value-added utilization of lignin and the application of PLLA in the fields of flame retardant materials.展开更多
Poly(L-lactic acid)(PLLA)-based composites exhibit wide applications in many fields.However,most of hydrophilic fillers usually accelerate the hydrolytic degradation of PLLA,which is unfavorable for the prolonging of ...Poly(L-lactic acid)(PLLA)-based composites exhibit wide applications in many fields.However,most of hydrophilic fillers usually accelerate the hydrolytic degradation of PLLA,which is unfavorable for the prolonging of the service life of the articles.In this work,a small quantity of poly(methyl methacrylate)(PMMA)(2 wt%-10 wt%)was incorporated into the PLLA/carbon nanotubes(CNTs)composites.The effects of PMMA content on the dispersion of CNTs as well as the microstructure and hydrolytic degradation behaviors of the composites were systematically investigated.The results showed that PMMA promoted the dispersion of CNTs in the composites.Amorphous PLLA was obtained in all the composites.Largely enhanced hydrolytic degradation resistance was achieved by incorporating PMMA,especially at relatively high PMMA content.Incorporating 10 wt%PMMA led to a dramatic decrease in the hydrolytic degradation rate from 0.19%/h of the PLLA/CNT composite sample to 0.059%/h of the PLLA/PMMA-10/CNT composite sample.The microstructure evolution of the composites was also detected,and the results showed that no crystallization occurred in the PLLA matrix.Further results based on the interfacial tension calculation showed that the enhanced hydrolytic degradation resistance of the PLLA matrix was mainly attributed to the relatively strong interfacial affinity between PMMA and CNTs,which prevented the occurrence of hydrolytic degradation at the interface between PLLA and CNTs.This work provides an alternative method for tailoring the hydrolytic degradation ability of the PLLA-based composites.展开更多
In this paper, the surface structure of poly(L-lactic acid) (PLLA) film modified with gelatin was investigated. ThePLLA film specimens were treated directly with aqueous alkali solution to provide their surfaces with ...In this paper, the surface structure of poly(L-lactic acid) (PLLA) film modified with gelatin was investigated. ThePLLA film specimens were treated directly with aqueous alkali solution to provide their surfaces with carboxyl groups, sothat these functional groups could become the reactive sites for gelatin immobilization. The functional groups of the PLLAfilms were identified by ATR-FTIR spectra and XPS spectra, the changes in surface morphology were observed by usingenvironmental scanning electron microscopy (ESEM), and the hydrophilicity of modified PLLA films was examined bywater contact angle measurement. Experimental results showed that the gelatin was immobilized with water-solublecarbodiimide (EDC) onto the PLLA film's surfaces, and the gelatin content on the polymer surface was related to carboxylicgroup formed in the controlled hydrolysis process. Rough surfaces caused by hydrolysis will predominantly favor the adhesion and growth of cell; and the hydrophilicity of these surfaces after the modification procedure is enhanced.展开更多
Objective:To observe the changing of biomechanical features during the degradation course of poly-D,L-lactic acid (PDLLA) rods in vivo and in vitro and to evaluate its value as an internal fixation material. Metho...Objective:To observe the changing of biomechanical features during the degradation course of poly-D,L-lactic acid (PDLLA) rods in vivo and in vitro and to evaluate its value as an internal fixation material. Methods :PDLLA rods were emerged into PBS simultaneous body fluid with constant temperature of 37℃ and the rods were embedded into muscle tissue of 20 rabbits for degradation in vitro and in vivo . The rods were taken out in 2, 4, 6, 8 and 12 weeks. Biomechanical features of bending, shearing and axial compression strength, rigidity and elastic modulus were observed during the degradation course. Statistical method was used to test the changes of biomechanical parameters. Results: (1)There was similar changes of bending, compressive, shearing strength and bending, compressive and shearing rigidity of the PDLLA rods between in vivo and in vitro. (2)Bending, compressive, shearing strength decreased 33%, 18 % and 43 % respectively within the first stage of the degradation, and after 6 weeks of degradation, they decreased slowly. (3)Elastic modulus, bending, compressive and shearing rigidity.decreased sharply during the 6 weeks of degradation, with a drop of 22%, 39% and 30% respectively, and after 8 weeks, they decreased slowly. Even after 12 weeks of degradation, the strength of the rods was still higher than that of sponge bone. Conclusion: During the degradation of the material, the strength and rigidity of PDLLA rods can meet the need of fracture fixation of cancellous bones.展开更多
The ideal small-diameter vascular grafts should mimic the nanostructure and mechanical properties of nature blood vessel. In this study, electrospun chitosan( CS)/poly( L-lactic-co-ε-caprolactone)( PLCL) nanofibers w...The ideal small-diameter vascular grafts should mimic the nanostructure and mechanical properties of nature blood vessel. In this study, electrospun chitosan( CS)/poly( L-lactic-co-ε-caprolactone)( PLCL) nanofibers were developed for potential small-diameter blood vessel applications. CS is a positively charged polymer which is beneficial for cell attachment and growth,while PLCL provides favorable mechanical support due to its excellent elasticity. Typical nanofibrous structure was observed in both CS/PLCL and pure PLCL scaffolds. The optimal mechanical property could be achieved when the weight ratio of CS/PLCL was 1 ∶ 2.Compared with pure PLCL scaffolds, the CS/PLCL scaffolds showed higher hydrophilicity and markedly promoted the attachment,spreading and proliferation of human umbilical vein endothelial cells( HUVECs). Hence,CS/PLCL scaffolds can be used as potential vascular grafts.展开更多
In this study, poly(L-lactic acid)/ammonium persulfate doped-polypyrrole composite fibrous scaffolds with moderate conductivity were produced by combining electrospinning with in situ polymerization. PC12 cells were...In this study, poly(L-lactic acid)/ammonium persulfate doped-polypyrrole composite fibrous scaffolds with moderate conductivity were produced by combining electrospinning with in situ polymerization. PC12 cells were cultured on these fibrous scaffolds and their growth following electrical stimulation (0-20.0 μA stimulus intensity, for 1-4 days) was observed using inverted light microscopy, and scanning electron microscopy coupled with the MTT cell viability test. The results demonstrated that the poly(L-lactic acid)/ammonium persulfate doped-polypyrrole fibrous scaffold was a dual multi-porous micro/nano fibrous scaffold. An electrical stimulation with a current intensity 5.0- 10.0 μAfor about 2 days enhanced neuronal growth and neurite outgrowth, while a high current intensity (over 15.0 μA) suppressed them. These results indicate that electrical stimulation with a moderate current intensity for an optimum time frame can promote neuronal growth and neurite outgrowth in an intensity- and time-dependent manner.展开更多
Chitosan—L-lactic acid composite scaffold for the regeneration of peripheral nerve is obtained by grafting L-lactic acid onto the amino groups in chitosan with combined vacuum freezer drier. The composite scaffold wa...Chitosan—L-lactic acid composite scaffold for the regeneration of peripheral nerve is obtained by grafting L-lactic acid onto the amino groups in chitosan with combined vacuum freezer drier. The composite scaffold was characterized by ATR-FTIR and SEM. The scaffold has a better graft efficiency and has a dense inner layer and a loose outer layer with porous structure, and the pore size is about 100 μm.The NGF release properties of the scaffold were investigated. The experimental results showed that, at the 1st day, 15.2 ng of NGF on average was released from the scaffold. From day 2 to day 10, the release rate obviously slowed down and 1.64 ng of NGF was released on average every day. After 10 days, the release rate was slower and 10.3 ng of NGF was released on average every day. After 60 days, NGF could also maintained a certain concentration. These properties show that the scaffold is a better carrier for NGF which can be more advantageous to the regeneration of the damaged peripheral nerve. As a result, this composite scaffold would be an ideal candidate for the regeneration of damaged peripheral nerve.展开更多
Paclitaxel(PTX) is an effective anticancer drug with poor solubility in water.Recently,much effort has been devoted into alternative formulations of PTX for improving its aqueous solubility.In this study,PTX and poly(...Paclitaxel(PTX) is an effective anticancer drug with poor solubility in water.Recently,much effort has been devoted into alternative formulations of PTX for improving its aqueous solubility.In this study,PTX and poly(L-lactic acid)(PLLA) were co-precipitated by a supercritical antisolvent(SAS) process using dichloromethane(DCM) and the mixtures of DCM/ethanol(EtOH) or DCM/dimethyl sulfoxide(DMSO) as the solvent,with super-critical carbon dioxide as the antisolvent.The effects of solvent,solvent ratio,temperature,pressure,polymer con-centration and solution flow rate on particle morphology,mass median diameter(Dp50) and PTX loading were in-vestigated using single-factor method.The particle samples were characterized using X-ray diffraction(XRD),scanning electron microscopy(SEM),laser diffraction particle size analyzer and high pressure liquid chromatogra-phy(HPLC).XRD results indicate that the micronized PTX is dispersed into the PLLA matrix in an amorphous form.SEM indicates that the solvent and the solvent ratio have great effect on the particle morphologies,and particle morphology is good at the volume ratio of DCM/EtOH of 50/50.For the mixed DCM/EtOH solvent,Dp50 increases with the increase of the temperature,pressure,PLLA concentration and solution flow rate,and PTX loading in-creases with pressure.Suitable operating conditions for the experimental system are as follows:DCM/EtOH 50/50(by volume),35 ℃,10-12 MPa,PLLA concentration of 5 g·L-1 and solution flow rate of 0.5 ml·min-1.展开更多
L-lactic acid (L-LA) based copolymer/hydroxylation vermiculites composites (PLLA-co-bis A/HVMTs) were prepared by in situ reaction among L-LA, adipic acid, and hydroxylation lamellar vermiculites (HVMTs) using bisphen...L-lactic acid (L-LA) based copolymer/hydroxylation vermiculites composites (PLLA-co-bis A/HVMTs) were prepared by in situ reaction among L-LA, adipic acid, and hydroxylation lamellar vermiculites (HVMTs) using bisphenol-A epoxy resin as chain extending agent. HVMTs were obtained by sulfuric acid-leaching of lamellar vermiculites (VMTs). The effects of sulfuric acid leaching on the VMTs structure were characterized by X-ray diffraction (XRD), 29Si magic-angle spinning nuclear magnetic resonance(29Si NMR), Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FE-SEM), and thermogravimetric analysis (TGA). FTIR, FE-SEM, and TGA were used to characterize the reaction activity of HVMTs. The results indicated that VMTs with increased hydroxyl groups had been successfully obtained and could react with -COOH of the reaction system. The amount of L-LA based copolymer grafted on the surface of HVMTs was more than 22%. The onset decomposition temperature of L-LA based copolymer grafted on the surface of HVMTs was 30℃ higher than that of free L-LA based copolymer.展开更多
基金The National Key R&D Program of China(2023YFA0914400)the National Natural Science Foundation of China(32301269)+1 种基金China Postdoctoral Science Foundation(2023M741175)the Yangfan Project of Science and Technology Committee of Shanghai Municipality(23YF1409900).
文摘Biodetoxification fungus selectively degrades toxic inhibitors generated from pretreatment of lignocellulose without consuming fermentable sugars.However,one barrier for practical application is the sustained cell viability in the consequent fermentation step to compete the fermentable sugars with fermenting strains,resulting in sugar loss and reduced target product yield.This study investigated the competitive growth property between the biodetoxification fungus Paecilomyces variotii FN89 and the L-lactic acid bacterium Pediococcus acidilactici ZY271 under varying temperature and lactic acid osmatic stress.The results show that the L-lactic acid bacterium Ped.acidilactici ZY271 showed less thermotolerance to Pae.variotii FN89 at high temperature of 45°C to 50°C in both synthetic medium and wheat straw hydrolysate.In the higher temperature environment,the growth of the biodetoxification strian failed to compete with the lactic acid fermentation strain and was quickly eliminated from the fermentation system.The high temperature fermentation facilitated a fast transition from the detoxification stage to the fermentation stage for higher production of L-lactic acid.
基金Supported by the National Natural Science Foundation of China.
文摘Repeated-batch and continuous production of L-lactic acid by immobilized Rhizopusoryzae with calcium alginate entrapment method in a three-phase fluidized-bed bioreactor was stud-ied.The operation conditions were optimized.The productivity based on total reactor volume wasabout 3 times higher than that with free cells in a traditional stirred tank bioreactor.A mathemat-ical model was proposed and the model predictions were in good agreement with the experimentaldat.
基金This study was supported by the National Natural Science Foundation of China(No.30270395 and 30300084)the National"863"Project(No.2003AA32X210).
文摘A novel poly(d, /-lactic acid) (PDLLA) based biomimetic polymer was synthesized by grafting maleic anhydride, butanediamine and arg-gly-asp-ser (RGDS) peptides onto the backbone of PDLLA, aiming to overcome the acidity and auto-accelerating degradation of PDLLA during degradation and to improve its biospecificity and biocompatibility. The synthetic copolymer was characterized by FTIR, ^13C NMR and amino acid analyzer (AAA).
基金Supported by the National Natural Science Foundation of China (20876042) Program of Shanghai Subject Chief Scientist (10XD1401500) Research Fund for the Doctoral Program of Higher Education of China
文摘The effect of a novel active nucleating agent(TBC8-eb) on the isothermal crystallization of poly(L-lactic acid) (PLLA) was studied by differential scanning calorimetry(DSC) and Fourier transform infrared spectroscopy(FTIR) . The analysis on kinetics demonstrates that TBC8-eb can not only accelerate the crystallization rate but also transform most of the original spherulite crystals of PLLA into sheaf-like crystals. Furthermore,the free energy of folding(σe) of PLLA and PLLA with TBC8-eb is 0.15 and 0.06 J·m-2,respectively,which suggests that the addition of TBC8-eb favors the regular folding of molecule chains in the crystallization of PLLA,improv-ing its crystallization rate. The FTIR results show that TBC8-eb can accelerate the conformational ordering of PLLA in the isothermal crystallization. The conformational ordering of PLLA nucleated with TBC8-eb begins with the interchain interaction of CH3,and then a short helix emerges where a couple of CH3 groups interact.
基金supported by the National Natural Science Foundation of China(No.51103058)the Youth Foundation of Jilin Province(No.201101059)Open Foundation of Key Laboratory of Automobile Materials(Jilin University),Ministry of Education(No.10-450060326014)
文摘PLLA/CA mixtures of different compositions were successfully electrospun to obtain composite nanofibrous membranes. The microstructures of the membrances changed from homogeneous to heterogeneous with the addition of CA, which was observed by FE-ESEM. The PLLA/CA fabric membranes were characterized by mechanical testing, DSC and contact angle measurements. The tensile stress of the composite fibrous membranes increased obviously with the increase of CA content. DSC results indicated that the CA component was the main factor for the changes of enthalpies in the composite fibers. Contact angle measurements showed the hydrophilicity of the electrospun nanofiber membranes was improved with the addition of CA.
基金Supported by the National Natural Science Foundation of China.
文摘A rotating disk contactor(RDC)was designed to perform L-lactic acid fermentation with afilamentous fungi,Rhizopus oryzae,which was immobilized on the surfaces of the rotating discs.Thebioreactor was operated using repeated-batch method as well as continuous feeding method.Ananionic resin,D354,slightly basic in nature and of high selectivity and capacity was chosen for lacticacid separation.A coupled process of L-lactic acid fermentation and ion-exchange separation wasevaluated experimentally.The results indicated that the pH value of the fermentation broth could bemaintained at about 3-3.5 without any addition of alkali.The conversion ratio of glucose to L-lacticacid was about 0.7 g·g<sup>-1</sup> and the fermentation rate reached as high as 62.5 g·h<sup>-1</sup>·m<sup>-2</sup>.
基金financially supported by the Science and Technology Development Plan of Jilin Province (No. 20210203199SF)。
文摘The toughened poly(L-lactic acid)/poly(butylene succinate-butylene terephthalate)(PLLA/PBST) blend with enhanced melt strength and excellent low temperature toughness and strength was prepared by melt compounding through in situ compatibilization reaction in presence of multifunctional epoxy compound(ADR).The PLLA/PBST blend was an immiscible system,and the compatibility of the PLLA/PBST blend was improved after adding ADR.FTIR and GPC curves confirmed the formation of the PLLA-g-PBST copolymer,which improved the interfacial bonding of the blend and therefore the PLLA/PBST/ADR blend showed excellent melt strength and mechanical properties.For the PLLA/PBST/ADR blend with 70/30 PLLA/PBST content,the complex viscosity increased significantly with increasing ADR content.Moreover,the tensile strength,elongation at break and impact strength all increased obviously with increasing the ADR content.The elongation at break of the blend reached the maximum value of 392.7%,which was 93.2 times that of neat PLLA.And the impact strength of the blend reached the maximum value of 74.7 k J/m~2,which was 21.3 times that of neat PLLA.Interestingly,the PLLA/PBST/ADR blend exhibited excellent lowtemperature toughness and strength.At –20 ℃,the elongation at break of the PLLA/PBST/ADR blend was as high as 93.2%,and the impact strength reached 18.8 k J/m~2.Meanwhile,the tensile strength of the blend at low temperature was also high(64.7 MPa),which was beneficial to the application of PLA in the low temperature field.In addition,the PLLA/PBST/ADR blend maintaind good biodegradability,which was of great significance to the wide application of PLLA.
基金financially supported by the National Natural Science Foundation of China(Nos.51703012 and 51603204)the Science and Technology Development Program of Jilin Province(No.20190701004GH)。
文摘The demand for injectable dermal filler has unde rgone significant growth with the rapid development of the beauty industry.Poly(lactic acid)(PLA) as a benefit of excellent biocompatibility and long-term promotion of collagen regeneration has been favored as a commonly used filler.However,the effects of chirality and particle size of PLA on the efficacy of dermal filler have not been studied.In this study,we prepared three kinds of microspheres(MSs) consisting of poly(D-lactic acid)(PDLA MS),poly(L-lactic acid)(PLLA MS),or meso-PLA(PDLLA MS)at 5,10 and 20 μmto reveal the different biological functions as dermal filler.Following intradermal injection into guinea pig,it was found that PLLA MS induced the slightest inflammation,and the level of pro-inflammatory cytokine IL-1β induced by PLLA MS is only 0.3 or 0.7-fold of that induced by PDLA or PDLLA MS,respectively.More importantly,PLLA MS significantly stimulated the regeneration of collagen,which was 1.4 or 1.1 times higher than those stimulated by PDLA MS or PDLLA MS,respectively.The size of PLA MSs did not affect the levels of inflammation and collagen regeneration.The results confirmed the superiority of PLLA as a dermal filler.
文摘Biodegradable chitosan-g-poly (D, L-lactic acid) copolymers were prepared via two methods. (1) The lactide was grafted onto hydroxyl groups of chitosan by using macromolecular initiator sodium of trimethylsilyl-chitosan, (2) poly (D,L-lactic acid)(PLA) with low molecular weight can be linked to the amino group by coupling activated PLA to trimethylsilyl-chitosan. Two graft copolymers had hydrophilic-hydrophobic character and can be applied as carriers for drug delivery.
基金financially supported by the National Natural Science Foundation of China(Nos.21674033,21374027)National Key R&D Program of China(No.2017YFB0307704)
文摘The morphologies of poly(L-lactic acid)(PLLA)spherulites,when crystallized within the pre-existed poly(oxymethylene)(POM)crystal frameworks,have been investigated.PLLA/POM blend is a melt-miscible crystalline/crystalline blend system.Owing to the lower melting point but much faster crystallization rate than PLEA,POM crystallized first upon cooling from the melt state and then melted first during the subsequent heating process in this blend system.Lamellar assembly of PLLA crystals within the pre-existed POM spherulitic frameworks was directly observed with the polarized light microscopy by selectively melting the POM frameworks.The investigation indicated that PLLA crystals fully replicated the spherulitic morphology and optical birefringence of the POM crystal frameworks,which was independent of T_(o).On the other hand,POM could also duplicate the pre-existed PLLA morphologies.The result obtained provides us a possibility to design the lamellar assembly and crystal structures of polymer crystals in miscible crystalline/crystalline polymer blends.
基金This work was financially supported by the following funds:Hunan Provincial Natural Foundation of China(2019JJ50472)Opening Fund of National&Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources(KF201802)+4 种基金Hunan Province Key Field R&D Program Project(2019GK2246)Education Department of Hunan Province Key Project(19A391)Key scientific research project of Huaihua University(HHUY2019-04)Special Project of Innovative Provincial Construction in Hunan Province(2020RC1013)Huaihua Key Laboratory for Preparation of Ceramic Materials and Devices and Science and Technology Plan Project of Huaihua City(2020R3101).
文摘Poly(L-lactic acid)(PLLA)is a thermoplastic material with complete degradability,high biocompatibility and excellent mechanical properties.It can replace petroleum-based polymers are currently being used in the fields of packaging,agriculture,textiles,medical and so on.However,PLLA’s extremely flammability greatly limits its wider application.An bio-based flame retardant L-APP/PLLA composites was prepared by melt blending of the L-APP and PLLA.The morphology,impact properties,thermal properties and flame retardant properties of composites were investigated by field emission scanning electron microscope(SEM),impact tester,differential scanning calorimeter(DSC),thermogravimetric analyzer(TGA),limiting oxygen indexer(LOI)and horizontalvertical burning tester.The results showed that the degree of crystallization(X_(c))and LOI of L-APP/PLLA composites increased as increasing of L-APP content.What’s more,the impact strength first increased and then decreased,the glass transition temperature(T_(g))and melting temperature(T_(m))do not changed significantly.The impact strength of composites was 9.1 kJ/m^(2) at a 5 wt%loading for L-APP,which was the highest level.When the content of L-APP was 20%,the LOI was 30.8%,the Xc was 42.3%and the UL-94 level was V-0.This research can promote the value-added utilization of lignin and the application of PLLA in the fields of flame retardant materials.
基金financially supported by the National Natural Science Foundation of China (No. 51473137)the International Science and Technology Cooperation Project of Sichuan Province (No. 2017HH0066)+1 种基金the International Science and Technology Cooperation Project of Chengdu (No. 2016-GH0200097-HZ)the Fundamental Research Funds for the Central Universities (2682019JQ04)
文摘Poly(L-lactic acid)(PLLA)-based composites exhibit wide applications in many fields.However,most of hydrophilic fillers usually accelerate the hydrolytic degradation of PLLA,which is unfavorable for the prolonging of the service life of the articles.In this work,a small quantity of poly(methyl methacrylate)(PMMA)(2 wt%-10 wt%)was incorporated into the PLLA/carbon nanotubes(CNTs)composites.The effects of PMMA content on the dispersion of CNTs as well as the microstructure and hydrolytic degradation behaviors of the composites were systematically investigated.The results showed that PMMA promoted the dispersion of CNTs in the composites.Amorphous PLLA was obtained in all the composites.Largely enhanced hydrolytic degradation resistance was achieved by incorporating PMMA,especially at relatively high PMMA content.Incorporating 10 wt%PMMA led to a dramatic decrease in the hydrolytic degradation rate from 0.19%/h of the PLLA/CNT composite sample to 0.059%/h of the PLLA/PMMA-10/CNT composite sample.The microstructure evolution of the composites was also detected,and the results showed that no crystallization occurred in the PLLA matrix.Further results based on the interfacial tension calculation showed that the enhanced hydrolytic degradation resistance of the PLLA matrix was mainly attributed to the relatively strong interfacial affinity between PMMA and CNTs,which prevented the occurrence of hydrolytic degradation at the interface between PLLA and CNTs.This work provides an alternative method for tailoring the hydrolytic degradation ability of the PLLA-based composites.
基金The authors thank the Ministry of Science and Technology,the National Natural Science Foundation of China and the Ministry of Education of China for supporting of this research(Grant No.G199905305,59973014 and 98005620,respectively).
文摘In this paper, the surface structure of poly(L-lactic acid) (PLLA) film modified with gelatin was investigated. ThePLLA film specimens were treated directly with aqueous alkali solution to provide their surfaces with carboxyl groups, sothat these functional groups could become the reactive sites for gelatin immobilization. The functional groups of the PLLAfilms were identified by ATR-FTIR spectra and XPS spectra, the changes in surface morphology were observed by usingenvironmental scanning electron microscopy (ESEM), and the hydrophilicity of modified PLLA films was examined bywater contact angle measurement. Experimental results showed that the gelatin was immobilized with water-solublecarbodiimide (EDC) onto the PLLA film's surfaces, and the gelatin content on the polymer surface was related to carboxylicgroup formed in the controlled hydrolysis process. Rough surfaces caused by hydrolysis will predominantly favor the adhesion and growth of cell; and the hydrophilicity of these surfaces after the modification procedure is enhanced.
文摘Objective:To observe the changing of biomechanical features during the degradation course of poly-D,L-lactic acid (PDLLA) rods in vivo and in vitro and to evaluate its value as an internal fixation material. Methods :PDLLA rods were emerged into PBS simultaneous body fluid with constant temperature of 37℃ and the rods were embedded into muscle tissue of 20 rabbits for degradation in vitro and in vivo . The rods were taken out in 2, 4, 6, 8 and 12 weeks. Biomechanical features of bending, shearing and axial compression strength, rigidity and elastic modulus were observed during the degradation course. Statistical method was used to test the changes of biomechanical parameters. Results: (1)There was similar changes of bending, compressive, shearing strength and bending, compressive and shearing rigidity of the PDLLA rods between in vivo and in vitro. (2)Bending, compressive, shearing strength decreased 33%, 18 % and 43 % respectively within the first stage of the degradation, and after 6 weeks of degradation, they decreased slowly. (3)Elastic modulus, bending, compressive and shearing rigidity.decreased sharply during the 6 weeks of degradation, with a drop of 22%, 39% and 30% respectively, and after 8 weeks, they decreased slowly. Even after 12 weeks of degradation, the strength of the rods was still higher than that of sponge bone. Conclusion: During the degradation of the material, the strength and rigidity of PDLLA rods can meet the need of fracture fixation of cancellous bones.
基金National Natural Science Foundations of China(Nos.31771048,31570984,31271028)International Cooperation Fund of the Science and Technology Commission of Shanghai Municipality,China(No.15540723400)Biomedical Textile Materials Science and Technology(111 Project),China(No.B07024)
文摘The ideal small-diameter vascular grafts should mimic the nanostructure and mechanical properties of nature blood vessel. In this study, electrospun chitosan( CS)/poly( L-lactic-co-ε-caprolactone)( PLCL) nanofibers were developed for potential small-diameter blood vessel applications. CS is a positively charged polymer which is beneficial for cell attachment and growth,while PLCL provides favorable mechanical support due to its excellent elasticity. Typical nanofibrous structure was observed in both CS/PLCL and pure PLCL scaffolds. The optimal mechanical property could be achieved when the weight ratio of CS/PLCL was 1 ∶ 2.Compared with pure PLCL scaffolds, the CS/PLCL scaffolds showed higher hydrophilicity and markedly promoted the attachment,spreading and proliferation of human umbilical vein endothelial cells( HUVECs). Hence,CS/PLCL scaffolds can be used as potential vascular grafts.
基金supported by the National Natural Science Foundation of China,No.51073072the Natural Science Foundation of Zhejiang Province in China,No.Y4100745+1 种基金the Key Laboratory Open Foundation of Advanced Textile Materials&Manufacturing Technology of Zhejiang Sci-Tech University from Ministry of Education of China,No.2009007the Science and Technology Commission of Jiaxing Municipality Program,No.2010AY1089
文摘In this study, poly(L-lactic acid)/ammonium persulfate doped-polypyrrole composite fibrous scaffolds with moderate conductivity were produced by combining electrospinning with in situ polymerization. PC12 cells were cultured on these fibrous scaffolds and their growth following electrical stimulation (0-20.0 μA stimulus intensity, for 1-4 days) was observed using inverted light microscopy, and scanning electron microscopy coupled with the MTT cell viability test. The results demonstrated that the poly(L-lactic acid)/ammonium persulfate doped-polypyrrole fibrous scaffold was a dual multi-porous micro/nano fibrous scaffold. An electrical stimulation with a current intensity 5.0- 10.0 μAfor about 2 days enhanced neuronal growth and neurite outgrowth, while a high current intensity (over 15.0 μA) suppressed them. These results indicate that electrical stimulation with a moderate current intensity for an optimum time frame can promote neuronal growth and neurite outgrowth in an intensity- and time-dependent manner.
基金Funded by the State Basic Research Foundation of China (No.2005CB623905)
文摘Chitosan—L-lactic acid composite scaffold for the regeneration of peripheral nerve is obtained by grafting L-lactic acid onto the amino groups in chitosan with combined vacuum freezer drier. The composite scaffold was characterized by ATR-FTIR and SEM. The scaffold has a better graft efficiency and has a dense inner layer and a loose outer layer with porous structure, and the pore size is about 100 μm.The NGF release properties of the scaffold were investigated. The experimental results showed that, at the 1st day, 15.2 ng of NGF on average was released from the scaffold. From day 2 to day 10, the release rate obviously slowed down and 1.64 ng of NGF was released on average every day. After 10 days, the release rate was slower and 10.3 ng of NGF was released on average every day. After 60 days, NGF could also maintained a certain concentration. These properties show that the scaffold is a better carrier for NGF which can be more advantageous to the regeneration of the damaged peripheral nerve. As a result, this composite scaffold would be an ideal candidate for the regeneration of damaged peripheral nerve.
基金Supported by the National Natural Science Foundation of China (21076084)the Fundamental Research Funds for the Central Universities (2011ZZ0006)the Open Project Program of Provincial Key Laboratory of Green Processing Technology and Product Safety of Natural Products
文摘Paclitaxel(PTX) is an effective anticancer drug with poor solubility in water.Recently,much effort has been devoted into alternative formulations of PTX for improving its aqueous solubility.In this study,PTX and poly(L-lactic acid)(PLLA) were co-precipitated by a supercritical antisolvent(SAS) process using dichloromethane(DCM) and the mixtures of DCM/ethanol(EtOH) or DCM/dimethyl sulfoxide(DMSO) as the solvent,with super-critical carbon dioxide as the antisolvent.The effects of solvent,solvent ratio,temperature,pressure,polymer con-centration and solution flow rate on particle morphology,mass median diameter(Dp50) and PTX loading were in-vestigated using single-factor method.The particle samples were characterized using X-ray diffraction(XRD),scanning electron microscopy(SEM),laser diffraction particle size analyzer and high pressure liquid chromatogra-phy(HPLC).XRD results indicate that the micronized PTX is dispersed into the PLLA matrix in an amorphous form.SEM indicates that the solvent and the solvent ratio have great effect on the particle morphologies,and particle morphology is good at the volume ratio of DCM/EtOH of 50/50.For the mixed DCM/EtOH solvent,Dp50 increases with the increase of the temperature,pressure,PLLA concentration and solution flow rate,and PTX loading in-creases with pressure.Suitable operating conditions for the experimental system are as follows:DCM/EtOH 50/50(by volume),35 ℃,10-12 MPa,PLLA concentration of 5 g·L-1 and solution flow rate of 0.5 ml·min-1.
基金National High-Tech Research and Development Program of China ( 863 Program ) ( No. 2007AA03Z336) Program for New Century Excellent Talents in University,China ( No. NCET-07-0174) +1 种基金National Natural Science Foundations of China ( No. 21074021,No.50673018) The Fundamental Research Funds for the Central Universities ( No. 2011D10543)
文摘L-lactic acid (L-LA) based copolymer/hydroxylation vermiculites composites (PLLA-co-bis A/HVMTs) were prepared by in situ reaction among L-LA, adipic acid, and hydroxylation lamellar vermiculites (HVMTs) using bisphenol-A epoxy resin as chain extending agent. HVMTs were obtained by sulfuric acid-leaching of lamellar vermiculites (VMTs). The effects of sulfuric acid leaching on the VMTs structure were characterized by X-ray diffraction (XRD), 29Si magic-angle spinning nuclear magnetic resonance(29Si NMR), Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FE-SEM), and thermogravimetric analysis (TGA). FTIR, FE-SEM, and TGA were used to characterize the reaction activity of HVMTs. The results indicated that VMTs with increased hydroxyl groups had been successfully obtained and could react with -COOH of the reaction system. The amount of L-LA based copolymer grafted on the surface of HVMTs was more than 22%. The onset decomposition temperature of L-LA based copolymer grafted on the surface of HVMTs was 30℃ higher than that of free L-LA based copolymer.